Insulated conductor for high-voltage windings and a method of manufacturing the same

Abstract
An insulated conductor for high-voltage windings in electric machines employs conductor formed of one or more strands, an inner, first semi-conductive layer surrounding the strands, a first insulating layer surrounding the inner, first semi-conductive layer and an outer, second semi-conductive layer surrounding the first insulating layer. The second semi-conductive layer has at least two different earth points along the insulated conductor, the second semi-conductive layer has breaks located between consecutive earth points. A shielding device is located in each of said breaks for reducing amplification of the electric field strength produced at the breaks.
Description




TECHNICAL FIELD




The present invention relates in a first aspect to an insulated conductor for high-voltage windings in rotating electric machines.




A second aspect of the present invention relates to a method of adapting an insulated conductor for high-voltage windings in rotating electric machines.




A third aspect of the present invention relates to a rotating electric machine comprising an insulated conductor of the type described above.




The machine is intended primarily as generator in a power station for generating electric power.




The invention is applicable in rotating electric machines such as synchronous machines. The invention is also applicable in other electric machines such as dual-fed machines, and applications in asynchronous static current cascades, outer pole machines and synchronous flow machines, provided their windings consist of insulated electric conductors of the type described in the introduction, and preferably at high voltages. “High voltages” here refer to electric voltages exceeding 10 kV. A typical working range for an insulated conductor for high-voltage windings according to the invention may be 36-800 kV.




BACKGROUND ART




In order to be able to explain and describe the machine, a brief description of a rotating electric machine will first be given, exemplified on the basis of a synchronous machine. The first part of the description substantially relates to the magnetic circuit of such a machine and how it is constructed according to classical technique. Since the magnetic circuit referred to in most cases is located in the stator, the magnetic circuit below will normally be described as a stator with a laminated core, the winding of which will be referred to as a stator winding, and the slots in the laminated core for the winding will be referred to as stator slots or simply slots.




The stator winding is located in slots in the sheet iron core, the slots normally having a rectangular or trapezoidal cross section as that of a rectangle or a trapezoid. Each winding phase comprises a number of series-connected coil groups connected in series and each coil group comprises a number of series-connected coils connected in series. The different parts of the coil are designated coil side for the part which is placed in the stator and end winding end for that part which is located outside the stator. A coil comprises one or more conductors brought together in height and/or width.




Between each conductor there is a thin insulation, for example epoxy/glass fibre.




The coil is insulated from the slot with a coil insulation, that is, an insulation intended to withstand the rated voltage of the machine to earth. As insulating material, various plastic, varnish and glass fibre materials may be used. Usually, so-called mica tape is used, which is a mixture of mica and hard plastic, especially produced to provide resistance to partial discharges, which can rapidly break down the insulation. The insulation is applied to the coil by winding the mica tape around the coil in several layers. The insulation is impregnated, and then the coil side is painted with a graphite-based paint to improve the contact with the surrounding stator which is connected to earth potential.




The conductor area of the windings is determined by the current intensity in question and by the cooling method used. The conductor and the coil are usually formed with a rectangular shape to maximize the amount of conductor material in the slot. A typical coil is formed of so-called Roebel bars, in which certain of the bars may be made hollow for a coolant. A Roebel bar comprises a plurality of rectangular, parallel-connected copper conductors connected in parallel, which are transposed 360 degrees along the slot. Ringland bars with transpositions of 540 degrees and other transpositions also occur. The transposition is made to avoid the occurrence of circulating currents which are generated in a cross section of the conductor material, as viewed from the magnetic field.




For mechanical and electrical reasons, a machine cannot be made in just any size. The machine power is determined substantially by three factors:




The conductor area of the windings. At normal operating temperature, copper, for example, has a maximum value of 3-3.5 A/mm2.




The maximum flux density (magnetic flux) in the stator and rotor material.




The maximum electric field strength in the insulating material, the so-called dielectric strength.




Polyphase ac windings are designed either as single-layer or two-layer windings. In the case of single-layer windings, there is only one coil side per slot, and in the case of two-layer windings there are two coil sides per slot. Two-layer windings are usually designed as diamond windings, whereas the single-layer windings which are relevant in this connection may be designed as a diamond winding or as a concentric winding. In the case of a diamond winding, only one coil span (or possibly two coil spans) occurs, whereas flat windings are designed as concentric windings, that is, with a greatly varying coil span. By coil span is meant the distance in circular measure between two coil sides belonging to the same coil, either in relation to the relevant pole pitch or in the number of intermediate slot pitches. Usually, different variants of chording are used, for example short-pitching pitch, to give the winding the desired properties.




The type of winding substantially describes how the coils in the slots, that is, the coil sides, are connected together outside the stator, that is, at the end windings ends.




Outside the stacked sheets of the stator, the coil is not provided with a painted semiconducting earth-potential layer. The end winding end is normally provided with an E-field control in the form of so-called corona protection varnish intended to convert a radial field into an axial field, which means that the insulation on the end windings ends occurs at a high potential relative to earth. This sometimes gives rise to corona in the end-winding-end region, which may be destructive. The so-called field-controlling points at the end windings ends entail problems for a rotating electric machine.




Normally, all large machines are designed with a two-layer winding and equally large coils. Each coil is placed with one side in one of the layers and the other side in the other layer. This means that all the coils cross each other in the end winding end. If more than two layers are used, these crossings render the winding work difficult and deteriorate the end winding end.




It is generally known that the connection of a synchronous machine/generator to a power network must be made via a AE/YD-connected so-called step-up transformer, since the voltage of the power network normally lies at a higher level than the voltage of the rotating electric machine. Together with the synchronous machine, this transformer thus constitutes integrated parts of a plant. The transformer constitutes an extra cost and also has the disadvantage the advantage that the total efficiency of the system is lowered. If it were possible to manufacture machines for considerably higher voltages, the step-up transformer could thus be omitted. During the last few decades, there have been increasing requirements for rotating electric machines for higher voltages than for what has previously been possible to design. The maximum voltage level which, according to the state of the art, has been possible to achieve for synchronous machines with a good yield in the coil production is around 25-30 kV.




Certain attempts to a new approach as regards the design of synchronous machines are described, inter alia, in an article entitled “Water-and-oil-cooled Turbogenerator TVM-300” in J. Elektrotechnika, No. 1, 1970, pp. 6-8, in U.S. Pat. No. 4,429,244 “Stator of Generator” and in Russian patent document CCCP Patent 955369.




The water- and oil-cooled synchronous machine described in J. Elektrotechnika is intended for voltages up to 20 kV. The article describes a new insulation system consisting of oil/paper insulation, which makes it possible to immerse the stator completely in oil. The oil can then be used as a coolant while at the same time using it as insulation. To prevent oil in the stator from leaking out towards the rotor, a dielectric oil-separating ring is provided at the internal surface of the core. The stator winding is made from conductors with an oval hollow shape provided with oil and paper insulation. The coil sides with their insulation are secured to the slots made with rectangular cross section by means of wedges. As coolants coolant oil is used both in the hollow conductors and in holes in the stator walls. Such cooling systems, however, entail a large number of connections of both oil and electricity at the coil ends. The thick insulation also entails an increased radius of curvature of the conductors, which in turn results in an increased size of the winding overhang.




The above-mentioned US patent relates to the stator part of a synchronous machine which comprises a magnetic core of laminated sheet with trapezoidal slots for the stator winding. The slots are tapered since the need for insulation of the stator winding is less towards the interior of the rotor where that part of the winding which is located nearest the neutral point is located. In addition, the stator part comprises a dielectric oil-separating cylinder nearest the inner surface of the core. This part may increase the magnetization requirement relative to a machine without this ring. The stator winding is made of oil-immersed cables with the same diameter for each coil layer. The layers are separated from each other by means of spacers in the slots and secured by wedges. What is special for the winding is that it comprises two so-called half-windings connected in series. One of the two half-windings is located, centered, inside an insulating sleeve. The conductors of the stator winding are cooled by surrounding oil. Disadvantages with such a large quantity of oil in the system are the risk of leakage and the considerable amount of cleaning work which may result from a fault condition. Those parts of the insulating sleeve which are located outside the slots have a cylindrical part and a conical termination reinforced with current-carrying layers, the purpose of which is to control the electric field strength in the region where the cable enters the end winding.




From CCCP 955369 it is clear, in another attempt to raise the rated voltage of the synchronous machine, that the oil-cooled stator winding comprises a conventional high-voltage cable with the same dimension for all the layers. The cable is placed in stator slots formed as circular, radially located openings corresponding to the cross-section area of the cable and the necessary space for fixing and for coolant. The different radially located layers of the winding are surrounded by and fixed in insulating tubes. Insulating spacers fix the tubes in the stator slot. Because of the oil cooling, an internal dielectric ring is also needed here for sealing the oil coolant off against the internal air gap. The disadvantages of oil in the system described above also apply to this design. The design also exhibits a very narrow radial waist between the different stator slots, which implies a large slot leakage flux which significantly influences the magnetization requirement of the machine.




A report from Electric Power Research Institute, EPRI, EL-3391, from 1984 describes a review of machine concepts for achieving a higher voltage of a rotating electric machine with the purpose of being able to connect a machine to a power network without an intermediate transformer. Such a solution, judging from is judged by the investigation to provides good efficiency gains and great economic advantages. The main reason for considering it was considered possible in 1984 to start developing generators for direct connection to power networks was that at the time a superconducting rotor had been produced. The large magnetization capacity of the superconducting field makes it possible to use an air gap winding with a sufficient insulation thickness to withstand the electrical stresses. By combining the most promising concept, according to the project, of designing a magnetic circuit with a winding, a so-called monolith cylinder armature, a concept where the winding comprises two cylinders of conductors concentrically enclosed in three cylindrical insulating casings and the whole structure being fixed to an iron core without teeth, it was judged that a rotating electric machine for high voltage could be directly connected to a power network. The solution meant that the main insulation had to be made sufficiently thick to cope with network-to-network and network-to-earth potentials. The insulation system which, after a review of all the technique known at the time, was judged to be necessary to manage an increase to a higher voltage was that which is normally used for power transformers and which consists of dielectric-fluid-impregnated cellulose press board. Obvious disadvantages with the proposed solution are that, in addition to requiring a superconducting rotor, it requires a very thick insulation which increases the size of the machine. The end windings ends must be insulated and cooled with oil or freons to control the large electric fields in the ends. The whole machine must be hermetically enclosed to prevent the liquid dielectric from absorbing moisture from the atmosphere.




When manufacturing rotating electric machines according to the state of the art, the winding is manufactured with conductors and insulation systems in several steps, whereby the winding must be preformed prior to mounting on the magnetic circuit. Impregnation for preparing the insulation system is performed after mounting of the winding on the magnetic circuit.




SUMMARY OF THE INVENTION




It is an object of the invention to be able to manufacture a rotating electric machine for high voltage without any complicated preforming of the winding and without having to impregnate the insulation system after mounting of the winding.




To increase the power of a rotating electrical machine, it is known to increase the current in the AC coils. This has been achieved by optimizing the quantity of conducting material, that is, by close-packing of rectangular conductors in the rectangular rotor slots. The aim has been to handle the increase in temperature resulting from this by increasing the quantity of insulating material and using more temperature-resistant and hence more expensive insulating materials. The high temperature and field load on the insulation has also caused problems with the life of the insulation. In the relatively thick-walled insulating layers which are used for high-voltage equipment, for example impregnated layers of mica tape, partial discharges, PD, constitute a serious problem. When manufacturing these insulating layers, cavities, pores, and the like, will easily arise, in which internal corona discharges arise when the insulation is subjected to high electric field strengths. These corona discharges gradually degrade the material and may lead to electric breakdown through the insulation.




The present invention is based on the realization that, to be able to increase in the power of a rotating electrical machine in a technically and economically justifiable way, this must be achieved by ensuring that the insulation is not broken down by the phenomena described above. This can be achieved according to the invention by using as insulation layers made in such a way that the risk of cavities and pores is minimal, for example extruded layers of a suitable solid insulating material, such as thermoplastic resins, cross linked thermoplastic resins, rubber such as silicone rubber, etc. In addition, it is important that the insulating layer comprises an inner layer, surrounding the conductor, with semiconducting properties and that the insulation is also provided with at least one additional outer layer, surrounding the insulation, with semiconducting properties. By Semiconducting properties is meant in this context is a material which has a considerably lower conductivity than an electric conductor but which does not have such a low conductivity that it is an insulator. By using only insulating layers which may be manufactured with a minimum of defects and, in addition, providing the insulation with an inner and an outer semiconducting layer, it can be ensured that the thermal and electric loads are reduced. The insulating part with at least one adjoining semiconducting layer should have essentially the same coefficient of thermal expansion. At temperature gradients, defects caused by different temperature expansion in the insulation and the surrounding layers should not arise. The electric load on the material decreases as a consequence of the fact that the semiconducting layers around the insulation will constitute equipotential surfaces and that the electrical field in the insulating part will be distributed relatively evenly over the thickness of the insulation. The outer semiconducting layer may be connected to a chosen potential, for example earth potential. This means that, for such a cable, the outer casing of the winding in its entire length may be kept at, for example, earth potential. The outer layer may also be cut off at suitable locations along the length of the conductor and each cut-off partial length may be directly connected to a chosen potential. Around the outer semiconducting layer there may also be arranged other layers, casings and the like, such as a metal shield and a protective sheath.




Further knowledge gained in connection with the present invention is that increased current load leads to problems with electric (E) field concentrations at the corners at a cross section of a coil and that this entails large local loads on the insulation there. Likewise, the magnetic (B) field in the teeth of the stator will be concentrated at the corners. This means that magnetic saturation arises locally and that the magnetic core is not utilized in full and that the wave form of the generated voltage/current will be distorted. In addition, eddy-current losses caused by induced eddy currents in the conductors, which arise because of the geometry of the conductors in relation to the B field, will entail additional disadvantages in increasing current densities. A further improvement of the invention is achieved by making the coils and the slots in which the coils are placed essentially circular instead of rectangular. By making the cross section of the coils circular, these will be surrounded by a constant B field without concentrations where magnetic saturation may arise. Also the E field in the coil will be distributed evenly over the cross section and local loads on the insulation are considerably reduced. In addition, it is easier to place circular coils in slots in such a way that the number of coil sides per coil group may increase and an increase of the voltage may take place without the current in the conductors having to be increased. The reason for this being that the cooling of the conductors is facilitated by, on the one hand, a lower current density and hence lower temperature gradients across the insulation and, on the other hand, by the circular shape of the slots which entails a more uniform temperature distribution over a cross section. Additional improvements may also be achieved by composing the conductor from smaller parts, so-called strands. The strands may be insulated from each other and only a small number of strands may be left uninsulated and in contact with the inner semiconducting layer, to ensure that this is at the same potential as the conductor.




The advantages of using a rotating electric machine according to the invention are that the machine can be operated at overload for a considerably longer period of time than what is usual for such machines without being damaged. This is a consequence of the composition of the machine and the limited thermal load of the insulation. It is, for example, possible to load the machine with up to 100% overload for a period exceeding 15 minutes and up to two hours.




One embodiment according to the invention is that the magnetic circuit of the rotating electric machine comprises a winding of a threaded cable with one or more extruded insulated conductors with solid insulation with a semiconducting layer both at the conductor and the casing. The outer semiconducting layer may be connected to earth potential. To be able to cope with the problems which arise in case of direct connection of rotating electric machines to all types of high-voltage power networks, a machine according to the invention has a number of features which distinguish it from the state of the art.




As described above, a winding for a rotating electric machine may be manufactured from a cable with one or more extruded insulated conductors with solid insulation with a semiconducting layer both at the conductor and at the casing. Some typical examples are a XLPE cable or a cable with EP rubber insulation. A further development of a conductor composed of strands is possible in that it is possible to insulate the strands with respect to each other in order thus to reduce the amount of eddy current losses in the conductor. One or a few strands may be left uninsulated to ensure that the semiconducting layer which surrounds the conductor is at the same potential as the conductor.




It is known that a high-voltage cable for transmission of electric energy is composed of conductors with solid extruded insulation with an inner and an outer semiconductor part. In the process of transmitting electric energy it was required that the insulation should be free from defects. During transmission of electric energy, the starting-point has long been that the insulation should be free from defects. When using high-voltage cables for transmission of electric energy, the aim was not been to maximize the current through the cable since space is no limitation for a transmission cable. Insulation of a conductor for a rotating electric machine may be applied in some other way than by means of extrusion, for example by spraying or the like. It is important, however, that the insulation should have no defects through the whole cross section and should possess similar thermal properties. The semiconducting layers may be supplied with the insulation in connection with the insulation being applied to the conductors.




Preferably, cables with a circular cross section are used. Among other things, to obtain a better packing density, cables with a different cross section may be used. To build up a voltage in the rotating electric machine, the cable is arranged in several consecutive turns in slots in the magnetic core. The winding can be designed as a multi-layer concentric cable winding to reduce the number of end-winding-end crossings. The cable may be made with tapered insulation to utilize the magnetic core in a better way, in which case the shape of the slots may be adapted to the tapered insulation of the winding.




A significant advantage of a rotating electrical machine according to the invention is that the E field is near zero in the end-winding-end region outside the outer semiconductor and that with the outer casing at earth potential, the electric field need not be controlled. This means that no field concentrations can be obtained, neither within sheets, in end-winding-end regions or in the transition between.




The present invention also relates to a method for manufacturing the magnetic circuit and, in particular, the winding. The method for manufacturing comprises placing the winding in the slots by threading a cable into the openings in the slots in the magnetic core (FIG.


6


). Since the cable is flexible, it can be bent and this permits a cable length to be located in several turns in a coil. The end windings ends will then consist of bending zones in the cables. The cable may also be joined in such a way that its properties remain constant over the cable length. This method entails considerable simplifications compared with the state of the art. The so-called Roebel bars are not flexible but must be preformed into the desired shape. Impregnation of the coils is also an exceedingly complicated and expensive technique when manufacturing rotating electric machines today.




This is achieved with an insulated conductor for high-voltage windings in rotating electric machines as defined in claim


1


, and with a method of adapting an insulated conductor for high-voltage windings in rotating electric machines as defined in claim


9


, and also with rotating electric machines comprising an insulated conductor of the type described above according to claim


8


. The high-voltage cable according to the present invention comprises one or more strands surrounded by a first semi-conducting layer. This first semi-conducting layer is in turn surrounded by a first insulating layer, which is surrounded by a second semi-conducting layer. This second semi-conducting layer is earthed at least two different points along the high-voltage cable. The part of the cable that lies in the stator slots must be electrically insulated from the magnetic steel of the stator. Between each pair of earthed points along the high-voltage cable, the electric contact is broken in the second semi-conducting layer. At each such break in the second semi-conductive layer a device is arranged to reduce amplification of the electric field strength at said breaks.




According to the invention, the method of adapting an insulated conductor for high-voltage windings in rotating electric machines comprises the steps of:




breaking the electric contact in the second semi-conductive layer between each pair of earthed points; and




at each of said breaks in the second semi-conductive layer arranging a device to reduce amplification of the electric field strength at said break.




Thanks to the above method and the high-voltage cable according to the invention, a high-voltage cable is obtained with no heat losses caused by induced voltages in the outer semi-conducting layer. A high-voltage cable is obtained in which the risk of electric breakthrough has been minimized.




The invention will now be explained in more detail in the following description of preferred embodiments, with reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a cross section through a high-voltage cable;





FIG. 2A

shows a view, partly in section, of a high-voltage cable with a break in the second semi-conducting layer, in order to illustrate amplification of the electric field at the edges of the break; and





FIG. 2B

shows a view in perspective of a part of the cable revealed in

FIG. 2A

;





FIGS. 3

shows a cross section along the longitudinal axis of a high-voltage cable according to the present invention;





FIG. 4A

shows the electric field image calculated on a high-voltage cable with a break in the second semi-conducting layer;





FIG. 4B

shows the electric field image calculated on a high-voltage cable according to the present invention;





FIG. 5

shows a flowchart for the method of adapting a high-voltage cable according to the invention; and





FIG. 6

shows a schematic illustration of stator in a rotating electric machine having slots and a high-voltage cable winding in accordance with the present invention.











DETAILED DESCRIPTION OF EMBODIMENTS OF THE PRESENT INVENTION





FIG. 1

shows a cross-sectional view of a high-voltage cable


10


used traditionally for transmitting electric power. The high-voltage cable


10


shown may be a standard XLPE-cable 145 kV but without sheath or screen. The high-voltage cable


10


comprises an electric conductor which may consist of one or more strands


12


of copper (Cu), for instance, having circular cross section. These strands


12


are arranged in the middle of the high-voltage cable


10


. Around the strands


12


is a first semi-conducting layer


14


, and around the first semi-conducting layer


14


is a first insulating layer


16


, e.g. XLPE insulation. Around the first insulating layer


16


is a second semiconducting layer


18


.





FIG. 2A

shows a view, partially in section, of a high-voltage cable with a break in the second semi-conducting layer, in order to illustrate the amplification of the electric field at the edges of the break. The section shown in

FIG. 2A

is along the longitudinal axis of the high-voltage cable.

FIG. 2B

shows a view in perspective of a part of the cable shown in FIG.


2


A. In

FIGS. 2A and B

equivalent parts have been given the same designations as in FIG.


1


. The strands


12


are shown only schematically in FIG.


2


A. As can be seen in

FIGS. 2A and B

, the second semi-conducting layer


18


has been removed in a ring around the periphery of the high-voltage cable


10


so that a groove


20


is formed. The first insulating layer


16


is thus exposed in the groove


20


. This break in the electric contact in the second semi-conducting layer


18


between two earthed points, ensures that no current will flow and therefore no heat losses will occur caused by induced voltages. However, all interruptions in the second semi-conducting layer


18


gives rise to an increase in the electric field strength at the edges of the break. As can be seen in

FIG. 2

, the electric field lines have been drawn in (indicated by the designation


22


). A concentration of field lines


22


prevails at the edges of the groove


20


, indicating that the electric field strength increases sharply there. Unfortunately this increases the risk of electric breakdown which should be avoided.





FIG. 3

shows a cross-sectional view along the longitudinal axis of a high-voltage cable according to the present invention. Like the high-voltage cable


10


in

FIG. 1

, the high-voltage cable


30


comprises strands


12


, a first conducting layer


14


, a first insulating layer


16


and a second semi-conducting layer


18


. As can be seen in

FIG. 3

the second semiconducting layer


18


has been removed in a ring around the periphery in order to form a groove


20


, the first insulating layer


16


having been exposed. As can be seen in

FIG. 3

the groove


20


has bevelled edges, i.e. the groove


20


is wider at the upper edges of the semi-conducting layer


18


than at the first insulating layer


16


. The groove


20


may have straight edges, for instance, although bevelled edges are advantageous. In

FIG. 3

the distance between the edges of the second semi-conducting layer


18


at the first insulating layer


16


has been designated b. The width b of the groove


20


is preferably 4 mm. The high-voltage cable


30


also comprises a second insulating layer


24


applied on the groove


20


so that it fills the groove. The reason for having bevelled edges in the groove


20


is so that no cavities are obtained at the edges when the second insulating layer


24


is formed by filling the groove


20


with a suitable insulating material, e.g. insulating self-amalgamating EPDM tape such as insulating tape IV-tejp®, IA 2332 from ABB Kabeldon. The second insulating layer


24


also covers the bevelled edges of the second semiconducting layer


18


and a part of the second semi-conducting layer


18


beside the bevelled edges. The high-voltage cable


30


also comprises a third semi-conducting layer


26


, e.g. in the form of tape such as semi-conducting tape, HL-tejp®, IA 2352 from ABB Kabeldon, which is applied over the second insulating layer


24


in such a manner that the third semi-conducting layer


26


at one end covers one edge of the second insulating layer


24


and is in electric contact with the second semi-conducting layer


18


. At its other end the third semi-conducting layer


26


does not cover the other end of the second insulating layer


24


, but instead terminates a distance c from the other edge of the insulating layer


24


. The thickness of the second insulating layer


24


should be at least 1 mm at the edge where the third semi-conducting layer


26


does not cover the second insulating layer


24


. On the other hand, the third serif-conducting layer


26


at this its other end shall extend over (overlap) the second semi-conducting layer


18


situated beneath the second insulating layer


24


. The distance between the edge of the third semi-conducting layer


26


and the edge of the second semi-conducting layer


18


in the longitudinal direction of the cable


30


is d, as shown in FIG.


3


. The third semi-conducting layer


26


should have a thickness of at least 1 mm. A groove


20


with a second insulating layer


24


and a third semi-conducting layer


26


arranged in the manner shown in

FIG. 3

exists between each pair of earthed points along the length of the high-voltage cable


30


. The number of grooves


20


with devices


24


,


26


is thus the number of earthed points minus one. Thus if the number of earthed points is N, the number of grooves


20


and devices


24


,


26


will be N−1.





FIG. 4A

shows the electric field calculated on a high-voltage cable with breaks in the semi-conducting layer, i.e. as the high-voltage cable shown in

FIGS. 2A and 2B

.

FIG. 4A

shows the cable


10


schematically in section, revealing the second semiconducting layer


18


and the groove


20


. The arrows indicate the electric field strength E(V/m), where the length of the arrows is proportional to the field strength. As can be seen in

FIG. 4A

, the electric field strength is greatest at the edges of the groove


20


. The maximum field strength at the corners is 4 kV/mm.





FIG. 4B

shows the electric field calculated on a high-voltage cable


30


according to the present invention, i.e. according to FIG.


3


.

FIG. 4B

shows the cable


30


schematically in section, revealing the second semi-conducting layer


18


, the groove


20


, the second insulating layer


24


and the third semi-conducting layer


26


. The arrows indicate the electric field strength E(V/m) where the length of the arrows is proportional to the field strength. As can be seen in

FIG. 4B

the electric field strength at the edges of the groove


20


is not as great as in FIG.


4


A. The maximum field strength at the corners is 2.3 kV/mm. By arranging devices


24


,


26


(e.g. consisting of a second insulating layer


24


and a third semi-conducting layer


26


) at the break


20


, therefore, the maximum field strength at the corners can be reduced from 4 kV/mm to 2.3 kV/mm. This greatly reduces the risk of electric breakthrough. At the same time no heat losses are sustained caused by induced voltages.





FIG. 5

shows a flowchart for a method of adapting a high-voltage cable for high-voltage windings in rotating electric machines according to the invention. A high-voltage cable


10


according to

FIG. 1

is used, said cable


10


comprising an electric conductor consisting of one or more strands


12


, a first semi-conducting layer


14


, a first insulating


16


and a second serif-conducting layer


18


. This second semiconducting layer


18


will be earthed at least two different points along the high-voltage cable. The flowchart starts at the block


40


. The next step, at block


42


, is to produce a break


20


in the electric contact in the second semi-conducting layer


18


between each earthing point. If there are N earthed points along the high-voltage cable, therefore, there will be N−1 breaks


20


in the semi-conducting layer


18


. Thereafter, at block


44


, a device


24


,


26


is applied to each break


20


in the second semi-conducting layer


18


in order to reduce amplification of electric field strength at said break


20


. Blocks


42


and


44


are thus repeated N−1 times before the end of the procedure is reach at block


46


. The breaks


20


are produced by removing the second semi-conducting layer


18


around the periphery of the high-voltage cable, down as far as the first insulating layer


16


so that grooves


20


are formed, flanked by the second semi-conducting layer


18


. The edges of the grooves


20


are suitably bevelled as shown in FIG.


3


. Over each groove


20


a second insulating layer


24


is applied. This layer


24


also covers a part of the second semi-conducting layer


18


on both sides of the groove


20


. Thereafter a third semi-conducting layer


26


is applied on the second insulating layer


24


, which at one end covers one edge of the second insulating layer


24


and is in electric contact with the second semi-conducting layer


18


. At its other end the third serif-conducting layer


26


does not cover the other edge of the insulating layer


24


but extends over a part of the second semi-conducting layer


18


situated beneath the second insulating layer


24


. (See

FIG. 3

)




The insulated conducor


10


(

FIG. 6

) is located in a stator slot in the stator core, which has an overhang region at the ends of the stator. The second semi-conductive layer is insulated from the stator in the stator slot and the second semi-conductive layer


18


has at least one break


20


and one grounding point in the overhang region for each slot that the cable passes through.




The invention is not limited to the embodiments shown. Several variations are possible within the scope of the appended claims.



Claims
  • 1. An insulated conductor for high-voltage windings in electric machines comprising:a conductor comprising a flexible cable formed of one or more strands, an inner, first semi-conductive layer surrounding the strands, a first insulating layer surrounding the inner first semi-conductive layer and an outer, second semi-conductive layer surrounding the first insulating layer, said second semi-conductive layer including at least two different earth points along the insulated conductor, the second semi-conductive layer including breaks comprising an electrical discontinuity having spaced apart edges forming a gap each of said breaks being located between the earth points, and a shielding device located over each of said breaks and being coupled to one of the edges of the discontinuity and extending across the gap and overlapping the other edge being in radially spaced relation therewith for reducing amplification of the electric field strength produced at said brakes.
  • 2. An insulated conductor for high-voltage windings in rotating electric machines comprising:a conductor formed of one or more strands, and inner, first semi-conductive layer surrounding the strands, a first insulating layer surrounding the inner, first semi-conductive layer and an outer, second semi-conductive layer including at least two different earth points along the insulated conductor, the second semi-conductive layer includes breaks comprising an electrical discontinuity between the earth points, and a shielding device located across each break and being in contact with the outer layer on one side of each break, extending across and overlapping the break and being in spaced relation with said other side of the break for reducing amplification of the electric field strength produced at each break when the conductor is energized.
  • 3. An insulated conductor as claimed in claim 2 in a machine having a stator formed with stator slots for receiving the insulated conductor and an overhang region, and where the second semi-conductive layer is electrically insulated from the stator and the second semi-conductive layer has at least one of said breaks and one of said earth points in the overhang region for each stator slot that the insulated conductor passes through.
  • 4. An insulated conductor as claimed in claim 2, wherein each electrical discontinuity in the second semi-conductive layer is formed by removal of a portion of the second semi-conductive layer is around the periphery of the insulated conductor down to the first insulating layer forming grooves flanked by the second semi-conductive layer.
  • 5. An insulated conductor as claimed in claim 4 wherein each of the grooves exposes a portion of the first insulating layer and the shielding device comprises a second insulating layer of a selected length having ends, said second insulating layer arranged over each groove, covering the external portion of the first insulating layer, said second insulating layer covering a part of the second semi-conductive layer flanking each groove, and a third semi-conductive layer of a selected length having a contact end and a free end, the contact end covering one end of the second insulating layer and being in electric contact with the second semi-conductive layer and the free end not covering the other end of the second insulating layer, the free end extending over a part of the second semi-conductive layer a distance sufficient to cover the groove and being out of contact with said second semi-conducting layer.
  • 6. An insulated conductor as claimed in claim 5, wherein the ends of the second semi-conductive layer are beveled such that the grooves have a minimum thickness at the first insulating layer.
  • 7. An insulated conductor as claimed in claim 6, wherein the contact end of the third semi-conductive layer is in mechanical contact with the second semi-conductive layer, and the free end of the third semi-conductive layer is not in mechanical or electrical contact with the second semi-conductive layer.
  • 8. An insulated conductor as claimed in claim 7 wherein the second insulating layer comprises a insulating EPDM tape.
  • 9. An insulated conductor as claimed in claim 8, wherein the third semi-conductive layer comprises a semi-conducting rubber-based tape.
  • 10. An insulated conductor as claimed in claim 2, wherein each break comprises a circumferential groove formed through the second semi-conducting layer said groove having a selected length defined by flanking end portions of the second semi-conductive layer.
  • 11. A method of adapting an insulated conductor for high-voltage windings in electric machines, said insulated conductor comprising one or more conductive strands an inner, first semi-conductive layer surrounding the strands, a first insulating layer surrounding the inner, first semi-conductive layer and an outer, second semi-conductive layer surrounding the first insulating layer, said second semi-conductive layer has in use at least two earth points along the insulated conductor comprising the steps of:producing a break in the second semi-conductive layer between each of the at least two earth points by removing the second semi-conductive layer around the periphery of the insulated conductor down as far as the first insulating layer so that grooves are produced flanked by the second semi-conductive layer; and arranging a shielding device in the second semi-conductive layer across the groove by contacting a third semi-conducting outer layer in one side of the groove and spacing a free end of the semi-conducting layer in spaced overlapping relation with the other side of the groove to reduce amplification of the electric field strength at each side break.
  • 12. A method as claimed in claim 11, wherein each break is produced by removing the second semi-conductive layer around the periphery of the insulated conductor down as far as the first insulating layer so that grooves are produced flanked by the second semi-conductive layer.
  • 13. A method as claimed in claim 11, wherein the step of applying and shielding devices comprises the steps of:applying a second insulating layer over each groove in such a manner as to cover part of the second semi-conductive layer over the length of each groove; and applying the third semi-conductive layer on the second insulating layer in such a manner that the third semi-conductive layer covers one edge of the second insulating layer and has an end in electric contact with the second semi-conductive layer and has a free end that does not cover the edge of the other edge of the second insulating layer but extends over a part of the second semi-conductive layer situated beneath the second insulating layer out of contact therewith.
  • 14. An insulated conductor for high-voltage windings in rotating electric machines comprising:a conductor formed of one or more strands, an inner, first semi-conductive layer surrounding the strands, a first insulating layer surrounding the inner, first semi-conductive layer and an outer, second semi-conductive layer surrounding the first insulating layer, said second semi-conductive layer including at least two different earth points along the insulated conductor, the second semi-conductive layer includes breaks comprising electrical discontinuity in the second semi-conductive layer formed by removal of a portion of the second semi-conductive layer around the periphery of the insulated conductor exposing the first insulating layer forming grooves flanked by the second semi-conductive layer each break being located between two consecutive earth points, and a shielding device located at each break for reducing amplification of the electric field strength produced at each break when the conductor is energized, comprising a second insulating layer of a selected length having ends, said second insulating layer arranged over each groove, covering the external portion of the first insulating layer, said second insulating layer covering a part of the second semi-conductive layer flanking each groove, and a third semi-conductive layer of a selected length having a contact end and a free end, the contact end covering one end of the second insulating layer and being in electric contact with the second semi-conductive layer and the free end not covering the other end of the second insulating layer, the free end extending over a part of the second semi-conductive layer a distance sufficient to cover the groove and being out of contact with said second semi-conducting layer.
Priority Claims (2)
Number Date Country Kind
9602079 May 1996 SE
9602090 May 1996 SE
PCT Information
Filing Document Filing Date Country Kind
PCT/SE97/00901 WO 00
Publishing Document Publishing Date Country Kind
WO97/45918 12/4/1997 WO A
US Referenced Citations (327)
Number Name Date Kind
681800 Lasche Sep 1901 A
847008 Kitsee Mar 1907 A
1304451 Burnham May 1919 A
1418856 Williamson Jun 1922 A
1481585 Beard Jan 1924 A
1508456 Lenz Sep 1924 A
1728915 Blankenship et al. Sep 1929 A
1742985 Burnham Jan 1930 A
1747507 George Feb 1930 A
1756672 Barr Apr 1930 A
1762775 Ganz Jun 1930 A
1781308 Vos Nov 1930 A
1861182 Hendey et al. May 1932 A
1904885 Seeley Apr 1933 A
1974406 Apple et al. Sep 1934 A
2006170 Juhlin Jun 1935 A
2206856 Shearer Jul 1940 A
2217430 Baudry Oct 1940 A
2241832 Wahlquist May 1941 A
2251291 Reichelt Aug 1941 A
2256897 Davidson et al. Sep 1941 A
2295415 Monroe Sep 1942 A
2409893 Pendleton et al. Oct 1946 A
2415652 Norton Feb 1947 A
2424443 Evans Jul 1947 A
2436306 Johnson Feb 1948 A
2446999 Camilli Aug 1948 A
2459322 Johnston Jan 1949 A
2462651 Lord Feb 1949 A
2498238 Berberich et al. Feb 1950 A
2650350 Heath Aug 1953 A
2721905 Monroe Oct 1955 A
2749456 Luenberger Jun 1956 A
2780771 Lee Feb 1957 A
2846599 McAdam Aug 1958 A
2885581 Pileggi May 1959 A
2943242 Schaschl et al. Jun 1960 A
2947957 Spindler Aug 1960 A
2959699 Smith et al. Nov 1960 A
2962679 Stratton Nov 1960 A
2975309 Seidner Mar 1961 A
3014139 Shildneck Dec 1961 A
3098893 Pringle et al. Jul 1963 A
3130335 Rejda Apr 1964 A
3143269 Van Eldik Aug 1964 A
3157806 Wiedemann Nov 1964 A
3158770 Coggeshall et al. Nov 1964 A
3197723 Dortort Jul 1965 A
3268766 Amos Aug 1966 A
3304599 Nordin Feb 1967 A
3354331 Broeker et al. Nov 1967 A
3365657 Webb Jan 1968 A
3372283 Jaecklin Mar 1968 A
3392779 Tilbrook Jul 1968 A
3411027 Rosenberg Nov 1968 A
3418530 Cheever Dec 1968 A
3435262 Bennett et al. Mar 1969 A
3437858 White Apr 1969 A
3444407 Yates May 1969 A
3447002 Ronnevig May 1969 A
3484690 Wald Dec 1969 A
3541221 Aupoix et al. Nov 1970 A
3560777 Moeller Feb 1971 A
3571690 Lataisa Mar 1971 A
3593123 Williamson Jul 1971 A
3631519 Salahshourian Dec 1971 A
3644662 Salahahourian Feb 1972 A
3651244 Silver et al. Mar 1972 A
3651402 Leffmann Mar 1972 A
3660721 Baird May 1972 A
3666876 Forster May 1972 A
3670192 Andersson et al. Jun 1972 A
3675056 Lenz Jul 1972 A
3684821 Miyauchi et al. Aug 1972 A
3684906 Lexz Aug 1972 A
3699238 Hansen et al. Oct 1972 A
3716652 Lusk et al. Feb 1973 A
3716719 Angelery et al. Feb 1973 A
3727085 Goetz et al. Apr 1973 A
3740600 Turley Jun 1973 A
3743867 Smith, Jr. Jul 1973 A
3746954 Myles et al. Jul 1973 A
3758699 Lusk et al. Sep 1973 A
3778891 Amasino et al. Dec 1973 A
3781739 Meyer Dec 1973 A
3787607 Schlafly Jan 1974 A
3792399 McLyman Feb 1974 A
3801843 Corman et al. Apr 1974 A
3809933 Sugawara et al. May 1974 A
3813764 Tanaka et al. Jun 1974 A
3828115 Hvizd, Jr. Aug 1974 A
3881647 Wolfe May 1975 A
3884154 Marten May 1975 A
3891880 Britsch Jun 1975 A
3902000 Forsyth et al. Aug 1975 A
3912957 Reynolds Oct 1975 A
3932779 Madsen Jan 1976 A
3932791 Oswald Jan 1976 A
3943392 Keuper et al. Mar 1976 A
3947278 Youtsey Mar 1976 A
3965408 Higuchi et al. Jun 1976 A
3968388 Lambrecht et al. Jul 1976 A
3971543 Shanahan Jul 1976 A
3974314 Fuchs Aug 1976 A
3993860 Snow et al. Nov 1976 A
3995785 Arick et al. Dec 1976 A
4001616 Lonseth et al. Jan 1977 A
4008367 Sunderhauf Feb 1977 A
4008409 Rhudy et al. Feb 1977 A
4031310 Jachimowicz Jun 1977 A
4039740 Iwata Aug 1977 A
4041431 Enoksen Aug 1977 A
4047138 Steigerwald Sep 1977 A
4064419 Peterson Dec 1977 A
4084307 Schultz et al. Apr 1978 A
4085347 Lichius Apr 1978 A
4088953 Sarian May 1978 A
4091138 Takagi et al. May 1978 A
4091139 Quirk May 1978 A
4099227 Liptak Jul 1978 A
4103075 Adam Jul 1978 A
4106069 Trautner et al. Aug 1978 A
4107092 Carnahan et al. Aug 1978 A
4109098 Olsson et al. Aug 1978 A
4121148 Platzer Oct 1978 A
4132914 Khutoretsky Jan 1979 A
4134036 Curtiss Jan 1979 A
4134055 Akamatsu Jan 1979 A
4134146 Stetson Jan 1979 A
4149101 Lesokhin et al. Apr 1979 A
4152615 Calfo et al. May 1979 A
4160193 Richmond Jul 1979 A
4164672 Flick Aug 1979 A
4164772 Hingorani Aug 1979 A
4177397 Lill Dec 1979 A
4177418 Brueckner et al. Dec 1979 A
4184186 Barkan Jan 1980 A
4200817 Bratoljic Apr 1980 A
4200818 Ruffing et al. Apr 1980 A
4206434 Hase Jun 1980 A
4207427 Beretta et al. Jun 1980 A
4207482 Neumeyer et al. Jun 1980 A
4208597 Mulach et al. Jun 1980 A
4229721 Koloczek et al. Oct 1980 A
4238339 Khutoretsky et al. Dec 1980 A
4239999 Vinokurov et al. Dec 1980 A
4245182 Aotsu et al. Jan 1981 A
4246694 Raschbichler et al. Jan 1981 A
4255684 Mischler et al. Mar 1981 A
4258280 Starcevic Mar 1981 A
4262209 Berner Apr 1981 A
4274027 Higuchi et al. Jun 1981 A
4281264 Keim et al. Jul 1981 A
4292558 Flick et al. Sep 1981 A
4307311 Grozinger Dec 1981 A
4308476 Schuler Dec 1981 A
4308575 Mase Dec 1981 A
4310966 Brietenbach Jan 1982 A
4314168 Breitenbach Feb 1982 A
4317001 Silver et al. Feb 1982 A
4320645 Stanley Mar 1982 A
4321426 Schaeffer Mar 1982 A
4321518 Akamatsu Mar 1982 A
4330726 Albright et al. May 1982 A
4337922 Streiff et al. Jul 1982 A
4341989 Sandberg et al. Jul 1982 A
4347449 Beau Aug 1982 A
4347454 Gellert et al. Aug 1982 A
4357542 Kirschbaum Nov 1982 A
4360748 Raschbichler et al. Nov 1982 A
4361723 Hvizd, Jr. et al. Nov 1982 A
4363612 Meyers Dec 1982 A
4365178 Lexz Dec 1982 A
4367425 Mendelsohn et al. Jan 1983 A
4367890 Spirk Jan 1983 A
4368418 Demello et al. Jan 1983 A
4369389 Lambrecht Jan 1983 A
4371745 Sakashita Feb 1983 A
4384944 Silver et al. May 1983 A
4387316 Katsekas Jun 1983 A
4401920 Taylor et al. Aug 1983 A
4403163 Rarmerding et al. Sep 1983 A
4404486 Keim et al. Sep 1983 A
4411710 Mochizuki et al. Oct 1983 A
4421284 Pan Dec 1983 A
4425521 Rosenberry, Jr. et al. Jan 1984 A
4426771 Wang et al. Jan 1984 A
4429244 Nikitin et al. Jan 1984 A
4431960 Zucker Feb 1984 A
4432029 Lundqvist Feb 1984 A
4437464 Crow Mar 1984 A
4443725 Derderian et al. Apr 1984 A
4470884 Carr Sep 1984 A
4473765 Butman, Jr. et al. Sep 1984 A
4475075 Munn Oct 1984 A
4477690 Nikitin et al. Oct 1984 A
4481438 Keim Nov 1984 A
4484106 Taylor et al. Nov 1984 A
4488079 Dailey et al. Dec 1984 A
4490651 Taylor et al. Dec 1984 A
4503284 Minnick et al. Mar 1985 A
4508251 Harada et al. Apr 1985 A
4510077 Elton Apr 1985 A
4517471 Sachs May 1985 A
4520287 Wang et al. May 1985 A
4523249 Arimoto Jun 1985 A
4538131 Baier et al. Aug 1985 A
4546210 Akiba et al. Oct 1985 A
4551780 Canay Nov 1985 A
4557038 Wcislo et al. Dec 1985 A
4560896 Vogt et al. Dec 1985 A
4565929 Baskin et al. Jan 1986 A
4571453 Takaoka et al. Feb 1986 A
4588916 Lis May 1986 A
4590416 Porche et al. May 1986 A
4594630 Rabinowitz et al. Jun 1986 A
4607183 Rieber et al. Aug 1986 A
4615109 Wcislo et al. Oct 1986 A
4615778 Elton Oct 1986 A
4618795 Cooper et al. Oct 1986 A
4619040 Wang et al. Oct 1986 A
4622116 Elton et al. Nov 1986 A
4633109 Feigel Dec 1986 A
4650924 Kauffman et al. Mar 1987 A
4652963 Fahlen Mar 1987 A
4656316 Meltsch Apr 1987 A
4656379 McCarty Apr 1987 A
4677328 Kumakura Jun 1987 A
4687882 Stone et al. Aug 1987 A
4692731 Osinga Sep 1987 A
4723083 Elton Feb 1988 A
4723104 Rohatyn Feb 1988 A
4724345 Elton et al. Feb 1988 A
4732412 Van Der Linden et al. Mar 1988 A
4737704 Kalinnikov et al. Apr 1988 A
4745314 Nakano May 1988 A
4761602 Leibovich Aug 1988 A
4766365 Bolduc et al. Aug 1988 A
4771168 Gundersen et al. Sep 1988 A
4785138 Brietenbach et al. Nov 1988 A
4795933 Sakai Jan 1989 A
4827172 Kobayashi May 1989 A
4845308 Womack, Jr. et al. Jul 1989 A
4847747 Abbondanti Jul 1989 A
4853565 Elton et al. Aug 1989 A
4855536 Varreng Aug 1989 A
4859810 Cloetens et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4860430 Raschbichler et al. Aug 1989 A
4864266 Feather et al. Sep 1989 A
4883230 Lindstrom Nov 1989 A
4890040 Gundersen Dec 1989 A
4894284 Yamanouchi et al. Jan 1990 A
4914386 Zocholl Apr 1990 A
4918347 Takaba Apr 1990 A
4918835 Wcislo et al. Apr 1990 A
4924342 Lee May 1990 A
4926079 Niemela et al. May 1990 A
4942326 Butler, III et al. Jul 1990 A
4949001 Campbell Aug 1990 A
4982147 Lauw Jan 1991 A
4994952 Silva et al. Feb 1991 A
4997995 Simmons et al. Mar 1991 A
5012125 Conway Apr 1991 A
5030813 Stanisz Jul 1991 A
5035238 Tajima Jul 1991 A
5036165 Elton et al. Jul 1991 A
5066881 Elton et al. Nov 1991 A
5067046 Elton et al. Nov 1991 A
5083360 Valencic et al. Jan 1992 A
5086246 Dymond et al. Feb 1992 A
5091609 Swada et al. Feb 1992 A
5094703 Takaoka et al. Mar 1992 A
5095175 Yoshida et al. Mar 1992 A
5097241 Smith et al. Mar 1992 A
5097591 Wcislo et al. Mar 1992 A
5111095 Hendershot May 1992 A
5124607 Rieber et al. Jun 1992 A
5136459 Fararooy Aug 1992 A
5140290 Dersch Aug 1992 A
5153460 Bovino et al. Oct 1992 A
5168662 Nakamura et al. Dec 1992 A
5171941 Shimizu et al. Dec 1992 A
5182537 Thuis Jan 1993 A
5187428 Hutchison et al. Feb 1993 A
5231249 Kimura et al. Jul 1993 A
5235488 Koch Aug 1993 A
5246783 Spenadel et al. Sep 1993 A
5264778 Kimmel et al. Nov 1993 A
5287262 Klein Feb 1994 A
5304883 Denk Apr 1994 A
5305961 Errard et al. Apr 1994 A
5321308 Johncock Jun 1994 A
5323330 Asplund et al. Jun 1994 A
5325008 Grant Jun 1994 A
5325259 Paulsson Jun 1994 A
5327637 Britenbach et al. Jul 1994 A
5341281 Skibinski Aug 1994 A
5343139 Gyugyi et al. Aug 1994 A
5355046 Weigelt Oct 1994 A
5365132 Hann et al. Nov 1994 A
5387890 Estop et al. Feb 1995 A
5397513 Steketee, Jr. Mar 1995 A
5399941 Grothaus et al. Mar 1995 A
5400005 Bobry Mar 1995 A
5408169 Jeanneret Apr 1995 A
5449861 Fujino et al. Sep 1995 A
5452170 Ohde et al. Sep 1995 A
5468916 Litenas et al. Nov 1995 A
5499178 Mohan Mar 1996 A
5500632 Halser, III Mar 1996 A
5510942 Bock et al. Apr 1996 A
5530307 Horst Jun 1996 A
5533658 Benedict et al. Jul 1996 A
5534754 Poumey Jul 1996 A
5545853 Hildreth Aug 1996 A
5550410 Titus Aug 1996 A
5583387 Takeuchi et al. Dec 1996 A
5587126 Steketee, Jr. Dec 1996 A
5598137 Alber et al. Jan 1997 A
5607320 Wright Mar 1997 A
5612510 Hildreth Mar 1997 A
5663605 Evans et al. Sep 1997 A
5672926 Brandes et al. Sep 1997 A
5689223 Demarmels et al. Nov 1997 A
5807447 Forrest Sep 1998 A
5834699 Buck et al. Nov 1998 A
Foreign Referenced Citations (430)
Number Date Country
399790 Jul 1995 AT
565063 Feb 1957 BE
391071 Apr 1965 CH
534448 Feb 1973 CH
539328 Jul 1973 CH
657482 Aug 1986 CH
137164 Aug 1979 DD
138840 Nov 1979 DD
40414 Aug 1887 DE
277012 Jul 1914 DE
336418 Jun 1920 DE
372390 Mar 1923 DE
386561 Dec 1923 DE
387973 Jan 1924 DE
406371 Nov 1924 DE
425551 Feb 1926 DE
426793 Mar 1926 DE
432169 Jul 1926 DE
433749 Sep 1926 DE
435608 Oct 1926 DE
435609 Oct 1926 DE
441717 Mar 1927 DE
443011 Apr 1927 DE
460124 May 1928 DE
482506 Sep 1929 DE
501181 Jul 1930 DE
523047 Apr 1931 DE
568508 Jan 1933 DE
572030 Mar 1933 DE
584639 Sep 1933 DE
586121 Oct 1933 DE
604972 Nov 1934 DE
629301 Apr 1936 DE
673545 Mar 1939 DE
719009 Mar 1942 DE
846583 Aug 1952 DE
875227 Apr 1953 DE
975999 Jan 1963 DE
1465719 May 1969 DE
1807391 May 1970 DE
2050674 May 1971 DE
1638176 Jun 1971 DE
2155371 May 1973 DE
2400698 Jul 1975 DE
2520511 Nov 1976 DE
2656389 Jun 1978 DE
2721905 Nov 1978 DE
2824951 Dec 1979 DE
2835386 Feb 1980 DE
2839517 Mar 1980 DE
2854520 Jun 1980 DE
3009102 Sep 1980 DE
2913697 Oct 1980 DE
2920478 Dec 1980 DE
3028777 Mar 1981 DE
2939004 Apr 1981 DE
3006382 Aug 1981 DE
3008818 Sep 1981 DE
209313 Apr 1984 DE
3305225 Aug 1984 DE
3309051 Sep 1984 DE
3441311 May 1986 DE
3543106 Jun 1987 DE
2917717 Aug 1987 DE
3612112 Oct 1987 DE
3726346 Feb 1989 DE
3925337 Feb 1991 DE
4023903 Nov 1991 DE
4022476 Jan 1992 DE
4233558 Mar 1994 DE
4402184 Aug 1995 DE
4409794 Aug 1995 DE
4412761 Oct 1995 DE
4420322 Dec 1995 DE
19620906 Jan 1996 DE
4438186 May 1996 DE
19020222 Mar 1997 DE
19547229 Jun 1997 DE
468827 Jul 1997 DE
134022 Dec 2001 DE
049104 Apr 1982 EP
0493704 Apr 1982 EP
0056580 Jul 1982 EP
078908 May 1983 EP
0120154 Oct 1984 EP
0130124 Jan 1985 EP
0142813 May 1985 EP
0155405 Sep 1985 EP
0102513 Jan 1986 EP
0174783 Mar 1986 EP
0185788 Jul 1986 EP
0277358 Aug 1986 EP
0234521 Sep 1987 EP
0244069 Nov 1987 EP
0246377 Nov 1987 EP
0265868 May 1988 EP
0274691 Jul 1988 EP
0280759 Sep 1988 EP
0282876 Sep 1988 EP
0309096 Mar 1989 EP
0314860 May 1989 EP
0316911 May 1989 EP
0317248 May 1989 EP
0335430 Oct 1989 EP
0342554 Nov 1989 EP
0221404 May 1990 EP
0375101 Jun 1990 EP
0406437 Jan 1991 EP
0439410 Jul 1991 EP
0440865 Aug 1991 EP
0469155 Feb 1992 EP
0490705 Jun 1992 EP
0503817 Sep 1992 EP
0571155 Nov 1993 EP
0620570 Oct 1994 EP
0620630 Oct 1994 EP
0642027 Mar 1995 EP
0671632 Sep 1995 EP
0676777 Oct 1995 EP
0677915 Oct 1995 EP
0684679 Nov 1995 EP
0684682 Nov 1995 EP
0686019 Jan 1996 EP
0732787 Sep 1996 EP
0738034 Oct 1996 EP
0739087 Oct 1996 EP
0740315 Oct 1996 EP
0749190 Dec 1996 EP
0751605 Jan 1997 EP
0739087 Mar 1997 EP
0749193 Mar 1997 EP
0780926 Jun 1997 EP
0802542 Oct 1997 EP
0913912 May 1999 EP
805544 Apr 1936 FR
841351 Jan 1938 FR
847899 Dec 1938 FR
916959 Dec 1946 FR
1011924 Apr 1949 FR
1126975 Mar 1955 FR
1238795 Jul 1959 FR
2108171 May 1972 FR
2251938 Jun 1975 FR
2305879 Oct 1976 FR
2376542 Jul 1978 FR
2467502 Apr 1981 FR
2481531 Oct 1981 FR
2556146 Jun 1985 FR
2594271 Aug 1987 FR
2708157 Jan 1995 FR
123906 Jun 1919 GB
268271 Mar 1927 GB
293861 Nov 1928 GB
292999 Apr 1929 GB
319313 Jul 1929 GB
518993 Mar 1940 GB
537609 Jun 1941 GB
540456 Oct 1941 GB
589071 Jun 1947 GB
666883 Feb 1952 GB
685416 Jan 1953 GB
702892 Jan 1954 GB
715226 Sep 1954 GB
723457 Feb 1955 GB
739962 Nov 1955 GB
763761 Dec 1956 GB
805721 Dec 1958 GB
827600 Feb 1960 GB
854728 Nov 1960 GB
870583 Jun 1961 GB
913386 Dec 1962 GB
965741 Aug 1964 GB
992249 May 1965 GB
1024583 Mar 1966 GB
1053337 Dec 1966 GB
1059123 Feb 1967 GB
1103099 Feb 1968 GB
1130398 Feb 1968 GB
1117401 Jun 1968 GB
1135242 Dec 1968 GB
1147049 Apr 1969 GB
1157885 Jul 1969 GB
1174659 Dec 1969 GB
1236082 Jun 1971 GB
1268770 Mar 1972 GB
1319257 Jun 1973 GB
1322433 Jul 1973 GB
1340983 Dec 1973 GB
1341050 Dec 1973 GB
1365191 Aug 1974 GB
1395152 May 1975 GB
1424982 Feb 1976 GB
1426594 Mar 1976 GB
1438610 Jun 1976 GB
1445284 Aug 1976 GB
1479904 Jul 1977 GB
1493163 Nov 1977 GB
1502938 Mar 1978 GB
1525745 Sep 1978 GB
2000625 Jan 1979 GB
1548633 Jul 1979 GB
2046142 Nov 1979 GB
2022327 Dec 1979 GB
2025150 Jan 1980 GB
2034101 May 1980 GB
1574796 Sep 1980 GB
2070341 Sep 1981 GB
2070470 Sep 1981 GB
2071433 Sep 1981 GB
2081523 Feb 1982 GB
2099635 Dec 1982 GB
2105925 Mar 1983 GB
2106306 Apr 1983 GB
2106721 Apr 1983 GB
2136214 Sep 1984 GB
2140195 Nov 1984 GB
2150153 Jun 1985 GB
2268337 Jan 1994 GB
2273819 Jun 1994 GB
2283133 Apr 1995 GB
2289992 Dec 1995 GB
2308490 Jun 1997 GB
2332557 Jun 1999 GB
175494 Nov 1981 HU
60206121 Mar 1959 JP
57043529 Aug 1980 JP
57126117 May 1982 JP
59076156 Oct 1982 JP
59159642 Feb 1983 JP
6264964 Sep 1985 JP
1129737 May 1989 JP
62320631 Jun 1989 JP
2017474 Jan 1990 JP
3245748 Feb 1990 JP
4179107 Nov 1990 JP
318253 Jan 1991 JP
424909 Jan 1992 JP
5290947 Apr 1992 JP
6196343 Dec 1992 JP
6233442 Feb 1993 JP
6325629 May 1993 JP
7057951 Aug 1993 JP
7264789 Mar 1994 JP
8167332 Dec 1994 JP
7161270 Jun 1995 JP
8264039 Nov 1995 JP
9200989 Jan 1996 JP
8036952 Feb 1996 JP
8167360 Jun 1996 JP
67199 Mar 1972 LU
90308 Sep 1937 SE
305899 Nov 1968 SE
255156 Feb 1969 SE
341428 Dec 1971 SE
453236 Jan 1982 SE
457792 Jun 1987 SE
502417 Dec 1993 SE
266037 Oct 1965 SU
792302 Jan 1971 SU
646403 Feb 1979 SU
1019553 Jan 1980 SU
425268 Jan 1982 SU
694939 Jan 1982 SU
955369 Aug 1983 SU
1189322 Oct 1986 SU
1511810 May 1987 SU
WO8202617 Aug 1982 WO
WO8502302 May 1985 WO
WO9011389 Oct 1990 WO
WO9012409 Oct 1990 WO
PCTDE 9000279 Nov 1990 WO
WO9101059 Jan 1991 WO
WO9101585 Feb 1991 WO
WO9107807 Mar 1991 WO
SE 9100077 Apr 1991 WO
WO9109442 Jun 1991 WO
WO 9111841 Aug 1991 WO
WO8115862 Oct 1991 WO
WO 9115755 Oct 1991 WO
WO9201328 Jan 1992 WO
WO9203870 Mar 1992 WO
WO9321681 Oct 1993 WO
WO9406194 Mar 1994 WO
WO9518058 Jul 1995 WO
WO9522153 Aug 1995 WO
WO9524049 Sep 1995 WO
WO9622606 Jul 1996 WO
WO9622607 Jul 1996 WO
PCTCN 9600010 Oct 1996 WO
WO9630144 Oct 1996 WO
WO9710640 Mar 1997 WO
WO9711831 Apr 1997 WO
WO9716881 May 1997 WO
WO 9729494 Aug 1997 WO
WO9745288 Dec 1997 WO
WO9745847 Dec 1997 WO
WO9745848 Dec 1997 WO
WO9745906 Dec 1997 WO
WO9745907 Dec 1997 WO
WO9745912 Dec 1997 WO
WO9745914 Dec 1997 WO
WO9745915 Dec 1997 WO
WO9745916 Dec 1997 WO
WO9745918 Dec 1997 WO
WO9745919 Dec 1997 WO
WO9745920 Dec 1997 WO
WO9745921 Dec 1997 WO
WO9745922 Dec 1997 WO
WO9745923 Dec 1997 WO
WO9745924 Dec 1997 WO
WO9745925 Dec 1997 WO
WO9745926 Dec 1997 WO
WO9745927 Dec 1997 WO
WO9745928 Dec 1997 WO
WO9745929 Dec 1997 WO
WO9745930 Dec 1997 WO
WO9745931 Dec 1997 WO
WO9745932 Dec 1997 WO
WO9745933 Dec 1997 WO
WO9745934 Dec 1997 WO
WO9745935 Dec 1997 WO
WO9745936 Dec 1997 WO
WO9745937 Dec 1997 WO
WO9745938 Dec 1997 WO
WO9745939 Dec 1997 WO
WO9747067 Dec 1997 WO
WO9834315 Jan 1998 WO
WO9820595 May 1998 WO
WO9820596 May 1998 WO
WO9820597 May 1998 WO
WO 9820598 May 1998 WO
WO9820600 May 1998 WO
WO 9820602 May 1998 WO
WO9821385 May 1998 WO
PCTFR 9800468 Jun 1998 WO
WO9827634 Jun 1998 WO
WO9827635 Jun 1998 WO
WO9827636 Jun 1998 WO
WO9829927 Jul 1998 WO
WO9829928 Jul 1998 WO
WO9829929 Jul 1998 WO
WO9829930 Jul 1998 WO
WO9829931 Jul 1998 WO
WO9829932 Jul 1998 WO
WO9833731 Aug 1998 WO
WO9833736 Aug 1998 WO
WO9833737 Aug 1998 WO
WO9834238 Aug 1998 WO
WO 9834239 Aug 1998 WO
WO9834240 Aug 1998 WO
WO9834241 Aug 1998 WO
WO9834242 Aug 1998 WO
WO9834243 Aug 1998 WO
WO9834244 Aug 1998 WO
WO9834245 Aug 1998 WO
WO9834246 Aug 1998 WO
WO9834247 Aug 1998 WO
WO9834248 Aug 1998 WO
WO9834249 Aug 1998 WO
WO9834250 Aug 1998 WO
WO9834309 Aug 1998 WO
WO9834312 Aug 1998 WO
WO9834321 Aug 1998 WO
WO9834322 Aug 1998 WO
WO9834323 Aug 1998 WO
WO9834325 Aug 1998 WO
WO9834326 Aug 1998 WO
WO9834327 Aug 1998 WO
WO9834328 Aug 1998 WO
WO9834329 Aug 1998 WO
WO9834330 Aug 1998 WO
WO9834331 Aug 1998 WO
WO 9840627 Sep 1998 WO
WO 9843336 Oct 1998 WO
WO9917309 Apr 1999 WO
WO9917311 Apr 1999 WO
WO9917312 Apr 1999 WO
WO9917313 Apr 1999 WO
WO9917314 Apr 1999 WO
WO9917315 Apr 1999 WO
WO9917316 Apr 1999 WO
WO9917422 Apr 1999 WO
WO9917424 Apr 1999 WO
WO9917425 Apr 1999 WO
WO9917426 Apr 1999 WO
WO9917427 Apr 1999 WO
WO9917428 Apr 1999 WO
WO9917429 Apr 1999 WO
WO9917432 Apr 1999 WO
WO9917433 Apr 1999 WO
WO9919963 Apr 1999 WO
WO9919969 Apr 1999 WO
WO9919970 Apr 1999 WO
PCTSE 9802148 Jun 1999 WO
WO9927546 Jun 1999 WO
WO9928919 Jun 1999 WO
WO9928921 Jun 1999 WO
WO 9928922 Jun 1999 WO
WO9928923 Jun 1999 WO
WO9928924 Jun 1999 WO
WO9928925 Jun 1999 WO
WO9928926 Jun 1999 WO
WO9928927 Jun 1999 WO
WO9928928 Jun 1999 WO
WO9928929 Jun 1999 WO
WO9928930 Jun 1999 WO
WO9928931 Jun 1999 WO
WO9928934 Jun 1999 WO
WO9928994 Jun 1999 WO
WO9929005 Jun 1999 WO
WO 9929005 Jun 1999 WO
WO9929008 Jun 1999 WO
WO9929011 Jun 1999 WO
WO9929012 Jun 1999 WO
WO9929013 Jun 1999 WO
WO9929014 Jun 1999 WO
WO9929015 Jun 1999 WO
WO9929016 Jun 1999 WO
WO9929017 Jun 1999 WO
WO9929018 Jun 1999 WO
WO9929019 Jun 1999 WO
WO9929020 Jun 1999 WO
WO9929021 Jun 1999 WO
WO9929022 Jun 1999 WO
WO 9929023 Jun 1999 WO
WO9929024 Jun 1999 WO
WO 9929025 Jun 1999 WO
WO9929026 Jun 1999 WO
WO9929029 Jun 1999 WO
WO9929034 Jun 1999 WO
Non-Patent Literature Citations (95)
Entry
A test installation of a self-tuned ac filter in the Konti-Skan 2 HVDC link; T. Holmgren, G. Asplund, S. Valdemarsson, P. Hidman of ABB; U. Jonsson of Svenska Kraftnat; O. loof of Vattenfall Vastsverige AB; IEEE Stockholm Power Tech Conference Jun. 1995, pp 64-70.
Analysis of faulted Power Systems; P Anderson, Iowa State University Press / Ames, Iowa, 1973, pp 255-257.
36-Kv. Generators Arise from Insulation Research; P. Sidler; Electrical World Oct. 15, 1932, ppp 524.
Oil Water cooled 300 MW turbine generator;L.P. Gnedin et al;Elektrotechnika, 1970, pp 6-8.
J&P Transformer Book 11th Edition;A. C. Franklin et al; owned by Butterworth—Heinemann Ltd, Oxford Printed by Hartnolls Ltd in Great Britain 1983, pp29-67.
Transformerboard; H.P. Moser et al; 1979, pp 1-19.
The Skagerrak transmission—the world's longest HVDC submarine cable link; L. Haglof et al of ASEA; ASEA Journal vol 53, No. 1-2, 1980, pp 3-12.
Direct Connection of Generators to HVDC Converters: Main Characteristics and Comparative Advantages; J. Arrillaga et al; Electra No. 149, 08/ 1993, pp 19-37.
Our flexible friend article; M. Judge; New Scientist, May 10, 1997, pp 44-48.
In-Service Performance of HVDC Converter transformers and oil-cooled smoothing reactors; G.L. Desilets et al; Electra No. 155, Aug. 1994, pp 7-29.
Transformateurs a courant continu haute tension-examen des specifications; A. Lindroth et al; Electra No 141, Apr. 1992, pp 34-39.
Development of a Termination for the 77 kV-Class High Tc Superconducting Power Cable; T. Shimonosono et al; IEEE Power Delivery, vol 12, No 1, Jan. 1997, pp 33-38.
Verification of Limiter Performance in Modern Excitation Control Systems; G. K. Girgis et al; IEEE Energy Conservation, vol. 10, No. 3, Sep. 1995, pp 538-542.
A High Initial response Brushless Excitation System; T. L. Dillman et al; IEEE Power Generation Winter Meeting Proceedings, Jan. 31, 1971, pp 2089-2094.
Design, manufacturing and cold test of a superconducting coil and its cryostat for SMES applications; A . Bautista et al; IEEE Applied Superconductivity, vol 7, No. 2, Jun. 1997, pp 853-856.
Quench Protection and Stagnant Normal Zones in a Large Cryostable SMES; Y. Lvovsky et al; IEEE Applied Superconductivity, vol. 7, No. 2, Jun. 1997, pp 857-860.
Design and Construction of the 4 Tesla Background Coil for the Navy SMES Cable Test Apparatus; D.W.Scherbarth et al; IEEE Appliel Superconductivity, vol. 7, No. 2, Jun. 1997, pp 840-843.
High Speed Synchronous Motors Adjustable Speed Drives; ASEA Generation Pamphlet OG 135-101 E, Jan. 1985, pp 1-4.
Billig burk motar overtonen; A. Felldin; ERA (TEKNIK) Aug. 1994, pp 26-28.
400-kV XLPE cable system passes CIGRE test; ABB Article; ABB Review Sep. 1995, pp 38.
FREQSYN—a new drive system for high power applications;J-A. Bergman et al; ASEA Journal 59, Apr. 1986, pp16-19.
Canadians Create Conductive Concrete; J. Beaudoin et al; Science, vol. 276, May 23, 1997, pp 1201.
Fully Water-Cooled 190 MVA Generators in the Tonstad Hydroelectric Power Station; E. Ostby et al; BBC Review Aug. 1969, pp 380-385.
Relocatable static var compensators help control unbundled power flows; R. C. Knight et al; Transmission & Distribution, Dec. 1996, pp 49-54.
Investigation and Use of Asynchronized Machines in Power Systems*; N.I.Blotskii et al; Elektrichestvo, No. 12, 1-6, 1985, pp 90-99.
Variable-speed switched reluctance motors; P.J. Lawrenson et al; IEE proc, vol 127, Pt.B, No. 4, Jul. 1980, pp 253-265.
Das Einphasenwechselstromsystem hoherer Frequenz; J.G. Heft; Elektrische Bahnen eb; Dec. 1987, pp 388-389.
Power Transmission by Direct Current;E. Uhlmann;ISBN 3-540-07122-9 Springer-Verlag, Berlin/Heidelberg/New York; 1975, pp 327-328.
Elektriska Maskiner; F. Gustavson; Institute for Elkreafteknilk, KTH; Stockholm, 1996, pp 3-6-3-12.
Die Wechselstromtechnik; A. Cour' Springer Verlag, Germany; 1936, pp 586-598.
Insulation systems for superconducting transmission cables; O.Toennesen; Nordic Insulation Symposium, Bergen, 1996, pp 425-432.
MPTC: An economical alternative to universal flow controllers;N. Mohan; EPE 1997, Trondheim, pp 3.1027-3.1030.
Lexikon der Technik; Luger; Band 2, Grundlagen der Elektrotechnik und Kerntechnik, 1960, pp 395.
Das Handbuch der Lokomotiven ( hungarian locomotive V40 1 ‘D’); B. Hollingsworth et al; Pawlak Verlagsgesellschaft; 1933, pp. 254-255.
Synchronous machines with single or double 3-phase star-connected winding fed by 12-pulse load commutated inverter. Simulation of operational behaviour; C. Ivarson et al; ICEM 1994, International Conference on electrical machines, vol. 1, pp 267-272.
Elkrafthandboken, Elmaskiner; A. Rejminger; Elkrafthandboken, Elmaskiner 1996, 15-20.
Power Electronics—in Theory and Practice; K. Thorborg; ISBN 0-86238-341-2, 1993, pp 1-13.
Regulating transformers in power systems—new concepts and applications; E. Wirth et al; ABB Review Apr. 1997, p 12-20.
Tranforming transformers; S. Mehta et al; IEEE Spectrum, Jul. 1997, pp. 43-49.
A study of equipment sizes and constraints for a unified power flow controller; J. Bian et al; IEEE Transactions on Power Delivery, vol. 12, No. 3, Jul. 1997, pp. 1385-1391.
Industrial High Voltage; F.H. Kreuger; Industrial High Voltage 1991 vol 1, pp. 113-117.
Hochspannungstechnik; A. Küchler; Hochspannungstechnik, VDI Verlag 1996, pp. 365-366, ISBN 3-18-401530-0 or 3-540-62070-2.
High Voltage Engineering; N.S. Naidu; High Voltage Engineering ,second edition 1995 ISBN 0-07-462286-2, Chapter 5, pp91-98.
Performance Characteristics of a Wide Range Induction Type Frequency Converter; G.A. Ghoneem; Ieema Journal, Sep. 1995, pp 21-34.
International Electrotechnical Vocabulary, Chapter 551 Power Electronics;unknown author; International Electrotechnical Vocabulary Chapter 551: Power Electronics Bureau Central de la Commission Electrotechnique Internationale, Geneve; 1982, pp1-65.
Design and manufacture of a large superconducting homopolar motor; A.D. Appleton; IEEE Transactions on Magnetics, vol. 19, No. 3, Part 2, May 1983, pp 1048-1050.
Application of high temperature superconductivity to electric motor design; J.S. Edmonds et al; IEEE Transactions on Energy Conversion Jun. 1992, No. 2, pp 322-329.
Power Electronics and Variable Frequency Drives; B. Bimal; IEEE Industrial Electronics—Technology and Applications, 1996, pp.356.
Properties of High Plymer Cement Mortar; M. Tamai et al; Science & Technology in Japan, No 63 ; 1977, pp 6-14.
Weatherability of Polymer-Modified Mortars after Ten-Year Outdoor Exposure in Koriyama and Sapporo; Y. Ohama et al; Science & Technology in Japan No. 63; 1977, pp 26-31.
SMC Powders Open New Magnetic Applications; M. Persson (Editor); SMC Update, vol. 1, No. 1, Apr. 1997.
Characteristics of a laser triggered spark gap using air, Ar, CH4,H2, He, N2, SF6 and Xe; W.D. Kimura et al; Journal of Applied Physics, vol. 63, No 6, Mar. 15, 1988, p. 1882-1888.
Low-intensy laser-triggering of rail-gaps with magnesium-aerosol switching-gases; W. Frey; 11th International Pulse Power Conference, 1997, Baltimore, USA Digest of Technical Papers, p. 322-327.
Shipboard Electrical Insulation; G. L. Moses, 1951, pp2&3.
ABB Elkrafthandbok; ABB AB; 1988 ; pp274-276.
Elkraft teknisk Handbok, 2 Elmaskiner; A. Alfredsson et al; 1988, pp 121-123.
High Voltage Cables in a New Class of Generators Powerformer; M. Leijon et al; Jun. 14, 1999; pp1-8.
Ohne Tranformator direkt ins Netz; Owman et al, ABB, AB; Feb. 8, 1999; pp48-51.
Submersible Motors and Wet-Rotor Motors for Centrifugal Pumps Submerged in the Fluid Handled; K.. Bienick, KSB; Feb. 25, 1988; pp9-17.
High Voltage Generators; G. Beschastnov et al; 1977; vol 48. No. 6 pp1-7.
Eine neue Type von Unterwassermotoren; Electrotechnik und Maschinenbam, 49; Aug. 1931; pp2-3.
Problems in design of the 110-5OokV high-voltage generators; Nikiti et al; World Electrotechnical Congress; Jun. 21-27, 1977; Section 1. Paper #18.
Manufacture and Testing of Roebel bars; P. Marti et al; 1960, Pub.86, vol 8, pp 25-31.
Hydroalternators of 110 to 220 kV Elektrotechn. Obz., vol. 64, No. 3, pp132-136 Mar. 1975; A. Abramov.
Design Concepts for an Amorphous Metal Distribution Transformer, E. Boyd et al; IEEE 11/84.
Neue Wege zum Bau zweipoliger Turbogeneratoren bis 2 GVA, 6OkV Elektrotechnik und Maschinenbau Wien Janner 1972, Heft 1, Seite 1-11; G. Aichholzer.
Optimizing designs of water-resistant magnet wire; V. Kuzenev et al; Elektrotekhnika, vol 59, No 12, pp35-40, 1988.
Zur Entwicklung der Tauchpumpenmotoren; A. Schanz; KSB, pp19-24.
Direct Generation of alternating current at high voltages; R. Parsons; IEEE Journal, vol 67 #393, Jan. 15, 1929; pp1065-1080.
Stopfbachslose Umwalzpumpen-ein wichtiges Element im modernen Kraftwerkbau; H. Holz, KSB 1, pp13-19, 1960.
Zur Geschichte der Brown Boveri-Synchron-Maschinen; Vierzig Jahre Generatorbau; Jan.-Feb. 1931 pp15-39.
Technik und Anwendung moderner Tauchpumpen; A. Heumann; 1987.
High capacity synchronous generator having no tooth stator; V.S. Kildishev et al; No. 1, 1977 pp11-16.
Der Asynchronmotor als Antrieb stopfbcichsloser Pumpen; E. Picmaus; Eletrotechnik und Maschinenbay No. 78, pp153-155, 1961.
Low core loss rotating flux transformer; R. F. Krause, et al; American Institute Physics J.Appl.Phys vol. 64 #10 Nov. 1988, pp5376-5378.
An EHV bulk Power transmission line Made with Low Loss XLPE Cable;Ichihara et al; 8/92; pp3-6.
Underground Transmission Systems Reference Book; 1992;pp16-19; pp36-45; pp67-81.
Power System Stability and Control; P. Kundur, 1994; pp23-25;p. 767.
Six phase Synchronous Machine with AC and DC Stator Connections, Part II:Harmonic Studies and a proposed Uninterruptible Power Supply Scheme; R. Schiferl et al.;Aug. 1983 pp 2694-2701.
Six phase Synchronous Machine with AC and DC Stator Connections, Part 1: Equivalent circuit representation and Steady-State Analysis; R. Schiferl et al; Aug. 1983; pp2685-2693.
Reactive Power Compensation; T. Petersson; 1993; pp 1-23.
Permanent Magnet Machines; K. Binns; 1987; pp 9-1 through 9-26.
Hochspannungsaniagen for Wechselstrom; 97. Hochspannungsaufgaben an Generatoren und Motoren; Roth et al; 1938; pp452-455.
Hochspannungsanlagen for Wechselstrom; 97. Hochspannungsaufgaben an Generatoren und Motoren; Roth et al; Spring 1959, pp30-33.
Neue Lbsungswege zum Entwurf grosser Turbogeneratoren bis 2GVA, 6OkV; G. Aicholzer; Sep. 1974, pp249-255.
Advanced Turbine-generators—an assessment; A. Appleton, et al; International Conf. Proceedings, Lg HV Elec. Sys. Paris, FR, Aug.-Sep. 1976, vol I, Section 11-02, p. 1-9.
Fully slotless turbogenerators; E. Spooner; Proc., IEEE vol 120 #12, Dec. 1973.
Toroidal winding geometry for high voltage superconducting alternators; J. Kirtley et al; MIT—Elec. Power Sys. Engrg. Lab for IEEE PES;Feb. 1974.
High-Voltage Stator Winding Development; D. Albright et al; Proj. Report EL339, Project 1716, Apr. 1984.
Powerformer ™: A giant step in power plant engineering; Owman et al; CIGRE 1998, Paper 11:1.1.
Thin Type DC/DC Converter using a coreless wire transfomer; K. Onda et al; Proc. IEEE Power Electronics Spec. Conf.; Jun. 1994, pp330-334.
Development of extruded polymer insulated superconducting cable; Jan. 1992.
Transformer core losses; B. Richardson; Proc. IEEE May 1986, pp365-368.
Cloth-transformer with divided windings and tension annealed amorphous wire; T. Yammamoto et al; IEEE Translation Journal on Magnetics in Japan vol 4, No. 9 Sep. 1989.
A study of equipment sizes and constraints for a unified power flow controller; J Bian et al; IEEE 1996.