Insulated conductor heaters with semiconductor layers

Information

  • Patent Grant
  • 8939207
  • Patent Number
    8,939,207
  • Date Filed
    Friday, April 8, 2011
    13 years ago
  • Date Issued
    Tuesday, January 27, 2015
    9 years ago
Abstract
A heater used to heat a subsurface formation includes an electrical conductor, a semiconductor layer at least partially surrounding the electrical conductor, an insulation layer at least partially surrounding the electrical conductor, an electrically conductive sheath at least partially surrounding the insulation layer. The heater may be located in an opening in the subsurface formation.
Description
BACKGROUND

1. Field of the Invention


The present invention relates to systems and methods used for heating subsurface formations. More particularly, the invention relates to systems and methods for heating subsurface hydrocarbon containing formations.


2. Description of Related Art


Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources and concerns over declining overall quality of produced hydrocarbons have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations that were previously inaccessible and/or too expensive to extract using available methods. Chemical and/or physical properties of hydrocarbon material in a subterranean formation may need to be changed to allow hydrocarbon material to be more easily removed from the subterranean formation and/or increase the value of the hydrocarbon material. The chemical and physical changes may include in situ reactions that produce removable fluids, composition changes, solubility changes, density changes, phase changes, and/or viscosity changes of the hydrocarbon material in the formation.


Heaters may be placed in wellbores to heat a formation during an in situ process. There are many different types of heaters which may be used to heat the formation. Examples of in situ processes utilizing downhole heaters are illustrated in U.S. Pat. No. 2,634,961 to Ljungstrom; U.S. Pat. No. 2,732,195 to Ljungstrom; U.S. Pat. No. 2,780,450 to Ljungstrom; U.S. Pat. No. 2,789,805 to Ljungstrom; U.S. Pat. No. 2,923,535 to Ljungstrom; U.S. Pat. No. 4,886,118 to Van Meurs et al.; and U.S. Pat. No. 6,688,387 to Wellington et al.; each of which is incorporated by reference as if fully set forth herein.


Mineral insulated (MI) cables (insulated conductors) for use in subsurface applications, such as heating hydrocarbon containing formations in some applications, are longer, may have larger outside diameters, and may operate at higher voltages and temperatures than what is typical in the MI cable industry. There are many potential problems during manufacture and/or assembly of long length insulated conductors.


For example, there are potential electrical and/or mechanical problems due to degradation over time of the electrical insulator used in the insulated conductor. There are also potential problems with electrical insulators to overcome during assembly of the insulated conductor heater. Problems such as core bulge or other mechanical defects may occur during assembly of the insulated conductor heater. Such occurrences may lead to electrical problems during use of the heater and may potentially render the heater inoperable for its intended purpose.


In addition, there may be problems with increased stress on the insulated conductors during assembly and/or installation into the subsurface of the insulated conductors. For example, winding and unwinding of the insulated conductors on spools used for transport and installation of the insulated conductors may lead to mechanical stress on the electrical insulators and/or other components in the insulated conductors. Thus, more reliable systems and methods are needed to reduce or eliminate potential problems during manufacture, assembly, and/or installation of insulated conductors.


SUMMARY

Embodiments described herein generally relate to systems, methods, and heaters for treating a subsurface formation. Embodiments described herein also generally relate to heaters that have novel components therein. Such heaters can be obtained by using the systems and methods described herein.


In certain embodiments, the invention provides one or more systems, methods, and/or heaters. In some embodiments, the systems, methods, and/or heaters are used for treating a subsurface formation.


In certain embodiments, a heater configured to heat a subsurface formation includes: an electrical conductor; a semiconductor layer at least partially surrounding the electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer.


In certain embodiments, a method for heating a subsurface formation includes: providing heat to at least a portion of a hydrocarbon containing layer of the formation from a heater at least partially located in an opening in the hydrocarbon containing layer, the opening extending from the surface of the formation through an overburden section of the formation and into the hydrocarbon containing layer of the formation, the heater including: an electrical conductor; a semiconductor layer at least partially surrounding the electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer; allowing heat to transfer to the formation such that at least some hydrocarbons in the formation are mobilized; and producing at least some of the mobilized hydrocarbons from the formation.


In further embodiments, features from specific embodiments may be combined with features from other embodiments. For example, features from one embodiment may be combined with features from any of the other embodiments.


In further embodiments, treating a subsurface formation is performed using any of the methods, systems, power supplies, or heaters described herein.


In further embodiments, additional features may be added to the specific embodiments described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the methods and apparatus of the present invention will be more fully appreciated by reference to the following detailed description of presently preferred but nonetheless illustrative embodiments in accordance with the present invention when taken in conjunction with the accompanying drawings.



FIG. 1 shows a schematic view of an embodiment of a portion of an in situ heat treatment system for treating a hydrocarbon containing formation.



FIG. 2 depicts an embodiment of an insulated conductor heat source.



FIG. 3 depicts an embodiment of an insulated conductor heat source.



FIG. 4 depicts an embodiment of an insulated conductor heat source.



FIGS. 5A and 5B depict cross-sectional representations of an embodiment of a temperature limited heater component used in an insulated conductor heater.



FIG. 6 depicts an embodiment of an insulated conductor with a semiconductor layer adjacent to and surrounding a core.



FIG. 7 depicts an embodiment of an insulated conductor with a semiconductor layer inside an electrical insulator and surrounding a core.



FIG. 8 depicts the electric field normal component as a function of the location along the length of the heater.



FIG. 9 depicts the electric field strength versus distance from the core.



FIG. 10 depicts percent of maximum unscreened (no semiconductor layer) field strength and normalized semiconductor layer thickness versus dielectric constant ratio of the electrical insulator and semiconductor layer.



FIG. 11 depicts electric field strength versus normalized distance from the core for several dielectric constant ratios.





While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but to the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.


DETAILED DESCRIPTION

The following description generally relates to systems and methods for treating hydrocarbons in the formations. Such formations may be treated to yield hydrocarbon products, hydrogen, and other products.


“Alternating current (AC)” refers to a time-varying current that reverses direction substantially sinusoidally. AC produces skin effect electricity flow in a ferromagnetic conductor.


In the context of reduced heat output heating systems, apparatus, and methods, the term “automatically” means such systems, apparatus, and methods function in a certain way without the use of external control (for example, external controllers such as a controller with a temperature sensor and a feedback loop, PID controller, or predictive controller).


“Coupled” means either a direct connection or an indirect connection (for example, one or more intervening connections) between one or more objects or components. The phrase “directly connected” means a direct connection between objects or components such that the objects or components are connected directly to each other so that the objects or components operate in a “point of use” manner.


“Curie temperature” is the temperature above which a ferromagnetic material loses all of its ferromagnetic properties. In addition to losing all of its ferromagnetic properties above the Curie temperature, the ferromagnetic material begins to lose its ferromagnetic properties when an increasing electrical current is passed through the ferromagnetic material.


A “formation” includes one or more hydrocarbon containing layers, one or more non-hydrocarbon layers, an overburden, and/or an underburden. “Hydrocarbon layers” refer to layers in the formation that contain hydrocarbons. The hydrocarbon layers may contain non-hydrocarbon material and hydrocarbon material. The “overburden” and/or the “underburden” include one or more different types of impermeable materials. For example, the overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate. In some embodiments of in situ heat treatment processes, the overburden and/or the underburden may include a hydrocarbon containing layer or hydrocarbon containing layers that are relatively impermeable and are not subjected to temperatures during in situ heat treatment processing that result in significant characteristic changes of the hydrocarbon containing layers of the overburden and/or the underburden. For example, the underburden may contain shale or mudstone, but the underburden is not allowed to heat to pyrolysis temperatures during the in situ heat treatment process. In some cases, the overburden and/or the underburden may be somewhat permeable.


“Formation fluids” refer to fluids present in a formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbons, and water (steam). Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids. The term “mobilized fluid” refers to fluids in a hydrocarbon containing formation that are able to flow as a result of thermal treatment of the formation. “Produced fluids” refer to fluids removed from the formation.


“Heat flux” is a flow of energy per unit of area per unit of time (for example, Watts/meter2).


A “heat source” is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electrically conducting materials and/or electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed in a conduit. A heat source may also include systems that generate heat by burning a fuel external to or in a formation. The systems may be surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors. In some embodiments, heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer medium that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy. Thus, for example, for a given formation some heat sources may supply heat from electrically conducting materials, electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (for example, chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy). A chemical reaction may include an exothermic reaction (for example, an oxidation reaction). A heat source may also include an electrically conducting material and/or a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.


A “heater” is any system or heat source for generating heat in a well or a near wellbore region. Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation, and/or combinations thereof.


“Hydrocarbons” are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, kerogen, bitumen, pyrobitumen, oils, natural mineral waxes, and asphaltites. Hydrocarbons may be located in or adjacent to mineral matrices in the earth. Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. “Hydrocarbon fluids” are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids such as hydrogen, nitrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia.


An “in situ conversion process” refers to a process of heating a hydrocarbon containing formation from heat sources to raise the temperature of at least a portion of the formation above a pyrolysis temperature so that pyrolyzation fluid is produced in the formation.


An “in situ heat treatment process” refers to a process of heating a hydrocarbon containing formation with heat sources to raise the temperature of at least a portion of the formation above a temperature that results in mobilized fluid, visbreaking, and/or pyrolysis of hydrocarbon containing material so that mobilized fluids, visbroken fluids, and/or pyrolyzation fluids are produced in the formation.


“Insulated conductor” refers to any elongated material that is able to conduct electricity and that is covered, in whole or in part, by an electrically insulating material.


“Modulated direct current (DC)” refers to any substantially non-sinusoidal time-varying current that produces skin effect electricity flow in a ferromagnetic conductor.


“Nitride” refers to a compound of nitrogen and one or more other elements of the Periodic Table. Nitrides include, but are not limited to, silicon nitride, boron nitride, or alumina nitride.


“Perforations” include openings, slits, apertures, or holes in a wall of a conduit, tubular, pipe or other flow pathway that allow flow into or out of the conduit, tubular, pipe or other flow pathway.


“Phase transformation temperature” of a ferromagnetic material refers to a temperature or a temperature range during which the material undergoes a phase change (for example, from ferrite to austenite) that decreases the magnetic permeability of the ferromagnetic material. The reduction in magnetic permeability is similar to reduction in magnetic permeability due to the magnetic transition of the ferromagnetic material at the Curie temperature.


“Pyrolysis” is the breaking of chemical bonds due to the application of heat. For example, pyrolysis may include transforming a compound into one or more other substances by heat alone. Heat may be transferred to a section of the formation to cause pyrolysis.


“Pyrolyzation fluids” or “pyrolysis products” refers to fluid produced substantially during pyrolysis of hydrocarbons. Fluid produced by pyrolysis reactions may mix with other fluids in a formation. The mixture would be considered pyrolyzation fluid or pyrolyzation product. As used herein, “pyrolysis zone” refers to a volume of a formation (for example, a relatively permeable formation such as a tar sands formation) that is reacted or reacting to form a pyrolyzation fluid.


“Superposition of heat” refers to providing heat from two or more heat sources to a selected section of a formation such that the temperature of the formation at least at one location between the heat sources is influenced by the heat sources.


“Temperature limited heater” generally refers to a heater that regulates heat output (for example, reduces heat output) above a specified temperature without the use of external controls such as temperature controllers, power regulators, rectifiers, or other devices. Temperature limited heaters may be AC (alternating current) or modulated (for example, “chopped”) DC (direct current) powered electrical resistance heaters.


“Thickness” of a layer refers to the thickness of a cross section of the layer, wherein the cross section is normal to a face of the layer.


“Time-varying current” refers to electrical current that produces skin effect electricity flow in a ferromagnetic conductor and has a magnitude that varies with time. Time-varying current includes both alternating current (AC) and modulated direct current (DC).


“Turndown ratio” for the temperature limited heater in which current is applied directly to the heater is the ratio of the highest AC or modulated DC resistance below the Curie temperature to the lowest resistance above the Curie temperature for a given current. Turndown ratio for an inductive heater is the ratio of the highest heat output below the Curie temperature to the lowest heat output above the Curie temperature for a given current applied to the heater.


A “u-shaped wellbore” refers to a wellbore that extends from a first opening in the formation, through at least a portion of the formation, and out through a second opening in the formation. In this context, the wellbore may be only roughly in the shape of a “v” or “u”, with the understanding that the “legs” of the “u” do not need to be parallel to each other, or perpendicular to the “bottom” of the “u” for the wellbore to be considered “u-shaped”.


The term “wellbore” refers to a hole in a formation made by drilling or insertion of a conduit into the formation. A wellbore may have a substantially circular cross section, or another cross-sectional shape. As used herein, the terms “well” and “opening,” when referring to an opening in the formation may be used interchangeably with the term “wellbore.”


A formation may be treated in various ways to produce many different products. Different stages or processes may be used to treat the formation during an in situ heat treatment process. In some embodiments, one or more sections of the formation are solution mined to remove soluble minerals from the sections. Solution mining minerals may be performed before, during, and/or after the in situ heat treatment process. In some embodiments, the average temperature of one or more sections being solution mined may be maintained below about 120° C.


In some embodiments, one or more sections of the formation are heated to remove water from the sections and/or to remove methane and other volatile hydrocarbons from the sections. In some embodiments, the average temperature may be raised from ambient temperature to temperatures below about 220° C. during removal of water and volatile hydrocarbons.


In some embodiments, one or more sections of the formation are heated to temperatures that allow for movement and/or visbreaking of hydrocarbons in the formation. In some embodiments, the average temperature of one or more sections of the formation are raised to mobilization temperatures of hydrocarbons in the sections (for example, to temperatures ranging from 100° C. to 250° C., from 120° C. to 240° C., or from 150° C. to 230° C.).


In some embodiments, one or more sections are heated to temperatures that allow for pyrolysis reactions in the formation. In some embodiments, the average temperature of one or more sections of the formation may be raised to pyrolysis temperatures of hydrocarbons in the sections (for example, temperatures ranging from 230° C. to 900° C., from 240° C. to 400° C. or from 250° C. to 350° C.).


Heating the hydrocarbon containing formation with a plurality of heat sources may establish thermal gradients around the heat sources that raise the temperature of hydrocarbons in the formation to desired temperatures at desired heating rates. The rate of temperature increase through the mobilization temperature range and/or the pyrolysis temperature range for desired products may affect the quality and quantity of the formation fluids produced from the hydrocarbon containing formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the production of high quality, high API gravity hydrocarbons from the formation. Slowly raising the temperature of the formation through the mobilization temperature range and/or pyrolysis temperature range may allow for the removal of a large amount of the hydrocarbons present in the formation as hydrocarbon product.


In some in situ heat treatment embodiments, a portion of the formation is heated to a desired temperature instead of slowly raising the temperature through a temperature range. In some embodiments, the desired temperature is 300° C., 325° C., or 350° C. Other temperatures may be selected as the desired temperature.


Superposition of heat from heat sources allows the desired temperature to be relatively quickly and efficiently established in the formation. Energy input into the formation from the heat sources may be adjusted to maintain the temperature in the formation substantially at a desired temperature.


Mobilization and/or pyrolysis products may be produced from the formation through production wells. In some embodiments, the average temperature of one or more sections is raised to mobilization temperatures and hydrocarbons are produced from the production wells. The average temperature of one or more of the sections may be raised to pyrolysis temperatures after production due to mobilization decreases below a selected value. In some embodiments, the average temperature of one or more sections may be raised to pyrolysis temperatures without significant production before reaching pyrolysis temperatures. Formation fluids including pyrolysis products may be produced through the production wells.


In some embodiments, the average temperature of one or more sections may be raised to temperatures sufficient to allow synthesis gas production after mobilization and/or pyrolysis. In some embodiments, hydrocarbons may be raised to temperatures sufficient to allow synthesis gas production without significant production before reaching the temperatures sufficient to allow synthesis gas production. For example, synthesis gas may be produced in a temperature range from about 400° C. to about 1200° C., about 500° C. to about 1100° C., or about 550° C. to about 1000° C. A synthesis gas generating fluid (for example, steam and/or water) may be introduced into the sections to generate synthesis gas. Synthesis gas may be produced from production wells.


Solution mining, removal of volatile hydrocarbons and water, mobilizing hydrocarbons, pyrolyzing hydrocarbons, generating synthesis gas, and/or other processes may be performed during the in situ heat treatment process. In some embodiments, some processes may be performed after the in situ heat treatment process. Such processes may include, but are not limited to, recovering heat from treated sections, storing fluids (for example, water and/or hydrocarbons) in previously treated sections, and/or sequestering carbon dioxide in previously treated sections.



FIG. 1 depicts a schematic view of an embodiment of a portion of the in situ heat treatment system for treating the hydrocarbon containing formation. The in situ heat treatment system may include barrier wells 200. Barrier wells are used to form a barrier around a treatment area. The barrier inhibits fluid flow into and/or out of the treatment area. Barrier wells include, but are not limited to, dewatering wells, vacuum wells, capture wells, injection wells, grout wells, freeze wells, or combinations thereof. In some embodiments, barrier wells 200 are dewatering wells. Dewatering wells may remove liquid water and/or inhibit liquid water from entering a portion of the formation to be heated, or to the formation being heated. In the embodiment depicted in FIG. 1, the barrier wells 200 are shown extending only along one side of heat sources 202, but the barrier wells typically encircle all heat sources 202 used, or to be used, to heat a treatment area of the formation.


Heat sources 202 are placed in at least a portion of the formation. Heat sources 202 may include heaters such as insulated conductors, conductor-in-conduit heaters, surface burners, flameless distributed combustors, and/or natural distributed combustors. Heat sources 202 may also include other types of heaters. Heat sources 202 provide heat to at least a portion of the formation to heat hydrocarbons in the formation. Energy may be supplied to heat sources 202 through supply lines 204. Supply lines 204 may be structurally different depending on the type of heat source or heat sources used to heat the formation. Supply lines 204 for heat sources may transmit electricity for electric heaters, may transport fuel for combustors, or may transport heat exchange fluid that is circulated in the formation. In some embodiments, electricity for an in situ heat treatment process may be provided by a nuclear power plant or nuclear power plants. The use of nuclear power may allow for reduction or elimination of carbon dioxide emissions from the in situ heat treatment process.


When the formation is heated, the heat input into the formation may cause expansion of the formation and geomechanical motion. The heat sources may be turned on before, at the same time, or during a dewatering process. Computer simulations may model formation response to heating. The computer simulations may be used to develop a pattern and time sequence for activating heat sources in the formation so that geomechanical motion of the formation does not adversely affect the functionality of heat sources, production wells, and other equipment in the formation.


Heating the formation may cause an increase in permeability and/or porosity of the formation. Increases in permeability and/or porosity may result from a reduction of mass in the formation due to vaporization and removal of water, removal of hydrocarbons, and/or creation of fractures. Fluid may flow more easily in the heated portion of the formation because of the increased permeability and/or porosity of the formation. Fluid in the heated portion of the formation may move a considerable distance through the formation because of the increased permeability and/or porosity. The considerable distance may be over 1000 m depending on various factors, such as permeability of the formation, properties of the fluid, temperature of the formation, and pressure gradient allowing movement of the fluid. The ability of fluid to travel considerable distance in the formation allows production wells 206 to be spaced relatively far apart in the formation.


Production wells 206 are used to remove formation fluid from the formation. In some embodiments, production well 206 includes a heat source. The heat source in the production well may heat one or more portions of the formation at or near the production well. In some in situ heat treatment process embodiments, the amount of heat supplied to the formation from the production well per meter of the production well is less than the amount of heat applied to the formation from a heat source that heats the formation per meter of the heat source. Heat applied to the formation from the production well may increase formation permeability adjacent to the production well by vaporizing and removing liquid phase fluid adjacent to the production well and/or by increasing the permeability of the formation adjacent to the production well by formation of macro and/or micro fractures.


More than one heat source may be positioned in the production well. A heat source in a lower portion of the production well may be turned off when superposition of heat from adjacent heat sources heats the formation sufficiently to counteract benefits provided by heating the formation with the production well. In some embodiments, the heat source in an upper portion of the production well may remain on after the heat source in the lower portion of the production well is deactivated. The heat source in the upper portion of the well may inhibit condensation and reflux of formation fluid.


In some embodiments, the heat source in production well 206 allows for vapor phase removal of formation fluids from the formation. Providing heating at or through the production well may: (1) inhibit condensation and/or refluxing of production fluid when such production fluid is moving in the production well proximate the overburden, (2) increase heat input into the formation, (3) increase production rate from the production well as compared to a production well without a heat source, (4) inhibit condensation of high carbon number compounds (C6 hydrocarbons and above) in the production well, and/or (5) increase formation permeability at or proximate the production well.


Subsurface pressure in the formation may correspond to the fluid pressure generated in the formation. As temperatures in the heated portion of the formation increase, the pressure in the heated portion may increase as a result of thermal expansion of in situ fluids, increased fluid generation and vaporization of water. Controlling rate of fluid removal from the formation may allow for control of pressure in the formation. Pressure in the formation may be determined at a number of different locations, such as near or at production wells, near or at heat sources, or at monitor wells.


In some hydrocarbon containing formations, production of hydrocarbons from the formation is inhibited until at least some hydrocarbons in the formation have been mobilized and/or pyrolyzed. Formation fluid may be produced from the formation when the formation fluid is of a selected quality. In some embodiments, the selected quality includes an API gravity of at least about 20°, 30°, or 40°. Inhibiting production until at least some hydrocarbons are mobilized and/or pyrolyzed may increase conversion of heavy hydrocarbons to light hydrocarbons. Inhibiting initial production may minimize the production of heavy hydrocarbons from the formation. Production of substantial amounts of heavy hydrocarbons may require expensive equipment and/or reduce the life of production equipment.


In some hydrocarbon containing formations, hydrocarbons in the formation may be heated to mobilization and/or pyrolysis temperatures before substantial permeability has been generated in the heated portion of the formation. An initial lack of permeability may inhibit the transport of generated fluids to production wells 206. During initial heating, fluid pressure in the formation may increase proximate heat sources 202. The increased fluid pressure may be released, monitored, altered, and/or controlled through one or more heat sources 202. For example, selected heat sources 202 or separate pressure relief wells may include pressure relief valves that allow for removal of some fluid from the formation.


In some embodiments, pressure generated by expansion of mobilized fluids, pyrolysis fluids or other fluids generated in the formation may be allowed to increase although an open path to production wells 206 or any other pressure sink may not yet exist in the formation. The fluid pressure may be allowed to increase towards a lithostatic pressure. Fractures in the hydrocarbon containing formation may form when the fluid approaches the lithostatic pressure. For example, fractures may form from heat sources 202 to production wells 206 in the heated portion of the formation. The generation of fractures in the heated portion may relieve some of the pressure in the portion. Pressure in the formation may have to be maintained below a selected pressure to inhibit unwanted production, fracturing of the overburden or underburden, and/or coking of hydrocarbons in the formation.


After mobilization and/or pyrolysis temperatures are reached and production from the formation is allowed, pressure in the formation may be varied to alter and/or control a composition of formation fluid produced, to control a percentage of condensable fluid as compared to non-condensable fluid in the formation fluid, and/or to control an API gravity of formation fluid being produced. For example, decreasing pressure may result in production of a larger condensable fluid component. The condensable fluid component may contain a larger percentage of olefins.


In some in situ heat treatment process embodiments, pressure in the formation may be maintained high enough to promote production of formation fluid with an API gravity of greater than 20°. Maintaining increased pressure in the formation may inhibit formation subsidence during in situ heat treatment. Maintaining increased pressure may reduce or eliminate the need to compress formation fluids at the surface to transport the fluids in collection conduits to treatment facilities.


Maintaining increased pressure in a heated portion of the formation may surprisingly allow for production of large quantities of hydrocarbons of increased quality and of relatively low molecular weight. Pressure may be maintained so that formation fluid produced has a minimal amount of compounds above a selected carbon number. The selected carbon number may be at most 25, at most 20, at most 12, or at most 8. Some high carbon number compounds may be entrained in vapor in the formation and may be removed from the formation with the vapor. Maintaining increased pressure in the formation may inhibit entrainment of high carbon number compounds and/or multi-ring hydrocarbon compounds in the vapor. High carbon number compounds and/or multi-ring hydrocarbon compounds may remain in a liquid phase in the formation for significant time periods. The significant time periods may provide sufficient time for the compounds to pyrolyze to form lower carbon number compounds.


Generation of relatively low molecular weight hydrocarbons is believed to be due, in part, to autogenous generation and reaction of hydrogen in a portion of the hydrocarbon containing formation. For example, maintaining an increased pressure may force hydrogen generated during pyrolysis into the liquid phase within the formation. Heating the portion to a temperature in a pyrolysis temperature range may pyrolyze hydrocarbons in the formation to generate liquid phase pyrolyzation fluids. The generated liquid phase pyrolyzation fluids components may include double bonds and/or radicals. Hydrogen (H2) in the liquid phase may reduce double bonds of the generated pyrolyzation fluids, thereby reducing a potential for polymerization or formation of long chain compounds from the generated pyrolyzation fluids. In addition, H2 may also neutralize radicals in the generated pyrolyzation fluids. H2 in the liquid phase may inhibit the generated pyrolyzation fluids from reacting with each other and/or with other compounds in the formation.


Formation fluid produced from production wells 206 may be transported through collection piping 208 to treatment facilities 210. Formation fluids may also be produced from heat sources 202. For example, fluid may be produced from heat sources 202 to control pressure in the formation adjacent to the heat sources. Fluid produced from heat sources 202 may be transported through tubing or piping to collection piping 208 or the produced fluid may be transported through tubing or piping directly to treatment facilities 210. Treatment facilities 210 may include separation units, reaction units, upgrading units, fuel cells, turbines, storage vessels, and/or other systems and units for processing produced formation fluids. The treatment facilities may form transportation fuel from at least a portion of the hydrocarbons produced from the formation. In some embodiments, the transportation fuel may be jet fuel, such as JP-8.


An insulated conductor may be used as an electric heater element of a heater or a heat source. The insulated conductor may include an inner electrical conductor (core) surrounded by an electrical insulator and an outer electrical conductor (jacket). The electrical insulator may include mineral insulation (for example, magnesium oxide) or other electrical insulation.


In certain embodiments, the insulated conductor is placed in an opening in a hydrocarbon containing formation. In some embodiments, the insulated conductor is placed in an uncased opening in the hydrocarbon containing formation. Placing the insulated conductor in an uncased opening in the hydrocarbon containing formation may allow heat transfer from the insulated conductor to the formation by radiation as well as conduction. Using an uncased opening may facilitate retrieval of the insulated conductor from the well, if necessary.


In some embodiments, an insulated conductor is placed within a casing in the formation; may be cemented within the formation; or may be packed in an opening with sand, gravel, or other fill material. The insulated conductor may be supported on a support member positioned within the opening. The support member may be a cable, rod, or a conduit (for example, a pipe). The support member may be made of a metal, ceramic, inorganic material, or combinations thereof. Because portions of a support member may be exposed to formation fluids and heat during use, the support member may be chemically resistant and/or thermally resistant.


Ties, spot welds, and/or other types of connectors may be used to couple the insulated conductor to the support member at various locations along a length of the insulated conductor. The support member may be attached to a wellhead at an upper surface of the formation. In some embodiments, the insulated conductor has sufficient structural strength such that a support member is not needed. The insulated conductor may, in many instances, have at least some flexibility to inhibit thermal expansion damage when undergoing temperature changes.


In certain embodiments, insulated conductors are placed in wellbores without support members and/or centralizers. An insulated conductor without support members and/or centralizers may have a suitable combination of temperature and corrosion resistance, creep strength, length, thickness (diameter), and metallurgy that will inhibit failure of the insulated conductor during use.



FIG. 2 depicts a perspective view of an end portion of an embodiment of insulated conductor 252. Insulated conductor 252 may have any desired cross-sectional shape such as, but not limited to, round (depicted in FIG. 2), triangular, ellipsoidal, rectangular, hexagonal, or irregular. In certain embodiments, insulated conductor 252 includes core 218, electrical insulator 214, and jacket 216. Core 218 may resistively heat when an electrical current passes through the core. Alternating or time-varying current and/or direct current may be used to provide power to core 218 such that the core resistively heats.


In some embodiments, electrical insulator 214 inhibits current leakage and arcing to jacket 216. Electrical insulator 214 may thermally conduct heat generated in core 218 to jacket 216. Jacket 216 may radiate or conduct heat to the formation. In certain embodiments, insulated conductor 252 is 1000 m or more in length. Longer or shorter insulated conductors may also be used to meet specific application needs. The dimensions of core 218, electrical insulator 214, and jacket 216 of insulated conductor 252 may be selected such that the insulated conductor has enough strength to be self supporting even at upper working temperature limits. Such insulated conductors may be suspended from wellheads or supports positioned near an interface between an overburden and a hydrocarbon containing formation without the need for support members extending into the hydrocarbon containing formation along with the insulated conductors.


Insulated conductor 252 may be designed to operate at power levels of up to about 1650 watts/meter or higher. In certain embodiments, insulated conductor 252 operates at a power level between about 300 watts/meter and about 1150 watts/meter when heating a formation. Insulated conductor 252 may be designed so that a maximum voltage level at a typical operating temperature does not cause substantial thermal and/or electrical breakdown of electrical insulator 214. Insulated conductor 252 may be designed such that jacket 216 does not exceed a temperature that will result in a significant reduction in corrosion resistance properties of the jacket material. In certain embodiments, insulated conductor 252 may be designed to reach temperatures within a range between about 650° C. and about 900° C. Insulated conductors having other operating ranges may be formed to meet specific operational requirements.



FIG. 2 depicts insulated conductor 252 having a single core 218. In some embodiments, insulated conductor 252 has two or more cores 218. For example, a single insulated conductor may have three cores. Core 218 may be made of metal or another electrically conductive material. The material used to form core 218 may include, but not be limited to, nichrome, copper, nickel, carbon steel, stainless steel, and combinations thereof. In certain embodiments, core 218 is chosen to have a diameter and a resistivity at operating temperatures such that its resistance, as derived from Ohm's law, makes it electrically and structurally stable for the chosen power dissipation per meter, the length of the heater, and/or the maximum voltage allowed for the core material.


In some embodiments, core 218 is made of different materials along a length of insulated conductor 252. For example, a first section of core 218 may be made of a material that has a significantly lower resistance than a second section of the core. The first section may be placed adjacent to a formation layer that does not need to be heated to as high a temperature as a second formation layer that is adjacent to the second section. The resistivity of various sections of core 218 may be adjusted by having a variable diameter and/or by having core sections made of different materials.


Electrical insulator 214 may be made of a variety of materials. Commonly used powders may include, but are not limited to, MgO, Al2O3, Zirconia, BeO, different chemical variations of Spinels, and combinations thereof. MgO may provide good thermal conductivity and electrical insulation properties. The desired electrical insulation properties include low leakage current and high dielectric strength. A low leakage current decreases the possibility of thermal breakdown and the high dielectric strength decreases the possibility of arcing across the insulator. Thermal breakdown can occur if the leakage current causes a progressive rise in the temperature of the insulator leading also to arcing across the insulator.


Jacket 216 may be an outer metallic layer or electrically conductive layer. Jacket 216 may be in contact with hot formation fluids. Jacket 216 may be made of material having a high resistance to corrosion at elevated temperatures. Alloys that may be used in a desired operating temperature range of jacket 216 include, but are not limited to, 304 stainless steel, 310 stainless steel, Incoloy® 800, and Inconel® 600 (Inco Alloys International, Huntington, W. Va., U.S.A.). The thickness of jacket 216 may have to be sufficient to last for three to ten years in a hot and corrosive environment. A thickness of jacket 216 may generally vary between about 1 mm and about 3.5 mm. For example, a 1.3 mm thick, 310 stainless steel outer layer may be used as jacket 216 to provide good chemical resistance to sulfidation corrosion in a heated zone of a formation for a period of over 3 years. Larger or smaller jacket thicknesses may be used to meet specific application requirements.


One or more insulated conductors may be placed within an opening in a formation to form a heat source or heat sources. Electrical current may be passed through each insulated conductor in the opening to heat the formation. Alternately, electrical current may be passed through selected insulated conductors in an opening. The unused conductors may be used as backup heaters. Insulated conductors may be electrically coupled to a power source in any convenient manner. Each end of an insulated conductor may be coupled to lead-in cables that pass through a wellhead. Such a configuration typically has a 180° bend (a “hairpin” bend) or turn located near a bottom of the heat source. An insulated conductor that includes a 180° bend or turn may not require a bottom termination, but the 180° bend or turn may be an electrical and/or structural weakness in the heater. Insulated conductors may be electrically coupled together in series, in parallel, or in series and parallel combinations. In some embodiments of heat sources, electrical current may pass into the conductor of an insulated conductor and may be returned through the jacket of the insulated conductor by connecting core 218 to jacket 216 (shown in FIG. 2) at the bottom of the heat source.


In some embodiments, three insulated conductors 252 are electrically coupled in a 3-phase wye configuration to a power supply. FIG. 3 depicts an embodiment of three insulated conductors in an opening in a subsurface formation coupled in a wye configuration. FIG. 4 depicts an embodiment of three insulated conductors 252 that are removable from opening 238 in the formation. No bottom connection may be required for three insulated conductors in a wye configuration. Alternately, all three insulated conductors of the wye configuration may be connected together near the bottom of the opening. The connection may be made directly at ends of heating sections of the insulated conductors or at ends of cold pins (less resistive sections) coupled to the heating sections at the bottom of the insulated conductors. The bottom connections may be made with insulator filled and sealed canisters or with epoxy filled canisters. The insulator may be the same composition as the insulator used as the electrical insulation.


Three insulated conductors 252 depicted in FIGS. 3 and 4 may be coupled to support member 220 using centralizers 222. Alternatively, insulated conductors 252 may be strapped directly to support member 220 using metal straps. Centralizers 222 may maintain a location and/or inhibit movement of insulated conductors 252 on support member 220. Centralizers 222 may be made of metal, ceramic, or combinations thereof. The metal may be stainless steel or any other type of metal able to withstand a corrosive and high temperature environment. In some embodiments, centralizers 222 are bowed metal strips welded to the support member at distances less than about 6 m. A ceramic used in centralizer 222 may be, but is not limited to, Al2O3, MgO, or another electrical insulator. Centralizers 222 may maintain a location of insulated conductors 252 on support member 220 such that movement of insulated conductors is inhibited at operating temperatures of the insulated conductors. Insulated conductors 252 may also be somewhat flexible to withstand expansion of support member 220 during heating.


Support member 220, insulated conductor 252, and centralizers 222 may be placed in opening 238 in hydrocarbon layer 240. Insulated conductors 252 may be coupled to bottom conductor junction 224 using cold pin 226. Bottom conductor junction 224 may electrically couple each insulated conductor 252 to each other. Bottom conductor junction 224 may include materials that are electrically conducting and do not melt at temperatures found in opening 238. Cold pin 226 may be an insulated conductor having lower electrical resistance than insulated conductor 252.


Lead-in conductor 228 may be coupled to wellhead 242 to provide electrical power to insulated conductor 252. Lead-in conductor 228 may be made of a relatively low electrical resistance conductor such that relatively little heat is generated from electrical current passing through the lead-in conductor. In some embodiments, the lead-in conductor is a rubber or polymer insulated stranded copper wire. In some embodiments, the lead-in conductor is a mineral insulated conductor with a copper core. Lead-in conductor 228 may couple to wellhead 242 at surface 250 through a sealing flange located between overburden 246 and surface 250. The sealing flange may inhibit fluid from escaping from opening 238 to surface 250.


In certain embodiments, lead-in conductor 228 is coupled to insulated conductor 252 using transition conductor 230. Transition conductor 230 may be a less resistive portion of insulated conductor 252. Transition conductor 230 may be referred to as “cold pin” of insulated conductor 252. Transition conductor 230 may be designed to dissipate about one-tenth to about one-fifth of the power per unit length as is dissipated in a unit length of the primary heating section of insulated conductor 252. Transition conductor 230 may typically be between about 1.5 m and about 15 m, although shorter or longer lengths may be used to accommodate specific application needs. In an embodiment, the conductor of transition conductor 230 is copper. The electrical insulator of transition conductor 230 may be the same type of electrical insulator used in the primary heating section. A jacket of transition conductor 230 may be made of corrosion resistant material.


In certain embodiments, transition conductor 230 is coupled to lead-in conductor 228 by a splice or other coupling joint. Splices may also be used to couple transition conductor 230 to insulated conductor 252. Splices may have to withstand temperatures approaching a target zone operating temperature (for example, a temperature equal to half of a target zone operating temperature), depending on the number of conductors in the opening and whether the splices are staggered. Density of electrical insulation in the splice should in many instances be high enough to withstand the required temperature and the operating voltage.


In some embodiments, as shown in FIG. 3, packing material 248 is placed between overburden casing 244 and opening 238. In some embodiments, reinforcing material 232 may secure overburden casing 244 to overburden 246. Packing material 248 may inhibit fluid from flowing from opening 238 to surface 250. Reinforcing material 232 may include, for example, Class G or Class H Portland cement mixed with silica flour for improved high temperature performance, slag or silica flour, and/or a mixture thereof. In some embodiments, reinforcing material 232 extends radially a width of from about 5 cm to about 25 cm.


As shown in FIGS. 3 and 4, support member 220 and lead-in conductor 228 may be coupled to wellhead 242 at surface 250 of the formation. Surface conductor 234 may enclose reinforcing material 232 and couple to wellhead 242. Embodiments of surface conductors may extend to depths of approximately 3 m to approximately 515 m into an opening in the formation. Alternatively, the surface conductor may extend to a depth of approximately 9 m into the formation. Electrical current may be supplied from a power source to insulated conductor 252 to generate heat due to the electrical resistance of the insulated conductor. Heat generated from three insulated conductors 252 may transfer within opening 238 to heat at least a portion of hydrocarbon layer 240.


Heat generated by insulated conductors 252 may heat at least a portion of a hydrocarbon containing formation. In some embodiments, heat is transferred to the formation substantially by radiation of the generated heat to the formation. Some heat may be transferred by conduction or convection of heat due to gases present in the opening. The opening may be an uncased opening, as shown in FIGS. 3 and 4. An uncased opening eliminates cost associated with thermally cementing the heater to the formation, costs associated with a casing, and/or costs of packing a heater within an opening. In addition, heat transfer by radiation is typically more efficient than by conduction, so the heaters may be operated at lower temperatures in an open wellbore. Conductive heat transfer during initial operation of a heat source may be enhanced by the addition of a gas in the opening. The gas may be maintained at a pressure up to about 27 bars absolute. The gas may include, but is not limited to, carbon dioxide and/or helium. An insulated conductor heater in an open wellbore may advantageously be free to expand or contract to accommodate thermal expansion and contraction. An insulated conductor heater may advantageously be removable or redeployable from an open wellbore.


In certain embodiments, an insulated conductor heater assembly is installed or removed using a spooling assembly. More than one spooling assembly may be used to install both the insulated conductor and a support member simultaneously. Alternatively, the support member may be installed using a coiled tubing unit. The heaters may be un-spooled and connected to the support as the support is inserted into the well. The electric heater and the support member may be un-spooled from the spooling assemblies. Spacers may be coupled to the support member and the heater along a length of the support member. Additional spooling assemblies may be used for additional electric heater elements.


Temperature limited heaters may be in configurations and/or may include materials that provide automatic temperature limiting properties for the heater at certain temperatures. In certain embodiments, ferromagnetic materials are used in temperature limited heaters. Ferromagnetic material may self-limit temperature at or near the Curie temperature of the material and/or the phase transformation temperature range to provide a reduced amount of heat when a time-varying current is applied to the material. In certain embodiments, the ferromagnetic material self-limits temperature of the temperature limited heater at a selected temperature that is approximately the Curie temperature and/or in the phase transformation temperature range. In certain embodiments, the selected temperature is within about 35° C., within about 25° C., within about 20° C., or within about 10° C. of the Curie temperature and/or the phase transformation temperature range. In certain embodiments, ferromagnetic materials are coupled with other materials (for example, highly conductive materials, high strength materials, corrosion resistant materials, or combinations thereof) to provide various electrical and/or mechanical properties. Some parts of the temperature limited heater may have a lower resistance (caused by different geometries and/or by using different ferromagnetic and/or non-ferromagnetic materials) than other parts of the temperature limited heater. Having parts of the temperature limited heater with various materials and/or dimensions allows for tailoring the desired heat output from each part of the heater.


Temperature limited heaters may be more reliable than other heaters. Temperature limited heaters may be less apt to break down or fail due to hot spots in the formation. In some embodiments, temperature limited heaters allow for substantially uniform heating of the formation. In some embodiments, temperature limited heaters are able to heat the formation more efficiently by operating at a higher average heat output along the entire length of the heater. The temperature limited heater operates at the higher average heat output along the entire length of the heater because power to the heater does not have to be reduced to the entire heater, as is the case with typical constant wattage heaters, if a temperature along any point of the heater exceeds, or is about to exceed, a maximum operating temperature of the heater. Heat output from portions of a temperature limited heater approaching a Curie temperature and/or the phase transformation temperature range of the heater automatically reduces without controlled adjustment of the time-varying current applied to the heater. The heat output automatically reduces due to changes in electrical properties (for example, electrical resistance) of portions of the temperature limited heater. Thus, more power is supplied by the temperature limited heater during a greater portion of a heating process.


In certain embodiments, the system including temperature limited heaters initially provides a first heat output and then provides a reduced (second heat output) heat output, near, at, or above the Curie temperature and/or the phase transformation temperature range of an electrically resistive portion of the heater when the temperature limited heater is energized by a time-varying current. The first heat output is the heat output at temperatures below which the temperature limited heater begins to self-limit. In some embodiments, the first heat output is the heat output at a temperature about 50° C., about 75° C., about 100° C., or about 125° C. below the Curie temperature and/or the phase transformation temperature range of the ferromagnetic material in the temperature limited heater.


The temperature limited heater may be energized by time-varying current (alternating current or modulated direct current) supplied at the wellhead. The wellhead may include a power source and other components (for example, modulation components, transformers, and/or capacitors) used in supplying power to the temperature limited heater. The temperature limited heater may be one of many heaters used to heat a portion of the formation.


In some embodiments, a relatively thin conductive layer is used to provide the majority of the electrically resistive heat output of the temperature limited heater at temperatures up to a temperature at or near the Curie temperature and/or the phase transformation temperature range of the ferromagnetic conductor. Such a temperature limited heater may be used as the heating member in an insulated conductor heater. The heating member of the insulated conductor heater may be located inside a sheath with an insulation layer between the sheath and the heating member.



FIGS. 5A and 5B depict cross-sectional representations of an embodiment of the insulated conductor heater with the temperature limited heater as the heating member. Insulated conductor 252 includes core 218, ferromagnetic conductor 236, inner conductor 212, electrical insulator 214, and jacket 216. Core 218 is a copper core. Ferromagnetic conductor 236 is, for example, iron or an iron alloy.


Inner conductor 212 is a relatively thin conductive layer of non-ferromagnetic material with a higher electrical conductivity than ferromagnetic conductor 236. In certain embodiments, inner conductor 212 is copper. Inner conductor 212 may be a copper alloy. Copper alloys typically have a flatter resistance versus temperature profile than pure copper. A flatter resistance versus temperature profile may provide less variation in the heat output as a function of temperature up to the Curie temperature and/or the phase transformation temperature range. In some embodiments, inner conductor 212 is copper with 6% by weight nickel (for example, CuNi6 or LOHM™). In some embodiments, inner conductor 212 is CuNi10Fe1Mn alloy. Below the Curie temperature and/or the phase transformation temperature range of ferromagnetic conductor 236, the magnetic properties of the ferromagnetic conductor confine the majority of the flow of electrical current to inner conductor 212. Thus, inner conductor 212 provides the majority of the resistive heat output of insulated conductor 252 below the Curie temperature and/or the phase transformation temperature range.


In certain embodiments, inner conductor 212 is dimensioned, along with core 218 and ferromagnetic conductor 236, so that the inner conductor provides a desired amount of heat output and a desired turndown ratio. For example, inner conductor 212 may have a cross-sectional area that is around 2 or 3 times less than the cross-sectional area of core 218. Typically, inner conductor 212 has to have a relatively small cross-sectional area to provide a desired heat output if the inner conductor is copper or copper alloy. In an embodiment with copper inner conductor 212, core 218 has a diameter of 0.66 cm, ferromagnetic conductor 236 has an outside diameter of 0.91 cm, inner conductor 212 has an outside diameter of 1.03 cm, electrical insulator 214 has an outside diameter of 1.53 cm, and jacket 216 has an outside diameter of 1.79 cm. In an embodiment with a CuNi6 inner conductor 212, core 218 has a diameter of 0.66 cm, ferromagnetic conductor 236 has an outside diameter of 0.91 cm, inner conductor 212 has an outside diameter of 1.12 cm, electrical insulator 214 has an outside diameter of 1.63 cm, and jacket 216 has an outside diameter of 1.88 cm. Such insulated conductors are typically smaller and cheaper to manufacture than insulated conductors that do not use the thin inner conductor to provide the majority of heat output below the Curie temperature and/or the phase transformation temperature range.


Electrical insulator 214 may be magnesium oxide, aluminum oxide, silicon dioxide, beryllium oxide, boron nitride, silicon nitride, or combinations thereof. In certain embodiments, electrical insulator 214 is a compacted powder of magnesium oxide. In some embodiments, electrical insulator 214 includes beads of silicon nitride.


In certain embodiments, a small layer of material is placed between electrical insulator 214 and inner conductor 212 to inhibit copper from migrating into the electrical insulator at higher temperatures. For example, a small layer of nickel (for example, about 0.5 mm of nickel) may be placed between electrical insulator 214 and inner conductor 212.


Jacket 216 is made of a corrosion resistant material such as, but not limited to, 347 stainless steel, 347H stainless steel, 446 stainless steel, or 825 stainless steel. In some embodiments, jacket 216 provides some mechanical strength for insulated conductor 252 at or above the Curie temperature and/or the phase transformation temperature range of ferromagnetic conductor 236. In certain embodiments, jacket 216 is not used to conduct electrical current.


In certain embodiments, a semiconductor layer is placed outside of the core of an insulated conductor heater. The semiconductor layer may at least partially surround the core. The semiconductor layer may be located adjacent to the core (between the core and the insulation layer (electrical insulator)) or the semiconductor layer may be located in the insulation layer. Placing the semiconductor layer in the insulated conductor heater outside the core may mitigate electric field fluctuations in the heater and/or reduce the electric field strength in the heater. Thus, a higher voltage may be applied to an insulated conductor heater with the semiconductor layer that yields the same maximum electric field strength between the core and the sheath as achieved with a lower voltage applied to an insulated conductor heater without the semiconductor layer. Alternatively, a lower maximum field strength results for the insulated conductor heater with the semiconducting layer when the two heaters are energized to the same voltage.



FIG. 6 depicts an embodiment of insulated conductor 252 with semiconductor layer 254 adjacent to and surrounding core 218 (on the surface of the core). Insulated conductor 252 may be an insulated conductor heater that provides resistive heat output. Electrical insulator 214 and jacket (sheath) 216 surround semiconductor layer 254 and core 218. FIG. 7 depicts an embodiment of insulated conductor 252 with semiconductor layer 254 inside electrical insulator 214 and surrounding core 218. Semiconductor layer 254 may be, for example, BaTiO3 or another suitable semiconducting material such as, but not limited to, BaxSr1-xTiO3, CaCu3(TiO3)4, or La2Ba2CaZn2Ti3O4. In certain embodiments, core 218 is copper or a copper alloy (for example a copper-nickel alloy), electrical insulator 214 is magnesium oxide, and jacket 216 is stainless steel.


Semiconductor layer 254 reduces the electric field strength outside of core 218. In addition, having semiconductor layer 254 surrounding core 218 may reduce or mitigate electric field fluctuations due to defects or irregularities in the surface of the core. Reducing the electric field strength and/or mitigating electric field fluctuations may reduce stresses on electrical insulator 214, reducing potential breakdown of the electrical insulator and increasing the operational lifetime of the heater.


In certain embodiments, semiconductor layer 254 has a higher dielectric constant than electrical insulator 214. In certain embodiments, the electric field strength around the core is minimized by optimizing the dielectric constant of the semiconductor layer and the thickness of the semiconductor layer. The dielectric constant of semiconductor layer 254 and/or electrical insulator 214 may be graded (vary with radial distance from the central axis of core 218) to optimize the effect on the electric field. In some embodiments, multiple layers, each with a different dielectric constant (either semiconductor layers or electrical insulator layers), are used to provide a desired grading.


For long vertical temperature limited heaters (for example, heaters at least 300 m, at least 500 m, or at least 1 km in length), the hanging stress becomes important in the selection of materials for the temperature limited heater. Without the proper selection of material, the support member may not have sufficient mechanical strength (for example, creep-rupture strength) to support the weight of the temperature limited heater at the operating temperatures of the heater.


In certain embodiments, materials for the support member are varied to increase the maximum allowable hanging stress at operating temperatures of the temperature limited heater and, thus, increase the maximum operating temperature of the temperature limited heater. Altering the materials of the support member affects the heat output of the temperature limited heater below the Curie temperature and/or the phase transformation temperature range because changing the materials changes the resistance versus temperature profile of the support member. In certain embodiments, the support member is made of more than one material along the length of the heater so that the temperature limited heater maintains desired operating properties (for example, resistance versus temperature profile below the Curie temperature and/or the phase transformation temperature range) as much as possible while providing sufficient mechanical properties to support the heater. In some embodiments, transition sections are used between sections of the heater to provide strength that compensates for the difference in temperature between sections of the heater. In certain embodiments, one or more portions of the temperature limited heater have varying outside diameters and/or materials to provide desired properties for the heater.


EXAMPLES

Non-restrictive examples are set forth below.


Examples for Semiconductor Layer in Insulated Conductor


COMSOL® simulations were used to assess the electric field effects of using a semiconductor layer in an insulated conductor heater such as those depicted in FIGS. 6 and 7. In a first simulation, electric field components were calculated for an insulated conductor heater with an irregular nickel copper core surface (a wavy core surface) surrounded by a BaTiO3 semiconductor layer either on the surface of the core (as shown in FIG. 6) or in the magnesium oxide electrical insulator (as shown in FIG. 7). Electric field components were also calculated for a base case with no semiconductor layer.



FIG. 8 depicts the electric field normal component (V/m) as a function of the location along the length of the heater (m). Curve 256 depicts the electric field for the base case. Curve 258 depicts the electric field for the semiconductor layer on the surface. Curve 260 depicts the electric field for the semiconductor layer in the electrical insulator. As shown in FIG. 8, having the semiconductor layer on the surface of the core is best for mitigating electric field fluctuations (least variation in electric field normal component) due to the irregular (wavy) surface of the core.


In a second simulation, electric field strengths were calculated for an insulated conductor heater with a nickel copper core surface having a defect (a notch in the core surface) surrounded by a BaTiO3 semiconductor layer either on the surface of the core (as shown in FIG. 6) or in the magnesium oxide electrical insulator (as shown in FIG. 7). Electric field strength was also calculated for a base case with no semiconductor layer.



FIG. 9 depicts the electric field strength (V/m) versus distance from the core (m). Curve 262 depicts the electric field strength for the base case. Curve 264 depicts the electric field strength for the semiconductor layer on the surface. Curve 266 depicts the electric field strength for the semiconductor layer in the electrical insulator. As shown in FIG. 9, the electric field strength is reduced near the core with the semiconductor layer on the surface (curve 264).


Analytical calculations were used to assess electrical properties and the effectiveness of the semiconductor layer for an insulated conductor heater as shown in FIG. 6. FIG. 10 depicts percent of maximum unscreened (no semiconductor layer) field strength (left axis) and normalized semiconductor layer thickness (right axis) versus dielectric constant ratio of the electrical insulator and semiconductor layer ((dielectric constant of electrical insulator)/(dielectric constant of semiconductor layer)). As shown in FIG. 10, for a selected dielectric constant ratio (as shown by the vertical arrow), there corresponds a semiconductor layer thickness that minimizes the maximum electric field.



FIG. 11 depicts electric field strength (V/inch) versus normalized distance from the core for several dielectric constant ratios for a semiconductor layer that is a third the thickness of the electrical insulator. Curve 268 depicts electric field strength for a dielectric constant ratio of 0.1. Curve 270 depicts electric field strength for a dielectric constant ratio of 0.5. Curve 272 depicts electric field strength for a dielectric constant ratio of 0.676. Curve 274 depicts electric field strength for a dielectric constant ratio of 0.8. Curve 276 depicts electric field strength for an insulated conductor heater without a semiconductor layer (a dielectric strength ratio of 1). As shown in FIG. 11, the lowest maximum electric field strength between the core and the jacket (sheath) is achieved with a dielectric constant ratio of 0.676 (curve 272).


It is to be understood the invention is not limited to particular systems described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. As used in this specification, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “a core” includes a combination of two or more cores and reference to “a material” includes mixtures of materials.


In this patent, certain U.S. patents and U.S. patent applications have been incorporated by reference. The text of such U.S. patents and U.S. patent applications is, however, only incorporated by reference to the extent that no conflict exists between such text and the other statements and drawings set forth herein. In the event of such conflict, then any such conflicting text in such incorporated by reference U.S. patents and U.S. patent applications is specifically not incorporated by reference in this patent.


Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.

Claims
  • 1. A heater configured to heat a subsurface formation, comprising: an electrical conductor;a semiconductor layer at least partially surrounding the electrical conductor;an insulation layer at least partially surrounding the electrical conductor, wherein the semiconductor layer has a higher dielectric constant than the insulation layer; andan electrically conductive sheath at least partially surrounding the insulation layer;wherein the heater is configured to provide resistive heat output to heat at least a portion of the subsurface formation.
  • 2. The heater of claim 1, wherein the semiconductor layer is located inside the insulation layer.
  • 3. The heater of claim 1, wherein the semiconductor layer is at least partially surrounded by the insulation layer.
  • 4. The heater of claim 1, wherein the insulation layer at least partially surrounds the semiconductor layer.
  • 5. The heater of claim 1, wherein the semiconductor layer is configured to reduce the electrical field in the electrical conductor during use.
  • 6. The heater of claim 1, wherein the semiconductor layer is configured to reduce electrical stresses on the insulation layer during use.
  • 7. The heater of claim 1, wherein the insulation layer comprises magnesium oxide.
  • 8. The heater of claim 1, wherein the semiconductor layer comprises a plurality of semiconductor layers with varying dielectric constants.
  • 9. The heater of claim 1, wherein the semiconductor layer comprises multiple semiconductor layers with different dielectric constants that are graded to provide a dielectric constant in the semiconductor layer that varies with radial distance from a central axis of the electrical conductor.
  • 10. The heater of claim 1, further comprising an additional semiconductor layer on an opposite side of the insulation layer from the semiconductor layer.
  • 11. The heater of claim 1, wherein the heater is located in an opening in a hydrocarbon containing layer in the subsurface formation.
  • 12. The heater of claim 1, wherein the heater is located in a hydrocarbon containing layer in the subsurface formation, and the heater is configured to provide resistive heat output to heat at least a portion of the subsurface formation to mobilize hydrocarbons in the layer.
  • 13. The heater of claim 1, wherein the heater is located in a hydrocarbon containing layer in the subsurface formation, and the heater is configured to provide resistive heat output to heat at least a portion of the subsurface formation to pyrolyze hydrocarbons in the layer.
  • 14. A method for heating a subsurface formation, comprising: providing heat to at least a portion of a hydrocarbon containing layer of the formation from a heater at least partially located in an opening in the hydrocarbon containing layer, the opening extending from the surface of the formation through an overburden section of the formation and into the hydrocarbon containing layer of the formation, the heater comprising: an electrical conductor;a plurality of semiconductor layers at least partially surrounding the electrical conductor, wherein the semiconductor layers comprise different dielectric constants to provide a graded dielectric constant that varies with radial distance from a central axis of the electrical conductor;an insulation layer at least partially surrounding the electrical conductor; andan electrically conductive sheath at least partially surrounding the insulation layer;allowing heat to transfer to the formation such that at least some hydrocarbons in the formation are mobilized; andproducing at least some of the mobilized hydrocarbons from the formation.
  • 15. The method of claim 14, wherein the semiconductor layers are located inside the insulation layer.
  • 16. The method of claim 14, wherein the semiconductor layers are at least partially surrounded by the insulation layer.
  • 17. The method of claim 14, wherein the insulation layer at least partially surrounds the semiconductor layers.
  • 18. The method of claim 14, wherein the semiconductor layers have higher dielectric constants than the insulation layer.
  • 19. A heater configured to heat a subsurface formation, comprising: an electrical conductor;a semiconductor layer at least partially surrounding the electrical conductor, wherein the semiconductor layer comprises a plurality of semiconductor layers with varying dielectric constants;an insulation layer at least partially surrounding the electrical conductor, wherein the semiconductor layer has a higher dielectric constant than the insulation layer; andan electrically conductive sheath at least partially surrounding the insulation layer.
  • 20. The heater of claim 19, wherein the heater is located in an opening in a hydrocarbon containing layer in the subsurface formation.
PRIORITY CLAIM

This patent application claims priority to U.S. Provisional Patent No. 61/322,664 entitled “HEATER TECHNOLOGY FOR TREATING SUBSURFACE FORMATIONS” to Bass et al. filed on Apr. 9, 2010; and U.S. Provisional Patent No. 61/322,513 entitled “TREATMENT METHODOLOGIES FOR SUBSURFACE HYDROCARBON CONTAINING FORMATIONS” to Bass et al. filed on Apr. 9, 2010; and International Patent Application No. PCT/US11/31570 entitled “INSULATED CONDUCTOR HEATERS WITH SEMICONDUCTOR LAYERS” to Harris et al. filed on Apr. 7, 2011, all of which are incorporated by reference in their entirety. This patent application incorporates by reference in its entirety each of U.S. Pat. No. 6,688,387 to Wellington et al.; U.S. Pat. No. 6,991,036 to Sumnu-Dindoruk et al.; U.S. Pat. No. 6,698,515 to Karanikas et al.; U.S. Pat. No. 6,880,633 to Wellington et al.; U.S. Pat. No. 6,782,947 to de Rouffignac et al.; U.S. Pat. No. 6,991,045 to Vinegar et al.; U.S. Pat. No. 7,073,578 to Vinegar et al.; U.S. Pat. No. 7,121,342 to Vinegar et al.; U.S. Pat. No. 7,320,364 to Fairbanks; U.S. Pat. No. 7,527,094 to McKinzie et al.; U.S. Pat. No. 7,584,789 to Mo et al.; U.S. Pat. No. 7,533,719 to Hinson et al.; U.S. Pat. No. 7,562,707 to Miller; U.S. Pat. No. 7,841,408 to Vinegar et al.; and U.S. Pat. No. 7,866,388 to Bravo; U.S. Patent Application Publication Nos. 2010-0071903 to Prince-Wright et al. and 2010-0096137 to Nguyen et al.

US Referenced Citations (482)
Number Name Date Kind
1457690 Brine Jun 1923 A
1477802 Beck Dec 1923 A
2011710 Davis Aug 1935 A
2208087 Somers Jul 1940 A
2244255 Looman Jun 1941 A
2500305 Ackley Mar 1950 A
2680086 Hollingsworth et al. Jun 1954 A
2757739 Douglas et al. Aug 1956 A
2794504 Carpenter Jun 1957 A
2942223 Lennox et al. Jun 1960 A
3026940 Spitz Mar 1962 A
3114417 McCarthy Dec 1963 A
3131763 Kunetka et al. May 1964 A
3141924 Forney, Jr. Jul 1964 A
3149672 Orkiszewski et al. Sep 1964 A
3207220 Williams Sep 1965 A
3220479 Orloff et al. Nov 1965 A
3278673 Gore Oct 1966 A
3299202 Brown Jan 1967 A
3316344 Kidd et al. Apr 1967 A
3342267 Cotter et al. Sep 1967 A
3410977 Ando Nov 1968 A
3477058 Vedder et al. Nov 1969 A
3492463 Wringer et al. Jan 1970 A
3515213 Prats Jun 1970 A
3515837 Ando Jun 1970 A
3547192 Claridge et al. Dec 1970 A
3562401 Long Feb 1971 A
3580987 Priaroggia May 1971 A
3614387 Wrob et al. Oct 1971 A
3629551 Ando Dec 1971 A
3657520 Ragault Apr 1972 A
3672196 Levacher et al. Jun 1972 A
3679812 Owens Jul 1972 A
3757860 Pritchett Sep 1973 A
3761599 Beatty Sep 1973 A
3790697 Buckingham Feb 1974 A
3859503 Palone Jan 1975 A
3896260 Plummer Jul 1975 A
4001760 Howie et al. Jan 1977 A
4256945 Carter et al. Mar 1981 A
4269638 Faranetta et al. May 1981 A
4280046 Shimotori et al. Jul 1981 A
4344483 Fisher et al. Aug 1982 A
4368452 Kerr, Jr. Jan 1983 A
4370518 Guzy Jan 1983 A
4470459 Copeland et al. Sep 1984 A
4520229 Luzzi et al. May 1985 A
4524827 Bridges et al. Jun 1985 A
4532375 Weitzel et al. Jul 1985 A
4538682 McManus et al. Sep 1985 A
4549073 Tamura et al. Oct 1985 A
4570715 Van Meurs et al. Feb 1986 A
4572299 Van Egmond et al. Feb 1986 A
4585066 Moore et al. Apr 1986 A
4623401 Derbyshire et al. Nov 1986 A
4626665 Fort, III Dec 1986 A
4639712 Kobayashi et al. Jan 1987 A
4645906 Yagnik et al. Feb 1987 A
4662437 Renfro et al. May 1987 A
4694907 Stahl et al. Sep 1987 A
4695713 Krumme Sep 1987 A
4698583 Sandberg Oct 1987 A
4701587 Carter et al. Oct 1987 A
4704514 Van Egmond et al. Nov 1987 A
4716960 Eastlund et al. Jan 1988 A
4717814 Krumme Jan 1988 A
4733057 Stanzel et al. Mar 1988 A
4752673 Krumme Jun 1988 A
4785163 Sandberg Nov 1988 A
4794226 Derbyshire Dec 1988 A
4814587 Carter Mar 1989 A
4821798 Bridges et al. Apr 1989 A
4849611 Whitney et al. Jul 1989 A
4859200 McIntosh et al. Aug 1989 A
4886118 Van Meurs et al. Dec 1989 A
4947672 Pecora et al. Aug 1990 A
4979296 Langner et al. Dec 1990 A
4985313 Penneck et al. Jan 1991 A
5040601 Karlsson et al. Aug 1991 A
5060287 Van Egmond Oct 1991 A
5065501 Henschen et al. Nov 1991 A
5065818 Van Egmond Nov 1991 A
5066852 Willbanks Nov 1991 A
5070533 Bridges et al. Dec 1991 A
5073625 Derbyshire Dec 1991 A
5117912 Young Jun 1992 A
5152341 Kasevich Oct 1992 A
5182427 McGaffigan Jan 1993 A
5189283 Carl, Jr. et al. Feb 1993 A
5207273 Cates et al. May 1993 A
5209987 Penneck et al. May 1993 A
5226961 Nahm et al. Jul 1993 A
5231249 Kimura et al. Jul 1993 A
5245161 Okamoto Sep 1993 A
5246783 Spenadel et al. Sep 1993 A
5289882 Moore Mar 1994 A
5315065 O'Donovan May 1994 A
5316492 Schaareman May 1994 A
5408047 Wentzel Apr 1995 A
5453599 Hall, Jr. Sep 1995 A
5483414 Turtiainen Jan 1996 A
5512732 Yagnik et al. Apr 1996 A
5553478 Di Troia Sep 1996 A
5579575 Lamome et al. Dec 1996 A
5619611 Loschen et al. Apr 1997 A
5621844 Bridges Apr 1997 A
5667009 Moore Sep 1997 A
5669275 Mills Sep 1997 A
5713415 Bridges Feb 1998 A
5782301 Neuroth et al. Jul 1998 A
5788376 Sultan et al. Aug 1998 A
5801332 Berger et al. Sep 1998 A
5854472 Wildi Dec 1998 A
5875283 Yane et al. Feb 1999 A
5911898 Jacobs et al. Jun 1999 A
5987745 Hoglund et al. Nov 1999 A
6015015 Luft et al. Jan 2000 A
6023554 Vinegar et al. Feb 2000 A
6056057 Vinegar et al. May 2000 A
6079499 Mikus et al. Jun 2000 A
6102122 de Rouffignac Aug 2000 A
6269876 de Rouffignac et al. Aug 2001 B1
6288372 Sandberg et al. Sep 2001 B1
6313431 Schneider et al. Nov 2001 B1
6326546 Karlsson Dec 2001 B1
6423952 Meisiek Jul 2002 B1
6452105 Badii et al. Sep 2002 B2
6581684 Wellington et al. Jun 2003 B2
6585046 Neuroth et al. Jul 2003 B2
6588503 Karanikas et al. Jul 2003 B2
6588504 Wellington et al. Jul 2003 B2
6591906 Wellington et al. Jul 2003 B2
6591907 Zhang et al. Jul 2003 B2
6607033 Wellington et al. Aug 2003 B2
6609570 Wellington et al. Aug 2003 B2
6688387 Wellington et al. Feb 2004 B1
6698515 Karanikas et al. Mar 2004 B2
6702016 de Rouffignac et al. Mar 2004 B2
6712135 Wellington et al. Mar 2004 B2
6712136 de Rouffignac et al. Mar 2004 B2
6712137 Vinegar et al. Mar 2004 B2
6715546 Vinegar et al. Apr 2004 B2
6715547 Vinegar et al. Apr 2004 B2
6715548 Wellington et al. Apr 2004 B2
6715549 Wellington et al. Apr 2004 B2
6719047 Fowler et al. Apr 2004 B2
6722429 de Rouffignac et al. Apr 2004 B2
6722430 Vinegar et al. Apr 2004 B2
6722431 Karanikas et al. Apr 2004 B2
6725920 Zhang et al. Apr 2004 B2
6725928 Vinegar et al. Apr 2004 B2
6729395 Shahin, Jr. et al. May 2004 B2
6729396 Vinegar et al. May 2004 B2
6729397 Zhang et al. May 2004 B2
6729401 Vinegar et al. May 2004 B2
6732794 Wellington et al. May 2004 B2
6732795 de Rouffignac et al. May 2004 B2
6732796 Vinegar et al. May 2004 B2
6736215 Maher et al. May 2004 B2
6739393 Vinegar et al. May 2004 B2
6739394 Vinegar et al. May 2004 B2
6742587 Vinegar et al. Jun 2004 B2
6742588 Wellington et al. Jun 2004 B2
6742589 Berchenko et al. Jun 2004 B2
6742593 Vinegar et al. Jun 2004 B2
6745831 de Rouffignac et al. Jun 2004 B2
6745832 Wellington et al. Jun 2004 B2
6745837 Wellington et al. Jun 2004 B2
6749021 Vinegar et al. Jun 2004 B2
6752210 de Rouffignac et al. Jun 2004 B2
6758268 Vinegar et al. Jul 2004 B2
6761216 Vinegar et al. Jul 2004 B2
6769483 de Rouffignac et al. Aug 2004 B2
6769485 Vinegar et al. Aug 2004 B2
6782947 de Rouffignac et al. Aug 2004 B2
6789625 de Rouffignac et al. Sep 2004 B2
6805195 Vinegar et al. Oct 2004 B2
6820688 Vinegar et al. Nov 2004 B2
6866097 Vinegar et al. Mar 2005 B2
6871707 Karanikas et al. Mar 2005 B2
6877554 Stegemeier et al. Apr 2005 B2
6877555 Karanikas et al. Apr 2005 B2
6880633 Wellington et al. Apr 2005 B2
6880635 Vinegar et al. Apr 2005 B2
6886638 Ahmed et al. May 2005 B2
6889769 Wellington et al. May 2005 B2
6896053 Berchenko et al. May 2005 B2
6902003 Maher et al. Jun 2005 B2
6902004 de Rouffignac et al. Jun 2005 B2
6910536 Wellington et al. Jun 2005 B2
6913078 Shahin, Jr. et al. Jul 2005 B2
6915850 Vinegar et al. Jul 2005 B2
6918442 Wellington et al. Jul 2005 B2
6918443 Wellington et al. Jul 2005 B2
6923257 Wellington et al. Aug 2005 B2
6923258 Wellington et al. Aug 2005 B2
6929067 Vinegar et al. Aug 2005 B2
6932155 Vinegar et al. Aug 2005 B2
6942032 La Rovere et al. Sep 2005 B2
6948562 Wellington et al. Sep 2005 B2
6948563 Wellington et al. Sep 2005 B2
6951247 de Rouffignac et al. Oct 2005 B2
6953087 de Rouffignac et al. Oct 2005 B2
6958704 Vinegar et al. Oct 2005 B2
6959761 Berchenko et al. Nov 2005 B2
6963053 Lutz Nov 2005 B2
6964300 Vinegar et al. Nov 2005 B2
6966372 Wellington et al. Nov 2005 B2
6966374 Vinegar et al. Nov 2005 B2
6969123 Vinegar et al. Nov 2005 B2
6973967 Stegemeier et al. Dec 2005 B2
6981548 Wellington et al. Jan 2006 B2
6991032 Berchenko et al. Jan 2006 B2
6991033 Wellington et al. Jan 2006 B2
6991036 Sumnu-Dindoruk et al. Jan 2006 B2
6991045 Vinegar et al. Jan 2006 B2
6994160 Wellington et al. Feb 2006 B2
6994168 Wellington et al. Feb 2006 B2
6994169 Zhang et al. Feb 2006 B2
6997255 Wellington et al. Feb 2006 B2
6997518 Vinegar et al. Feb 2006 B2
7004247 Cole et al. Feb 2006 B2
7004251 Ward et al. Feb 2006 B2
7011154 Maher et al. Mar 2006 B2
7013972 Vinegar et al. Mar 2006 B2
7036583 de Rouffignac et al. May 2006 B2
7040397 de Rouffignac et al. May 2006 B2
7040398 Wellington et al. May 2006 B2
7040399 Wellington et al. May 2006 B2
7040400 de Rouffignac et al. May 2006 B2
7051807 Vinegar et al. May 2006 B2
7051808 Vinegar et al. May 2006 B1
7051811 de Rouffignac et al. May 2006 B2
7055600 Messier et al. Jun 2006 B2
7063145 Veenstra et al. Jun 2006 B2
7066254 Vinegar et al. Jun 2006 B2
7066257 Wellington et al. Jun 2006 B2
7073578 Vinegar et al. Jul 2006 B2
7077198 Vinegar et al. Jul 2006 B2
7077199 Vinegar et al. Jul 2006 B2
7086465 Wellington et al. Aug 2006 B2
7086468 de Rouffignac et al. Aug 2006 B2
7090013 Wellington et al. Aug 2006 B2
7096941 de Rouffignac et al. Aug 2006 B2
7096942 de Rouffignac et al. Aug 2006 B1
7096953 de Rouffignac et al. Aug 2006 B2
7100994 Vinegar et al. Sep 2006 B2
7104319 Vinegar et al. Sep 2006 B2
7114566 Vinegar et al. Oct 2006 B2
7121341 Vinegar et al. Oct 2006 B2
7121342 Vinegar et al. Oct 2006 B2
7128153 Vinegar et al. Oct 2006 B2
7153373 Maziasz et al. Dec 2006 B2
7156176 Vinegar et al. Jan 2007 B2
7165615 Vinegar et al. Jan 2007 B2
7172038 Terry et al. Feb 2007 B2
7219734 Bai et al. May 2007 B2
7225866 Berchenko et al. Jun 2007 B2
7258752 Maziasz et al. Aug 2007 B2
7320364 Fairbanks Jan 2008 B2
7337841 Ravie Mar 2008 B2
7353872 Sandberg et al. Apr 2008 B2
7357180 Vinegar et al. Apr 2008 B2
7360588 Vinegar et al. Apr 2008 B2
7370704 Harris May 2008 B2
7383877 Vinegar et al. Jun 2008 B2
7424915 Vinegar et al. Sep 2008 B2
7431076 Sandberg et al. Oct 2008 B2
7435037 McKinzie, II Oct 2008 B2
7461691 Vinegar et al. Dec 2008 B2
7481274 Vinegar et al. Jan 2009 B2
7490665 Sandberg et al. Feb 2009 B2
7500528 McKinzie et al. Mar 2009 B2
7510000 Pastor-Sanz et al. Mar 2009 B2
7527094 McKinzie et al. May 2009 B2
7533719 Hinson et al. May 2009 B2
7540324 de Rouffignac et al. Jun 2009 B2
7546873 Kim Jun 2009 B2
7549470 Vinegar et al. Jun 2009 B2
7556095 Vinegar Jul 2009 B2
7556096 Vinegar et al. Jul 2009 B2
7559367 Vinegar et al. Jul 2009 B2
7559368 Vinegar et al. Jul 2009 B2
7562706 Li et al. Jul 2009 B2
7562707 Miller Jul 2009 B2
7575052 Sandberg et al. Aug 2009 B2
7575053 Vinegar et al. Aug 2009 B2
7581589 Roes et al. Sep 2009 B2
7584789 Mo et al. Sep 2009 B2
7591310 Minderhoud et al. Sep 2009 B2
7597147 Vitek et al. Oct 2009 B2
7604052 Roes et al. Oct 2009 B2
7610962 Fowler Nov 2009 B2
7631689 Vinegar et al. Dec 2009 B2
7631690 Vinegar et al. Dec 2009 B2
7635023 Goldberg et al. Dec 2009 B2
7635024 Karanikas et al. Dec 2009 B2
7635025 Vinegar et al. Dec 2009 B2
7640980 Vinegar et al. Jan 2010 B2
7644765 Stegemeier et al. Jan 2010 B2
7673681 Vinegar et al. Mar 2010 B2
7673786 Menotti Mar 2010 B2
7677310 Vinegar et al. Mar 2010 B2
7677314 Hsu Mar 2010 B2
7681647 Mudunuri et al. Mar 2010 B2
7683296 Brady et al. Mar 2010 B2
7703513 Vinegar et al. Apr 2010 B2
7717171 Stegemeier et al. May 2010 B2
7730936 Hernandez-Solis et al. Jun 2010 B2
7730945 Pieterson et al. Jun 2010 B2
7730946 Vinegar et al. Jun 2010 B2
7730947 Stegemeier et al. Jun 2010 B2
7735935 Vinegar et al. Jun 2010 B2
7764871 Rodegher Jul 2010 B2
7785427 Maziasz et al. Aug 2010 B2
7793722 Vinegar et al. Sep 2010 B2
7798220 Vinegar et al. Sep 2010 B2
7798221 Vinegar et al. Sep 2010 B2
7831133 Vinegar et al. Nov 2010 B2
7831134 Vinegar et al. Nov 2010 B2
7832484 Nguyen et al. Nov 2010 B2
7841401 Kuhlman et al. Nov 2010 B2
7841408 Vinegar Nov 2010 B2
7841425 Mansure et al. Nov 2010 B2
7845411 Vinegar et al. Dec 2010 B2
7849922 Vinegar et al. Dec 2010 B2
7860377 Vinegar et al. Dec 2010 B2
7866385 Lambirth Jan 2011 B2
7866386 Beer Jan 2011 B2
7866388 Bravo Jan 2011 B2
7912358 Stone et al. Mar 2011 B2
7931086 Nguyen et al. Apr 2011 B2
7942197 Fairbanks et al. May 2011 B2
7942203 Vinegar et al. May 2011 B2
7950453 Farmayan et al. May 2011 B2
7986869 Vinegar et al. Jul 2011 B2
8011451 MacDonald Sep 2011 B2
8027571 Vinegar et al. Sep 2011 B2
8042610 Harris et al. Oct 2011 B2
8113272 Vinegar Feb 2012 B2
8146661 Bravo et al. Apr 2012 B2
8146669 Mason Apr 2012 B2
8151880 Roes et al. Apr 2012 B2
8151907 MacDonald Apr 2012 B2
8162059 Nguyen et al. Apr 2012 B2
8162405 Burns et al. Apr 2012 B2
8172335 Burns et al. May 2012 B2
8177305 Burns et al. May 2012 B2
8191630 Stegemeier et al. Jun 2012 B2
8192682 Maziasz et al. Jun 2012 B2
8200072 Vinegar et al. Jun 2012 B2
8220539 Vinegar et al. Jul 2012 B2
8224164 Sandberg et al. Jul 2012 B2
8224165 Vinegar et al. Jul 2012 B2
8225866 de Rouffignac Jul 2012 B2
8230927 Fairbanks et al. Jul 2012 B2
8233782 Vinegar et al. Jul 2012 B2
8238730 Sandberg et al. Aug 2012 B2
8240774 Vinegar et al. Aug 2012 B2
8256512 Stanecki Sep 2012 B2
8257112 Tilley Sep 2012 B2
8261832 Ryan Sep 2012 B2
8267185 Ocampos et al. Sep 2012 B2
8276661 Costello et al. Oct 2012 B2
8281861 Nguyen et al. Oct 2012 B2
8327932 Karanikas Dec 2012 B2
8353347 Mason Jan 2013 B2
8355623 Vinegar et al. Jan 2013 B2
8434555 Bos et al. May 2013 B2
8450540 Roes et al. May 2013 B2
8459359 Vinegar Jun 2013 B2
8485252 de Rouffignac et al. Jul 2013 B2
8485256 Bass et al. Jul 2013 B2
8485847 Tilley Jul 2013 B2
8502120 Bass et al. Aug 2013 B2
8536497 Kim Sep 2013 B2
8555971 Vinegar et al. Oct 2013 B2
8606091 John et al. Dec 2013 B2
8627887 Vinegar et al. Jan 2014 B2
8631866 Nguyen Jan 2014 B2
8636323 Prince-Wright et al. Jan 2014 B2
8662175 Karanikas et al. Mar 2014 B2
20020027001 Wellington et al. Mar 2002 A1
20020028070 Holen Mar 2002 A1
20020033253 de Rouffignac et al. Mar 2002 A1
20020036089 Vinegar et al. Mar 2002 A1
20020038069 Wellington et al. Mar 2002 A1
20020040779 Wellington et al. Apr 2002 A1
20020040780 Wellington et al. Apr 2002 A1
20020053431 Wellington et al. May 2002 A1
20020076212 Zhang et al. Jun 2002 A1
20030066642 Wellington et al. Apr 2003 A1
20030079877 Wellington et al. May 2003 A1
20030085034 Wellington et al. May 2003 A1
20030146002 Vinegar et al. Aug 2003 A1
20030196789 Wellington et al. Oct 2003 A1
20030201098 Karanikas et al. Oct 2003 A1
20040140096 Sandberg et al. Jul 2004 A1
20040146288 Vinegar et al. Jul 2004 A1
20040163801 Dalrymple et al. Aug 2004 A1
20050006097 Sandberg et al. Jan 2005 A1
20050006128 Mita et al. Jan 2005 A1
20050269313 Vinegar Dec 2005 A1
20060289536 Vinegar et al. Dec 2006 A1
20070045268 Vinegar et al. Mar 2007 A1
20070127897 John et al. Jun 2007 A1
20070131428 Willem Cornelis den Boestert et al. Jun 2007 A1
20070133960 Vinegar et al. Jun 2007 A1
20070173122 Matsuoka Jul 2007 A1
20080073104 Barberree et al. Mar 2008 A1
20080135244 Miller Jun 2008 A1
20080173442 Vinegar et al. Jul 2008 A1
20080217321 Vinegar et al. Sep 2008 A1
20090090158 Davidson et al. Apr 2009 A1
20090095478 Karanikas et al. Apr 2009 A1
20090095479 Karanikas et al. Apr 2009 A1
20090120646 Kim et al. May 2009 A1
20090126929 Vinegar May 2009 A1
20090189617 Burns et al. Jul 2009 A1
20090194269 Vinegar Aug 2009 A1
20090194286 Mason Aug 2009 A1
20090194287 Nguyen et al. Aug 2009 A1
20090194329 Guimerans et al. Aug 2009 A1
20090194333 MacDonald Aug 2009 A1
20090194524 Kim et al. Aug 2009 A1
20090200022 Bravo et al. Aug 2009 A1
20090200023 Costello et al. Aug 2009 A1
20090200031 Miller et al. Aug 2009 A1
20090200290 Cardinal et al. Aug 2009 A1
20090200854 Vinegar Aug 2009 A1
20090260824 Burns et al. Oct 2009 A1
20090272526 Burns et al. Nov 2009 A1
20090272533 Burns et al. Nov 2009 A1
20090272535 Burns et al. Nov 2009 A1
20090272536 Burns et al. Nov 2009 A1
20090272578 MacDonald Nov 2009 A1
20090301724 Roes et al. Dec 2009 A1
20090321417 Burns et al. Dec 2009 A1
20100038112 Grether Feb 2010 A1
20100044781 Tanabe Feb 2010 A1
20100071903 Prince-Wright et al. Mar 2010 A1
20100071904 Burns et al. Mar 2010 A1
20100089584 Burns Apr 2010 A1
20100089586 Stanecki Apr 2010 A1
20100096137 Nguyen et al. Apr 2010 A1
20100101783 Vinegar et al. Apr 2010 A1
20100101784 Vinegar et al. Apr 2010 A1
20100101794 Ryan Apr 2010 A1
20100108310 Fowler et al. May 2010 A1
20100108379 Edbury et al. May 2010 A1
20100147521 Xie et al. Jun 2010 A1
20100147522 Xie et al. Jun 2010 A1
20100155070 Roes et al. Jun 2010 A1
20100190649 Doll et al. Jul 2010 A1
20100206570 Ocampos et al. Aug 2010 A1
20100224368 Mason Sep 2010 A1
20100258265 Karanikas et al. Oct 2010 A1
20100258290 Bass Oct 2010 A1
20100258291 de St. Remey et al. Oct 2010 A1
20100258309 Ayodele et al. Oct 2010 A1
20100288497 Burnham et al. Nov 2010 A1
20110042084 Bos et al. Feb 2011 A1
20110042085 Diehl Feb 2011 A1
20110124223 Tilley et al. May 2011 A1
20110124228 Coles et al. May 2011 A1
20110132661 Harmason et al. Jun 2011 A1
20110134958 Arora et al. Jun 2011 A1
20110247805 De St. Remey et al. Oct 2011 A1
20110247817 Bass et al. Oct 2011 A1
20110247818 Bass et al. Oct 2011 A1
20120018421 Parman et al. Jan 2012 A1
20120084978 Hartford et al. Apr 2012 A1
20120085564 D'Angelo, III et al. Apr 2012 A1
20120090174 Harmason et al. Apr 2012 A1
20120110845 Burns et al. May 2012 A1
20120118634 Coles et al. May 2012 A1
20120193099 Vinegar et al. Aug 2012 A1
20130086803 Noel et al. Apr 2013 A1
20130087327 Nguyen et al. Apr 2013 A1
20130087383 Herrera et al. Apr 2013 A1
20130087551 de St. Remey et al. Apr 2013 A1
Foreign Referenced Citations (11)
Number Date Country
899987 May 1972 CA
1253555 May 1989 CA
1288043 Aug 1991 CA
107927 May 1984 EP
130671 Sep 1985 EP
676543 Jul 1952 GB
1010023 Nov 1965 GB
1204405 Sep 1970 GB
2000340350 Dec 2000 JP
9723924 Jul 1997 WO
0019061 Apr 2000 WO
Non-Patent Literature Citations (36)
Entry
U.S. Patent and Trademark Office, Office Communication for co-pending U.S. Appl. No. 12/576,772; mailed Oct. 31, 2011.
PCT International Search Report and Written Opinion for International Application No. PCT/US2011/031570 mailed Jun. 28, 2011, 6 pages.
McGee et al. “Electrical Heating with Horizontal Wells, The heat Transfer Problem,” International Conference on Horizontal Well Tehcnology, Calgary, Alberta Canada, 1996; 14 pages.
“IEEE Recommended Practice for Electrical Impedance, Induction, and Skin Effect Heating of Pipelines and Vessels,” IEEE Std. 844-200, 2000; 6 pages.
U.S. Patent and Trademark Office, Office Communication for co-pending U.S. Appl. No. 12/901,248; mailed Jan. 17, 2012.
Bosch et al. “Evaluation of Downhole Electric Impedance Heating Systems for Paraffin Control in Oil Wells,” IEEE Transactions on Industrial Applications, 1992, vol. 28; pp. 190-194.
Bosch et al., “Evaluation of Downhole Electric Impedance Heating Systems for Paraffin Control in Oil Wells,” Industry Applications Society 37th Annual Petroleum and Chemical Industry Conference; The Institute of Electrical and Electronics Engineers Inc., Sep. 1990, pp. 223-227.
Rangel-German et al., “Electrical-Heating-Assisted Recovery for Heavy Oil”, pp. 1-43. 2004.
Kovscek, Anthony R., “Reservoir Engineering analysis of Novel Thermal Oil Recovery Techniques applicable to Alaskan North Slope Heavy Oils”, pp. 1-6.
PCT “International Search Report and Written Opinion” for International Application No. PCT/US10/52026, mailed, Dec. 17, 2010, 11 pages.
Swedish shale oil-Production methods in Sweden, Organisation for European Economic Cooperation, 1952, (70 pages).
PCT “International Search Report and Written Opinion” for International Application No. PCT/US10/52022, mailed, Dec. 10, 2010, 8 pages.
PCT “International Search Report and Written Opinion” for International Application No. PCT/US10/52027, mailed, Dec. 13, 2010, 8 pages.
Boggs, “The Case for Frequency Domain PD Testing in the Context of Distribution Cable”, Electrical Insulation Magazine, IEEE, vol. 19, Issue 4, Jul.-Aug. 2003, pp. 13-19.
PCT “International Search Report and Written Opinion” for International Application No. PCT/US2011/031543, mailed, Jun. 24, 2011; 5 pages.
PCT “International Search Report and Written Opinion” for International Application No. PCT/US2011/055213, mailed, Jan. 31, 2012;7 pages.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/106,139; mailed Apr. 10, 2012.
PCT International Search Report for International Application No. PCT/US2011/031565 mailed Jun. 10, 2011, 2 pages.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 11/788,869; mailed May 4, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/576,772; mailed May 1, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/106,065; mailed Jun. 27, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/757,650; mailed Jul. 19, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/757,661; mailed Aug. 27, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/250,346; mailed Sep. 5, 2012.
U.S. Patent and Trademark Office, “Office Communication,” for U.S. Appl. No. 11/113,353 mailed Sep. 20, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/576,772; mailed Dec. 12, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/757,661; mailed Mar. 7, 2013.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 13/083,215; mailed May 8, 2013.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 13/083,225; mailed May 8, 2013.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 13/083,215; mailed Dec. 12, 2013.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 13/083,225; mailed Dec. 13, 2013.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/576,825; mailed Nov. 20, 2012.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 13/268,280; mailed Oct. 16, 2013.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 12/576,815; mailed Dec. 17, 2013.
Japanese Communication for Japanese Patent Application No. 2011-531195, mailed Aug. 13, 2013, 3 pages.
U.S. Patent and Trademark Office, Office Communication for U.S. Appl. No. 13/960,355; mailed Dec. 3, 2013.
Related Publications (1)
Number Date Country
20110247805 A1 Oct 2011 US
Provisional Applications (2)
Number Date Country
61322664 Apr 2010 US
61322513 Apr 2010 US