The present disclosure relates to polymeric materials that can be formed to produce a container, and in particular, polymeric materials that insulate. More particularly, the present disclosure relates to polymer-based formulations that can be formed to produce an insulated non-aromatic polymeric material.
According to the present disclosure, a polymeric material comprises an insulative cellular non-aromatic material.
In illustrative embodiments, the polymeric material includes a polymeric lamination layer and a film layer. In some embodiments, the polymeric-lamination layer is extruded onto the insulative cellular non-aromatic polymeric material. In some embodiments, the polymeric material is formed by an extrusion lamination process.
In some embodiments, the polymeric material comprises a polyethylene. In some embodiments, each of the insulative cellular non-aromatic material, the polymeric-lamination layer, and the film layer comprise polyethylene.
In some embodiments, the polymeric material is used to form a container such as a beverage cup. In some embodiments, the cup gains minimal weight when filled with a cold liquid and subsequently exposed to a humid environment.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
An insulative cup 10 in accordance with the present disclosure comprises an insulative cellular non-aromatic polymeric material 82, a printed film layer 70, and a polymeric-lamination layer 54, as shown in
Insulative cup 10 includes, for example, a body 11 having a sleeve-shaped side wall 18 and a floor 20 as shown in
Multi-layer sheet 80 includes insulative cellular non-aromatic polymeric material 82, polymeric-lamination layer 54, and printed film layer 70, as shown in
Illustratively, multi-layer sheet 80 may be used to form a container. In some embodiments, the container is cup 10, as shown in
Illustratively, multi-layer sheet 80 has a particular thickness. In some embodiments, multi-layer sheet 80 is about 30 mils to about 70 mils thick. The thickness of multi-layer sheet 80 may be one of the following values: about 30 mils, about 32 mils, about 34 mils, about 36 mils, about 38 mils, about 40 mils, about 42 mils, about 44 mils, about 46 mils, about 48 mils, about 50 mils, about 51 mils, about 52 mils, about 53 mils, about 54 mils, about 55 mils, about 56 mils, about 58 mils, about 60 mils, about 62 mils, about 64 mils, about 66 mils, about 68 mils, or about 70 mils thick. The thickness of multi-layer sheet 80 may fall within one of many different ranges. In a first set of ranges, the thickness of multi-layer sheet 80 may be about 30 mils to about 70 mils, about 30 mils to about 60 mils, about 30 mils to about 58 mils, about 30 mils to about 56 mils, or about 30 mils to about 55 mils thick. In a second set of ranges, the thickness of multi-layer sheet 80 may be about 32 mils to about 70 mils, about 38 mils to about 70 mils, about 42 mils to about 70 mils, about 46 mils to about 70 mils, or about 50 mils to about 70 mils thick. In a third set of ranges, the thickness of multi-layer sheet 80 may be about 32 mils to about 68 mils, about 38 mils to about 68 mils, about 38 mils to about 62 mils, about 42 mils to about 62 mils, about 46 mils to about 62 mils, about 46 mils to about 60 mils, about 48 mils to about 60 mils, or about 50 mils to about 60 mils thick. In another exemplary embodiment, multi-layer sheet 80 is about 53 mils thick. In yet another exemplary embodiment, multi-layer sheet 80 is about 54 mils thick.
Illustratively, each of insulative cellular non-aromatic polymeric material 82, polymeric-lamination layer 54, and film layer 56 comprise a polymeric material. The polymeric material for each of insulative cellular non-aromatic polymeric material 82 and polymeric-lamination layer 54 can be made, for example, by extruding a polymeric formulation. It should be understood that many of the ranges described herein for the polymeric formulation apply with equal weight to the extruded polymeric material, except that in some examples the chemical nucleating agent will decompose upon heating. The decomposition of the chemical nucleating agent could cause the relative weight percentages of the remaining components to increase slightly.
As an example, a polymeric formulation for forming insulative cellular non-aromatic polymeric material 82 comprises a base resin blend comprising a high density polyethylene (HDPE), a low density polyethylene (LDPE), or a combination thereof. In some embodiments, the formulation may comprise cell-forming agents including a chemical nucleating agent, a physical blowing agent, or a combination thereof.
In some embodiments, the HDPE may be a homopolymer, a copolymer, an enhanced polyethylene, combinations thereof, or any suitable alternative. One exemplary HDPE described herein is DMDA 8007 by Dow Chemical.
In some embodiments, the LDPE may be a homopolymer. In another embodiment, the LDPE may be a copolymer. One exemplary LDPE described herein is LDPE 621i by Dow Chemical.
Process additives, such as slip agents, antiblock agents, or antistatic agents may be added to the formulations to improve the extrusion process and provide additional properties of multi-layer sheet 80. Colorants in the form of masterbatches may also be added the formulation for each of the layers.
In exemplary embodiments, a polymeric formulation comprises a base resin blend comprising at least two materials. In some embodiments, the base resin blend comprises a first polymer and a second polymer. In some embodiments, the first polymer is a polyethylene. In some embodiments, the second polymer is a polyethylene. In some embodiments, the first polymer is a first polyethylene and the second polymer is a second polyethylene. In one exemplary embodiment, the first polymer is an HDPE. In another exemplary embodiment, the second polymer is an LDPE. In some embodiments, the first polymer is an HDPE and the second polymer is an LDPE.
In some aspects, the amount of the first polymer in the polymeric formulation is generally the same as the amount of the first polymer in the extruded polymeric material. In some embodiments, the first polymer may be at least about 40%, at least about 50%, at least about 60%, or at least about 70% by weight of the formulation. In some embodiments, the first polymer may be about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% by weight of the formulation. In some embodiments, the first polymer may be within a range of about 40% to about 100%, about 40% to about 90%, about 50% to about 90%, about 60% to about 90%, about 60% to about 85%, about 65% to about 85%, about 65% to about 80%, or about 70% to about 80% by weight of the formulation. Illustratively, these ranges apply equally when the first polymer is a polyethylene. Illustratively, these ranges apply equally when the first polymer is an HDPE.
In some aspects, the amount of the second polymer in the polymeric formulation is generally the same as the amount of the second polymer in the extruded polymeric material. In some embodiments, the second polymer may be at least about 5%, at least about 10%, at least about 15%, or at least about 20% by weight of the formulation. In some embodiments, the second polymer may be about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, or about 50% by weight of the formulation. In some embodiments, the second polymer may be within a range of 5% to about 50%, about 5% to about 45%, about 10% to about 45%, about 15% to about 45%, about 15% to about 35%, about 20% to about 35%, or about 20% to about 30% by weight of the formulation. Illustratively, these ranges apply equally when the second polymer is a polyethylene. Illustratively, these ranges apply equally when the second polymer is an LDPE.
In some embodiments, one or more nucleating agents are used to provide and control nucleation sites to promote the formation of cells, bubbles, or voids in the molten resin during the extrusion process. A nucleating agent can be a chemical blowing agent or a physical material that provides sites, i.e., nucleation sites, for cells to form in a molten resin mixture. When a suitable temperature is reached, the nucleating agent enables the formation of gas bubbles that create cells in the molten resin.
Suitable physical nucleating agents have a desirable particle size, aspect ratio, top-cut properties, shape, and surface compatibility. Examples include, but are not limited to, talc, CaCO3, mica, kaolin clay, chitin, aluminosilicates, graphite, cellulose, and mixtures of at least two of the foregoing. The physical nucleating agent may be blended with the polymeric formulation that is introduced into hopper. Alternatively, the physical nucleating agent may be added to the molten resin mixture in an extruder.
As described herein, the polymeric formulation or the polymeric material may comprise a physical nucleating agent or may lack a physical nucleating agent. In some aspects, the amount of the physical nucleating agent in the polymeric formulation is generally the same as the amount of the physical nucleating agent in the polymeric material. In some embodiments, the physical nucleating agent is up to about 0.5%, up to about 0.4%, or up to about 0.3% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of a physical nucleating agent to be one of the following values: about 0.1%, about 0.15%, about 0.2%, about 0.25%, about 0.3%, about 0.35%, about 0.4%, about 0.45%, or about 0.5% by weight of the total formulation of the polymeric formulation. It is also within the scope of the present disclosure for the weight percentage (w/w) of a physical nucleating agent to fall within one of many different ranges. The weight percentage of a physical nucleating agent may fall within one of the following ranges: about 0.1% to about 0.5%, about 0.1% to about 0.4%, about 0.1% to about 0.35%, about 0.15% to about 0.35%, about 0.2% to about 0.35%, or about 0.2% to about 0.3% by weight of the polymeric formulation.
After decomposition, chemical blowing agents form small gas cells, which further serve as nucleation sites for larger cell growth from physical blowing agents or other types thereof. Chemical blowing agents may be endothermic or exothermic. Illustratively, chemical blowing agents may behave as chemical nucleating agents at particular concentrations. An illustrative example of a chemical blowing agent is citric acid or a citric acid-based material. One representative example is Hydrocerol™ CF-40E™ (available from Clariant Corporation), which contains citric acid and a crystal nucleating agent. Another representative example is Hydrocerol™ CF-05E™ (available from Clariant Corporation), which contains citric acid and a crystal nucleating agent. In illustrative embodiments, one or more catalysts or other reactants may be added to accelerate or facilitate the formation of cells. In some embodiments, the chemical blowing agent may be one or more materials selected from the group consisting of azodicarbonamide; azodiisobutyro-nitrile; benzenesulfonyl hydrazide; 4,4-oxybenzene sulfonylsemicarbazide; p-toluene sulfonyl semi-carbazide; barium azodicarboxylate; citric acid; N,N′-dimethyl-N,N′-dinitrosoterephthalamide; trihydrazino triazine; sodium bicarbonate; sodium carbonate; ammonium bicarbonate; ammonium carbonate; ammonium nitrite; N,N′-dinitrosopentamethylene tetramine; azobisisobutylonitrile; azocyclohexylnitrile; azodiaminobenzene; toluene sulfonyl hydrazide; p,p′-oxybis(benzene sulfonyl hydrazide); diphenyl sulfone-3,3′-disulfonyl hydrazide; calcium azide; 4,4′-diphenyl disulfonyl azide; p-toluene sulfonyl azide; and combinations thereof. In some embodiments, the formulation is substantially free of a chemical blowing agent.
The amount of a chemical blowing agent may be one of several different values or fall within one of several different ranges. In some embodiments, the polymeric formulation is substantially free of a chemical blowing agent. In some aspects, the amount of the chemical blowing agent in the polymeric formulation is generally greater than the amount of the chemical blowing agent in the polymeric material due to the decomposition of the chemical blowing agent. It is within the scope of the present disclosure to select an amount of a chemical blowing agent to be one of the following values: about 0.1%, about 0.2%, about 0.3%, about 0.4%, or about 0.5% by weight of the polymeric formulation. It is within the scope of the present disclosure for the amount of a chemical blowing agent in the formulation to fall within one of many different ranges. In a first set of ranges, the range of a chemical blowing agent is one of the following ranges: about 0.1% to about 0.5%, about 0.1% to about 0.4%, about 0.1% to about 0.3%, or about 0.2% to about 0.3% by weight of the polymeric formulation. In one aspect of the present disclosure, where a chemical blowing agent is used, the chemical blowing agent may be introduced into the material formulation that is added to the hopper. In some embodiments, the polymeric formulation may lack a chemical blowing agent.
In exemplary embodiments, physical blowing agents are typically gasses that are introduced as liquids under pressure into the molten resin via a port in the extruder as suggested in
Illustrative physical blowing agents include agents that are gasses. Representative examples of physical blowing agents include, but are not limited to, carbon dioxide, nitrogen, helium, argon, air, water vapor, pentane, butane, other alkane mixtures of the foregoing and the like. In certain exemplary embodiments, a processing aid may be added to the formulation to enhance the solubility of the physical blowing agent. Alternatively, the physical blowing agent may be a hydrofluorocarbon, such as 1,1,1,2-tetrafluoroethane, also known as R134a, a hydrofluoroolefin, such as, but not limited to, 1,3,3,3-tetrafluoropropene, also known as HFO-1234ze, or other haloalkane or haloalkane refrigerant.
One example of a physical blowing agent is carbon dioxide (CO2). The CO2 is pumped as a supercritical fluid into the molten formulation via a port in the extruder. The molten material with the CO2 in suspension then exits the extruder via a die where a pressure drop occurs. As the pressure drop happens, CO2 moves out of suspension toward the nucleation sites where cells grow. Excess gas blows off after extrusion with the remaining gas trapped in the cells formed in the extrudate. Other suitable examples of physical blowing agents include, but are not limited to, nitrogen (N2), helium, argon, air, pentane, butane, or other alkane mixtures of the foregoing and the like.
In illustrative embodiments, a physical blowing agent is introduced into the molten formulation to decrease the density of the formulation. In some embodiments, the physical blowing agent is introduced at a rate of about 10 lbs/hour to about 20 lbs/hour. In some embodiments, the physical blowing agent is added to be about 0.5% to about 3%, about 1% to about 3%, or about 1% to about 2% by weight of the formulation. In illustrative embodiments, the physical blowing agent is added to be about 0.5%, about 1%, about 1.5%, about 2%, about 2.5%, or about 3% by weight of the formulation.
In one aspect of the present disclosure, at least one slip agent may be incorporated into the polymeric formulation to aid in increasing production rates. Slip agent (also known as a process aid) is a term used to describe a general class of materials, which are added to a polymeric formulation and provide surface lubrication to the polymer during and after conversion. Slip agents may also reduce or eliminate die drool. Representative examples of slip agent materials include amides of fats or fatty acids, such as, but not limited to, erucamide and oleamide. In one exemplary aspect, amides from oleyl (single unsaturated C-18) through erucyl (C-22 single unsaturated) may be used. Other representative examples of slip agent materials include low molecular weight amides and fluoroelastomers. Combinations of two or more slip agents can be used. Slip agents may be provided in a master batch pellet form and blended with the resin formulation.
The amount of a slip agent may be one of several different values or fall within one of several different ranges. In some aspects, the amount of slip agent in the polymeric formulation is generally the same as the amount of the slip agent in the polymeric material. It is within the scope of the present disclosure to select an amount of a slip agent to be one of the following values: about 0.1%, about 0.5%, about 1%, about 1.5%, about 2%, about 2.5%, or about 3% by weight of the polymeric formulation. It is within the scope of the present disclosure for the amount of a slip agent in the formulation to fall within one of many different ranges. In some embodiments, the slip agent may be within one of the following ranges about 0.1% to about 3%, about 0.5% to about 3%, about 0.5% to about 2%, or about 0.5% to about 1.5% by weight of the polymeric formulation. In some embodiments, the formulation lacks a slip agent.
One or more additional components and additives optionally may be incorporated, such as, but not limited to, impact modifiers, and colorants (such as, but not limited to, titanium dioxide).
In some embodiments, the polymeric formulation of the insulative cellular non-aromatic material comprises regrind. Illustratively, regrind may be reworked plastic, reprocessed plastic recovered during production of multi-layer sheet 80, or post-consume recycled plastic. Regrind may be formed by recovering the excess material, sometimes called a blank-carrier sheet 94, produced during a blank forming step 150, as shown in
In some embodiments, regrind comprises ink. In some embodiments, the ink is from ink layer 66. In some embodiments, regrind is substantially free of ink. In some embodiments, the regrind may comprise a polypropylene, a polyethylene, a physical nucleating agent, a slip agent, or a combination thereof. In some embodiments, the regrind may comprise at least one polyethylene, a physical nucleating agent, a slip agent, or a combination thereof. Illustratively, regrind is substantially free of an adhesive. In some embodiments, regrind is substantially free of an epoxy. In some embodiments, regrind comprises a polyethylene and BOPP.
It is within the scope of the present disclosure to select an amount of regrind to be up to about 5%, up to about 10%, up to about 15%, up to about 20%, up to about 25%, up to about 30%, up to about 35%, up to about 40%, up to about 45%, up to about 50%, up to about 55%, up to about 60%, up to about 65%, up to about 75%, up to about 85%, or up to about 95% by weight of the polymeric formulation. The percentage by weight of regrind in the polymeric formulation may be about 0%, about 0.5%, about 1%, about 3%, about 4%, about 5%, about 7%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 755, about 80%, about 85%, about 90%, or about 95% by weight of the polymeric formulation. In a first set of ranges, the range of a regrind in the polymeric formulation is one of the following ranges: about 0.5% to about 95%, about 3% to about 95%, about 5% to about 95%, about 10% to about 95%, about 15% to about 95%, about 20% to about 95%, about 25% to about 95%, about 30% to about 40% to about 95%, about 50% to about 95%, about 60% to about 95%, about 75% to about 95%, or about 85% to about 95% by weight of the polymeric formulation. In a second set of ranges, the range of regrind in the polymeric formulation is one of the following ranges: about 0.5% to about 90%, about 0.5% to about 85%, about 0.5% to about 75%, about 0.5% to about 60%, about 0.5% to about 50%, about 0.5% to about 45%, about 0.5% to about 40%, about 0.5% to about 35%, about 0.5% to about 30%, about 0.5% to about 25%, about 0.5% to about 20%, about 0.5% to about 15%, or about 0.5% to about 10% by weight of the polymeric formulation. In a third set of ranges, the range of regrind in the polymeric formulation is one of the following ranges: about 1% to about 90%, about 1% to about 85%, about 1% to about 75%, about 1% to about 50%, about 3% to about 50%, about 3% to about 45%, about 5% to about 45%, about 5% to about 40%, about 5% to about 35%, about 10% to about 40%, about 10% to about 35%, about 10% to about 45%, about 20% to about 45%, about 5% to about 40%, about 5% to about 30%, about 15% to about 30%, or about 30% to about 40% by weight of the polymeric formulation.
In an embodiment, insulative cellular non-aromatic polymeric material 82 is about 30 mils to about 70 mils thick. Insulative cellular non-aromatic polymeric material 82 may be a particular thickness. The thickness of insulative cellular non-aromatic polymeric material 82 may be one of the following values: about 30 mils, about 32 mils, about 34 mils, about 36 mils, about 38 mils, about 40 mils, about 42 mils, about 44 mils, about 46 mils, about 48 mils, about 50 mils, about 51 mils, about 52 mils, about 53 mils, about 54 mils, about 55 mils, about 56 mils, about 58 mils, about 60 mils, about 62 mils, about 64 mils, about 66 mils, about 68 mils, or about 70 mils. The thickness of insulative cellular non-aromatic polymeric material 82 may fall within one of many different ranges.
In a first set of ranges, the thickness of insulative cellular non-aromatic polymeric material 82 is one of the following ranges: about 30 mils to about 70 mils, about 30 mils to about 60 mils, about 30 mils to about 58 mils, about 30 mils to about 56 mils or about 30 mils to about 55 mils. In a second set of ranges, the thickness of insulative cellular non-aromatic polymeric material 82 is one of the following ranges: about 32 mils to about 70 mils, about 38 mils to about 70 mils, about 42 mils to about 70 mils, about 46 mils to about 70 mils, or about 48 mils to about 70 mils. In a third set of ranges, the thickness of insulative cellular non-aromatic polymeric material 82 is one of the following ranges: about 32 mils to about 68 mils, about 38 mils to about 68 mils, about 38 mils to about 62 mils, about 42 mils to about 62 mils, about 46 mils to about 62 mils, about 46 mils to about 60 mils, about 46 mils to about 55 mils, or about 48 mils to about 55 mils. In another exemplary embodiment, insulative cellular non-aromatic polymeric material 82 is about 49 mils thick. In yet another exemplary embodiment, insulative cellular non-aromatic polymeric material 82 is about 50 mils thick.
In an embodiment, insulative cellular non-aromatic polymeric material 82 has a density between about 0.13 g/cm3 and about 0.25 g/cm3. Insulative cellular non-aromatic polymeric material 82 may be a particular density. The density of insulative cellular non-aromatic polymeric material 82 may be one of the following values: about 0.13 g/cm3, about 0.14 g/cm3, about 0.15 g/cm3, about 0.16 g/cm3, about 0.17 g/cm3, about 0.18 g/cm3, about 0.19 g/cm3, about 0.2 g/cm3, about 0.21 g/cm3, or about 0.22 g/cm3. The density of insulative cellular non-aromatic polymeric material 82 may fall within one of many different ranges. In first set of ranges, the density of insulative cellular non-aromatic polymeric material 82 is one of the following ranges: about 0.13 g/cm3 to about 0.22 g/cm3, about 0.14 g/cm3 to about 0.2 g/cm3, about 0.15 g/cm3 to about 0.2 g/cm3, about 0.16 g/cm3 to about 0.2 g/cm3, or about 0.17 g/cm3 to about 0.2 g/cm3. In a second set of ranges, the density of insulative cellular non-aromatic polymeric material 82 is one of the following ranges: about 0.13 g/cm3 to about 0.19 g/cm3, about 0.13 g/cm3 to about 0.18 g/cm3, or about 0.13 g/cm3 to about 0.17 g/cm3. In a third a set of ranges, the density of insulative cellular non-aromatic polymeric material 82 is one of the following ranges: about 0.14 g/cm3 to about 0.22 g/cm3, about 0.15 g/cm3 to about 0.21 g/cm3, about 0.16 g/cm3 to about 0.2 g/cm3, about 0.16 g/cm3 to about 0.19 g/cm3, or about 0.16 g/cm3 to about 0.18 g/cm3.
In some embodiments, insulative cellular non-aromatic polymeric material 82 has a certain percentage of closed cells, sometimes called a closed cell performance. In some illustrative embodiments, a higher percentage of closed cells may indicate improved resistance to wicking and/or improved insulative capabilities. In some embodiments, the percentage of closed cells is up to about 100%. In some embodiments, insulative cellular non-aromatic polymeric material 82 has at least about 75%, at least about 80%, or at least about 85% closed cells. In some embodiments, the percentage of closed cells in insulative cellular non-aromatic polymeric material 82 is about 75%, about 80%, about 83%, about 84%, about 85%, about 86%, about 87%, about 90%, about 95%, about 99%, or about 100%. The percentage of closed cells in insulative cellular non-aromatic polymeric material 82 may fall within one of the following ranges: about 75% to about 100%, about 75% to about 99%, about 75% to about 95%, about 80% to about 95%, or about 80% to about 90%. In some embodiments, insulative cellular non-aromatic polymeric material 82 has a closed cell performance of about 85%, about 89%, or about 91%.
Cell counting is a method to measure the number of cells in a given area of insulative cellular non-aromatic polymeric material 82. The cell density, or cell count, may be one of several different values or fall within one of several different ranges. It is within the scope of the present disclosure for the cell count to be at least about 0.7×106 cells/in3, at least about 1×106 cells/in3, at least about 1.4×106 cells/in3, at least about 1.6×106 cells/in3, or at least about 1.8×106 cells/in3. It is within the scope of the present disclosure for the cell count to be one of the following values: about 0.7×106 cells/in3, about 0.8×106 cells/in3, about 1×106 cells/in3, about 1.2×106 cells/in3, about 1.4×106 cells/in3, about 1.6×106 cells/in3, about 1.7×106 cells/in3, about 1.8×106 cells/in3, about 1.9×106 cells/in3, about 2×106 cells/in3, about 2.1×106 cells/in3, about 2.2×106 cells/in3, about 2.3×106 cells/in3, about 2.4×106 cells/in3, about 2.5×106 cells/in3, about 2.6×106 cells/in3, about 2.7×106 cells/in3, about 2.8×106 cells/in3, about 2.9×106 cells/in3, about 3×106 cells/in3, about 3.1×106 cells/in3, about 3.2×106 cells/in3, or about 3.5×106 cells/in3. It is within the scope of the present disclosure for the cell count to be within one of the following ranges: about 0.7×106 cells/in3 to about 3.5×106 cells/in3, about 1×106 cells/in3 to about 3.5×106 cells/in3, about 1×106 cells/in3 to about 3.2×106 cells/in3, about 1×106 cells/in3 to about 3×106 cells/in3, about 1.2×106 cells/in3 to about 3×106 cells/in3, about 1.2×106 cells/in3 to about 2.8×106 cells/in3, about 1.2×106 cells/in3 to about 2.5×106 cells/in3, and about 1.2×106 cells/in3 to about 2.2×106 cells/in3. It is within the scope of the present disclosure for the cell count to be within one of the following ranges: about 0.8×106 cells/in3 to about 2.5×106 cells/in3, about 0.8×106 cells/in3 to about 2×106 cells/in3, or about 1×106 cells/in3 to about 2×106 cells/in3.
Insulative cellular non-aromatic polymeric material 82 can have a particular aspect ratio as measured in the machine direction or in the transverse direction. In some embodiments, insulative cellular non-aromatic polymeric material 82 has an aspect ratio preferable for forming a cup, as described herein. In some embodiments, the aspect ratio is at least about 1.5 or at least about 2 in either the machine direction or the transverse direction. In some embodiments, the aspect ratio is about 1.5 to about 2.7 about 1.8 to about 2.7, or about 2.3 to about 2.7 in either the machine direction or the transverse direction.
In some illustrative embodiments, polymeric-lamination layer 54 extends between and interconnects film layer 56 and insulative cellular non-aromatic polymeric material 82 as shown in
In some embodiments, polymeric-lamination layer 54 is substantially free of an adhesive. In some embodiments, polymeric-lamination layer 54 is substantially free of an epoxy. In some embodiments, polymeric-lamination layer 54 is substantially free of ink. In some other embodiments, polymeric-lamination layer 54 comprises ink. In some embodiments, polymeric-lamination layer 54 comprises regrind, a polypropylene, a polyethylene, a colorant, or a mixture or combination thereof. In some embodiments, polymeric-lamination layer 54 consists of or consists essentially of regrind. In some embodiments, polymeric-lamination layer 54 consists essentially of regrind and 1, 2, 3 or 4 additives.
Polymeric-lamination layer 54 is formed by extruding a polymeric formulation. Polymeric-lamination layer 54 extends between and interconnects strip 82 of insulative cellular non-aromatic polymeric material and film layer 56 as shown in
In some embodiments, the polymeric formulation for polymeric-lamination layer 54 comprises a polyethylene. Illustratively, the polymeric-lamination layer 54 cooperates with the non-aromatic polymeric material to provide rigidity. In some embodiments, the polyethylene is a polyethylene homopolymer. In some embodiments, the polyethylene homopolymer is DMDA 8007 available from Dow Chemical. In some embodiments, the polymeric formulation for polymeric-lamination layer 65 comprises a blend of HDPE and LDPE. In some embodiments, the HDPE and LDPE are present at a ratio of 1:10 to 1:1 HDPE:LDPE.
It is within the scope of the present disclosure to select an amount of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 to be up to about 40%, up to about 50%, up to about 60%, up to about 70%, up to about 75%, up to about 80%, up to about 85%, up to about 90%, up to about 95% by weight of the polymeric formulation, or up to about 99% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 to be one of the following values: about 10%, about 20%, about 30%, about 40%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99% by weight of the polymeric formulation. It is within the present disclosure for the amount of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 to fall within one of many different ranges. In some embodiments, the polyethylene may be with a range of about 10% to about 100%, about 10% to about 99%, about 25% to about 99%, about 35% to about 99%, about 45% to about 99%, about 50% to about 99%, about 60% to about 99%, about 70% to about 99%, about 70% to about 99%, about 80% to about 99%, about 85% to about 99%, or about 90% to about 95% by weight of the polymeric formulation. In some embodiments, the polymeric formulation is free of polyethylene.
In some embodiments, the polymeric formulation of the polymeric-lamination layer 54 comprises a colorant. The colorant in the polymeric formulation for forming polymeric-lamination layer 54 can be up to about 25%, up to about 20%, up to about 15%, up to about 10%, or up to about 5% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of the colorant of the polymeric formulation for forming polymeric-lamination layer 54 to be one of the following values: about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 20%, or about 25% by weight of the polymeric formulation. It is within the present disclosure for the amount of the colorant of the polymeric formulation for forming polymeric-lamination layer 54 to fall within one of many different ranges. In a set of ranges, the range of the colorant of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 1% to about 25%, about 1% to about 15%, about 3% to about 15%, about 5% to about 15%, or about 5% to about 13% by weight of the polymeric formulation.
In some embodiments, the polymeric formulation for polymeric-lamination layer 54 comprises a polypropylene. In some embodiments, the polypropylene is a polypropylene homopolymer. In some embodiments, the polypropylene is virgin material. In some embodiments, the polypropylene homopolymer is ExxonMobil™ PP3155. In some embodiments, the polypropylene is Flint Hills P9H8M-015. In some embodiments, the melt mass-flow rate at 230° C. as measured using ASTM D1238 for the polypropylene is at least 25 g/10 min, at least 30 g/10 min, or at least 35 g/10 min. In some embodiments, the melt mass-flow rate at 230° C. for the polypropylene is less than 60 g/10 min, less than 50 g/10 min, less than about 45 g/10 min, or less than about 40 g/10 min. In some embodiments, the melt mass-flow rate is in a range of about 25 g/10 min to about 50 g/10 min, about 25 g/10 min to about 40 g/10 min, or about 30 g/10 min to about 40 g/10 min. In some embodiments, the melt mass-flow rate at 230° C. is about 36 g/10 min. In some embodiments, the melt mass-flow rate is in a range of about 25 g/10 min to about 60 g/10 min, about 30 g/10 min to about 60 g/10 min, or about 40 g/10 min to about 60 g/10 min. In some embodiments, the melt mass-flow rate at 230° C. is about 53 g/10 min.
It is within the scope of the present disclosure to select an amount of the polypropylene of the polymeric formulation for forming polymeric-lamination layer 54 to be up to about 40%, up to about 50%, up to about 60%, up to about 70%, up to about 75%, up to about 80%, up to about 85%, up to about 90%, or up to about 95% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of the polypropylene of the polymeric formulation for forming polymeric-lamination layer 54 to be one of the following values: about 10%, about 20%, about 30%, about 40%, about 42%, about 43%, about 44%, about 45%, about 46%, about 47%, about 48%, about 49%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, or about 99% by weight of the polymeric formulation. It is within the present disclosure for the amount of the polypropylene of the polypropylene of the polymeric formulation for forming polymeric-lamination layer 54 to fall within one of many different ranges. In a first set of ranges, the range of first polymer in the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 40% to about 99%, about 60% to about 99%, about 70% to about 99%, about 75% to about 99%, or about 80% to about 99% by weight of the polymeric formulation. In a second set of ranges, the of the polypropylene of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 40% to about 97%, about 40% to about 95%, about 40% to about 92%, about 40% to about 90%, about 40% to about 70%, about 40% to about 60%, or about 40% to about 50%, by weight of the base resin blend. In a third set of ranges, the polypropylene of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 50% to about 99%, about 50% to about 95%, about 60% to about 95%, about 65% to about 95%, about 65% to about 90%, about 70% to about 90%, about 75% to about 90%, or about 75% to about 85% by weight of the polymeric formulation.
In some embodiments, the polymeric formulation for polymeric-lamination layer 54 comprises a polyethylene. In some embodiments, the polyethylene is a low-density polyethylene or a high-density polyethylene. In some embodiments, the low-density polyethylene is Dow™ 4012 low-density polyethylene. In some embodiments, the high-density polyethylene is Dow DMDA 8007 HDPE. In some embodiments, the melt mass-flow rate at 190° C. as measured using ASTM D1238 for the polyethylene is at least 5 g/10 min, at least 10 g/10 min, or at least 12 g/10 min. In some embodiments, the melt mass-flow rate at 190° C. for the polyethylene is less than 30 g/10 min, less than about 25 g/10 min, or less than about 20 g/10 min. In some embodiments, the melt mass-flow rate for the polyethylene is in a range of about 5 g/10 min to about 30 g/10 min, about 5 g/10 min to about 25 g/10 min, or about 5 g/10 min to about 20 g/10 min. In some embodiments, the melt mass-flow rate for the polyethylene at 190° C. is about 12 g/10 min. In some embodiments, the polymeric formulation for polymeric-lamination layer 54 is substantially free of polyethylene.
It is within the scope of the present disclosure to select an amount of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 to be up to about 100%, up to about 98%, up to about 95%, up to about 90%, up to about 80%, up to about 70%, up to about 60%, up to about 50%, up to about 40%, up to about 35%, up to about 30%, up to about 25%, up to about 20%, or up to about 15% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 to be one of the following values: about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 99%, or about 100% by weight of the polymeric formulation. It is within the present disclosure for the amount of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 to fall within one of many different ranges. In a first set of ranges, the range of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 1% to about 100%, about 70% to about 100%, about 80% to about 100%, about 90% to about 100%, or about 90% to about 95% by weight of the polymeric formulation. In another set of ranges, the polyethylene may be about 1% to about 60%, about 3% to about 60%, about 3% to about 60%, about 5% to about 60%, or about 10% to about 60% by weight of the polymeric formulation. In a second set of ranges, the range of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 1% to about 55%, about 1% to about 50%, about 1% to about 40%, about 1% to about 30%, or about 10% to about 20% by weight of the polymeric formulation. In a third set of ranges, the range of the polyethylene of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 2% to about 60%, about 2% to about 50%, about 2 to about 40%, about 2% to about 30%, about 5% to about 30%, about 5% to about 25%, about 10% to about 25%, or about 10% to about 20% by weight of the polymeric formulation.
In some embodiments, the polymeric formulation for forming polymeric-lamination layer 54 comprises a colorant. The colorant in the polymeric formulation for forming polymeric-lamination layer 54 can be up to about 25%, up to about 20%, up to about 15%, up to about 10%, or up to about 5% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of the colorant of the polymeric formulation for forming polymeric-lamination layer 54 to be one of the following values: about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 20%, or about 25% by weight of the polymeric formulation. It is within the present disclosure for the amount of the colorant of the polymeric formulation for forming polymeric-lamination layer 54 to fall within one of many different ranges. In a set of ranges, the range of the colorant of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 1% to about 25%, about 1% to about 15%, about 3% to about 15%, about 3% to about 10%, about 5% to about 15%, or about 5% to about 13% by weight of the polymeric formulation.
In some embodiments, the polymeric formulation comprises regrind as described herein. Regrind may comprise post-consumer recycled products. Regrind may be formed by recovering the excess material, sometimes called a blank-carrier sheet 94, produced during a blank forming step 150, as shown in
In some embodiments, the polymeric formulation for forming polymeric-lamination layer 54 comprises regrind. The regrind in the polymeric formulation for forming polymeric-lamination layer 54 can be up to about 25%, up to about 45%, up to about 60%, up to about 80%, up to about 90%, or up to about 99% by weight of the polymeric formulation. It is within the scope of the present disclosure to select an amount of regrind of the polymeric formulation for forming polymeric-lamination layer 54 to be one of the following values: about 1%, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 41%, about 42%, about 43%, about 44%, about 45%, about 46%, about 47%, about 48%, about 49%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, or about 99% by weight of the polymeric formulation. It is within the present disclosure for the amount of regrind of the polymeric formulation for forming polymeric-lamination layer 54 to fall within one of many different ranges. In a set of ranges, the range of regrind of the polymeric formulation for forming polymeric-lamination layer 54 is one of the following ranges: about 1% to about 99%, about 5% to about 99%, about 5% to about 75%, about 15% to about 75%, about 20% to about 70%, about 25% to about 70%, about 25% to about 60%, about 35% to about 60% or about 35% to about 55% by weight of the polymeric formulation. In another set of ranges, the regrind maybe about 80% to about 100%, about 85% to about 100%, about 85% to about 98%, or about 90% to about 98% by weight of the formulation. In some embodiments, the ratio of regrind and virgin polymeric resin is about 1:1.
In some embodiments, regrind comprises ink. In some embodiments, the ink is from ink layer 66. In some embodiments, regrind is substantially free of ink. In some embodiments, the regrind may comprise polypropylene, polyethylene, a physical nucleating agent, a slip agent, or a combination thereof. In some embodiments, the regrind may comprise at least one polyethylene, a physical nucleating agent, a slip agent, or a combination thereof. Illustratively, regrind is substantially free of an adhesive. In some embodiments, regrind is substantially free of an epoxy. In some embodiments, regrind comprises a polyethylene and BOPP.
In some embodiments, the polymeric formulation for forming polymeric-lamination layer 54 comprises an additive. The additive may improve the processability of the performance of the polymeric-lamination layer. In some embodiments, the additive is present up to about 10% or up to about 5% by weight of the formulation. Illustrative additives include crystallinity modifiers such as Milliken Ultrabalance 1001.
Film layer 56 is laminated onto polymeric-lamination layer 54 as shown in
It is within the scope of the present disclosure for film layer 56 to have a thickness. In some embodiments, the thickness of film layer 56 is up to about 3 mils, up to about 2 mils, or up to about 1.5 mils. In some embodiments, the film layer 56 may be about 0.2 mils, about 0.4 mils, about 0.6 mils, about 0.8 mils, about 0.9 mils, about 1 mil, about 1.1 mils, about 1.2 mils, about 1.4 mils, about 1.6 mils, about 1.8 mils, about 2 mils, about 2.2 mils, about 2.4 mils, about 2.6 mils, about 2.8 mils, or about 3 mils. In some embodiment, the thickness of the film layer 56 fall within a range of about 0.2 mils to about 3 mils, about 0.2 mils to about 2 mils, about 0.2 mils to about 1.8 mils, about 0.4 mils to about 1.8 mils, about 0.6 mils to about 1.8 mils, about 0.6 mils to about 1.6 mils, or about 0.8 mils to about 1.4 mils.
In some embodiments, film layer 56 has been printed on. In some embodiments, the print comprises ink. In some embodiments, the ink is located between film layer 56 and polymeric-lamination layer 54. In some embodiments, the ink is located on an outward surface 106 of multi-layer sheet 80.
In some embodiments, multi-layer sheet 80 may be used to form insulative cup 10 as shown in
Insulative cellular non-aromatic polymeric material 82 is configured in accordance with the present disclosure to provide means for enabling localized plastic deformation in at least one selected region of body 11 (e.g., side wall 18, rolled brim 16, floor mount 17, and a floor-retaining flange 26 included in floor mount 17) to provide (1) a plastically deformed first material segment having a first density in a first portion of the selected region of body 11 and (2) a second material segment having a relatively lower second density in an adjacent second portion of the selected region of body 11 as suggested, for example, in
One aspect of the present disclosure provides a formulation for manufacturing an insulative cellular non-aromatic polymeric material 82. As referred to herein, an insulative cellular non-aromatic polymeric material 82 refers to an extruded structure having cells formed therein and has desirable insulative properties at given thicknesses. Another aspect of the present disclosure provides a polymeric formulation for manufacturing an extruded structure of insulative cellular non-aromatic polymeric material. Still another aspect of the present disclosure provides an extrudate comprising an insulative cellular non-aromatic polymeric material. Yet another aspect of the present disclosure provides a structure of material formed from an insulative cellular non-aromatic polymeric material. A further aspect of the present disclosure provides a container formed from an insulative cellular non-aromatic polymeric material.
Illustratively, each of insulative cellular non-aromatic polymeric material 82, polymeric-lamination layer 54, and film layer 56 comprise a polymeric material. The polymeric material for each of insulative cellular non-aromatic polymeric material 82, polymeric-lamination layer 54, and film layer 56 can be made, for example, by extruding a formulation. It should be understood that many of the ranges described herein for the formulation apply with equal weight to the extruded polymeric material, except that in some examples the chemical nucleating agent will decompose upon heating. The decomposition of the chemical nucleating agent could cause the relative weight percentages of the remaining components to increase slightly.
A cup-manufacturing process 1040 comprising a process for forming an insulative cup 10 having artwork on a skin 70 laminated onto a insulative cellular non-aromatic polymeric material 82 in accordance with the present disclosure is shown, for example, in
Cup-manufacturing process 1040 includes a strip-forming stage 1041, a film-layer forming stage 1042, a film-layer printing stage 1043, a laminating stage 1130, and a cup-forming stage 1170 as shown, for example, in
Insulative cup 10 includes, for example, a body 11 having a sleeve-shaped side wall 18 and a floor 20 as shown in
Insulative cellular non-aromatic polymeric material is configured in accordance with the present disclosure to provide means for enabling localized plastic deformation in at least one selected region of body 11 (e.g., side wall 18, rolled brim 16, floor mount 17, and a floor-retaining flange 26 included in floor mount 17) to provide (1) a plastically deformed first material segment having a first density in a first portion of the selected region of body 11 and (2) a second material segment having a relatively lower second density in an adjacent second portion of the selected region of body 11 as suggested, for example, in
Insulative cup 10 is made of a multi-layer sheet 80 as suggested in
Film layer 56 is formed and provided by film-layer forming stage 1042 as shown in
Film-layer printing stage 1043 uses a printer 1064 to print ink layer 66 on film layer 56 to provide printed film 70 as shown in
Central impression presses use a large-diameter common impression cylinder to carry the web around to each color station. The advantage of such a press is the ease of maintaining proper registration. The use of larger impression cylinders (i.e., up to 83 inches in diameter) has, in the past, led to an increase in press speed, but as drying methods have improved there is no longer a strict correlation between larger impression cylinders and increased speed. In-line presses are a type of multi-color press in which separate color stations are mounted in a horizontal line from front to back. They can handle a wider variety of web widths than can stack presses, and can also make use of turning bars to flip the web over, allowing easy reverse printing.
Two examples of the type of in-line, central impression flexographic printing stations which may be used in film-layer printing stage 1043 are the XD and XG series of presses available from the Flexotecnica division of North American Cerutti Corporation in Milwaukee, WI. Standard press widths are available from 32-60 inches (800-1525 mm) wide. Standard repeats are available at 30 (760), 33 (840) and 43(1100) inches (mm). Extra large or Mega models of presses are available up to 83 inches (2100 mm) wide with 75 inch (1900 mm) repeats. Line speeds are available up to 1600 fpm (500 mpm), and they may be equipped with an in-line vision for registration. They may include up to ten color stations.
The highly volatile, fast-drying inks, which may be used in the printing of graphics, are radiation-curing inks that dry or set with the application of ultraviolet light. ultraviolet curing ink vehicles are typically composed of fluid oligomers (i.e., small polymers), monomers (i.e., light-weight molecules that bind together to form polymers), and initiators that, when exposed to ultraviolet radiation, release free radicals (i.e., extremely reactive atoms or molecules that can destabilize other atoms or molecules and start rapid chain reactions) that cause the polymerization of the vehicle, which hardens to a dry ink film containing the pigment.
The most common configuration of ultraviolet curing equipment is a mercury vapor lamp. Within a quartz glass tube containing charged mercury, energy is added, and the mercury is vaporized and ionized. As a result of the vaporization and ionization, the high-energy free-for-all of mercury atoms, ions, and free electrons results in excited states of many of the mercury atoms and ions. As they settle back down to their ground state, radiation is emitted. By controlling the pressure that exists in the lamp, the wavelength of the radiation that is emitted can be somewhat accurately controlled, the goal being to ensure that much of the radiation that is emitted falls in the ultraviolet portion of the spectrum, and at wavelengths that will be effective for ink curing. Ultraviolet radiation with wavelengths of 365 to 366 nanometers provides the proper amount of penetration into the wet ink film to effect drying. Another variation of radiation-curing inks, which may be used in the printing of graphics, are electron-beam curing inks. The formulation of such inks is less expensive than ultraviolet curing inks, but the electronic-beam curing equipment is more expensive.
Printed film 70 is produced by film-layer printing stage 1043 and provided to laminating stage 1130 as shown, for example, in
An insulative cellular non-aromatic polymeric material produced in accordance with the present disclosure can be formed to produce an insulative cup 10 as suggested in
Insulative cellular non-aromatic material is used during cup-manufacturing process 1040 to make insulative cup 2010 as suggested in
Insulative cup 10 is formed using strip 82 of insulative cellular non-aromatic polymeric material in cup-manufacturing process 1040 as shown in
In some illustrative embodiments, polymeric-lamination layer 54 extends between and interconnects film layer 56 and insulative cellular non-aromatic polymeric material 82 as shown in
Strip-forming stage 1041 of cup-manufacturing process 1040 provides strip 82 of insulative cellular non-aromatic polymeric material as shown in
Strip-forming stage 1041 of cup-manufacturing process 1040 provides strip 82 of insulative cellular non-aromatic polymeric material as shown in
In exemplary embodiments, a physical blowing agent may be introduced and mixed into molten resin 122 after molten resin 122 is established. In exemplary embodiments, as discussed further herein, the physical blowing agent may be a gas introduced as a pressurized liquid via a port 115A and mixed with molten resin 122 to form a molten extrusion resin mixture 123, as shown in
Extrusion resin mixture 123 is conveyed by screw 114 into a second extrusion zone included in second extruder 112 as shown in
As an exemplary embodiment shown in
Extrudate means the material that exits an extrusion die. The extrudate material may be in a form such as, but not limited to, a sheet, strip, tube, thread, pellet, granule or other structure that is the result of extrusion of a polymer-based formulation as described herein through an extruder die. For the purposes of illustration only, a sheet will be referred to as a representative extrudate structure that may be formed but is intended to include the structures discussed herein. The extrudate may be further formed into any of a variety of final products, such as, but not limited to, cups, containers, trays, wraps, wound rolls of strips of insulative cellular non-aromatic polymeric material, or the like.
As an example, strip 82 of insulative cellular non-aromatic polymeric material is wound to form a roll of insulative cellular non-aromatic polymeric material and stored for later use either in a cup-forming process. However, it is within the scope of the present disclosure for strip 82 of insulative cellular non-aromatic polymeric material to be used in-line with the cup-forming process.
As shown in
As an example, multi-layer sheet 80 is fed from roll 78 to the cup-forming stage 1170 as suggested in
Body blank forming step 1150 includes a laminated-roll loading step 14511, an optional annealing step 14511a, a compressing step 21512, a cutting step 14513, a collecting scrap step 14514, and an accumulating blanks step 14515 as shown in
An unexpected property of sheet 80 including strip 82 of insulative cellular non-aromatic polymeric material is its ability to form noticeably smooth, crease, and wrinkle free surfaces when bent to form a round article, such as insulative cup 10. Surface 106 is smooth and wrinkle free as is surface 108 as shown in
One possible reason for greater compressibility of an extruded strip with cells having aspect ratio below about 2.5 or about 2 in the direction of cup circumference, such as in the cross direction, could be due to lower stress concentration for cells with a larger radius. Another possible reason may be that the higher aspect ratio of cells might mean a higher slenderness ratio of the cell wall, which is inversely proportional to buckling strength. Folding of the strip into wrinkles in the compression mode could be approximated as buckling of cell walls. For cell walls with a longer length, the slenderness ratio (length to diameter) may be higher. Yet another possible factor in relieving compression stress might be a more favorable polymer chain packing in cell walls in the cross direction allowing polymer chain re-arrangements under compression force. Polymer chains are expected to be preferably oriented and more tightly packed in machine direction 1067.
It has been found during development of the present disclosure that if the circumference of insulative cup 10 is aligned with the machine direction 1067 of strip 82 of insulative cellular non-aromatic polymeric material, deep creases with a depth in excess of about 200 microns are typically formed on surface 108. Unexpectedly, it has been determined that if the circumference of insulative cup 10 is aligned generally perpendicular to machine direction 67, no deep creases are formed on surface 108, indicating that the cross-direction to machine direction 1067 of extruded insulative cellular non-aromatic polymeric material is resistant to compression forces during formation of insulative cup 10. It is believed that this is a result of the orientation of the polymer chains of extruded insulative cellular non-aromatic polymeric material, which are oriented and more tightly packed in machine direction 1067.
As an example, equipment may be arranged such that rolled brim 16 of insulative cup 10 is arranged to be the cross direction during body blank forming step 1150. After sheet 80 is provided, compressing step 14512 compresses portions of sheet 1080 to form a compressed sheet, as shown in
Cup-base forming step 1452 includes a body blanks loading step 14521A, a heating body blank step 14522A, a wrapping body blank step 14523A, a forming body step 14524A, a laminated-roll loading step 14521B, a cutting floor blanks step 14522B, a shaping floor step 14523B, a heating floor step 14524B, a heating body step 14525A, a wrapping body step 14526, and a floor-seam forming step 14527 as shown in
Laminated-roll loading step 14521B loads another laminated roll 76 onto the cup-forming machine to cause laminated sheet 80 to be drawn into the cup-forming machine for processing, as shown in
Cup-base forming step 1452 maintains the thickness T1 of the side wall 18 as compared to a thermoforming process. Rather than heating an insulative cellular non-aromatic polymeric material and working it over a mandrel in the thermoforming process, subjecting portions of the wall of the resulting cup to thinning and potentially reducing the insulative and structural properties thereof, cup-base forming step 1452 is an assembly process that does not require most of the entire side wall 18 to be subjected to melting temperatures. This provides the advantage of maintaining consistency in thickness T1 of side wall 18 and, thereby, consistent and maximized insulating properties as compared to vessels subjected to a deep draw thermoforming process.
Brim-forming step 1453 includes a transferring cup-base step 14531, an optional lubricating top-portion step 14532, heating top-portion step 14533, and rolling top-portion step 14534 as shown in
Cup-packaging stage 1046 includes a leak inspecting step 1461, an accumulating cups step 1462, and a packaging cups step 1463 as shown in
Another embodiment of a strip-forming stage 1300 is shown for example in
An annular die 1312 is used to form a tube of material, as shown in
A gas, such as, but not limited to, carbon dioxide, nitrogen, other relatively inert gas, a mixture of gasses or the like, is introduced into the molten resin mixture to expand the polypropylene and reduce density by forming cells in the molten polypropylene. R134a or other haloalkane refrigerant may be used with the gas.
Other adjustments may be made to ensure a sufficiently small cell size and, thereby, facilitate a smoother surface. In illustrative embodiments, relatively greater amounts of carbon dioxide, nitrogen, other relatively inert gas, a mixture of gasses or the like, may be introduced into the molten resin mixture to expand the polypropylene and further reduce its density by forming smaller cells in the molten polypropylene. Moreover, relatively greater amounts of the chemical nucleating agent may be added to the resin mix. Furthermore, adjustments may be made to the temperature of the cooling can during the extrusion stage. Still further, the tandem extruder arrangement shown in
As discussed above, cup-manufacturing process 1040 is used to form a sheet 80 for use in forming insulative cup 10. Sheet 80 includes a skin 70 laminated to strip 82 of insulative cellular non-aromatic polymeric material as shown in
Another embodiment of sheet 180 in accordance with the present disclosure is shown in
An insulative cup 10 is formed using strip 82 of insulative cellular non-aromatic polymeric material in cup-manufacturing process 1040 as shown in
Body 11 is formed from multi-layer sheet 80 of insulative cellular non-aromatic polymeric material as disclosed herein. In accordance with the present disclosure, multi-layer sheet 80 of insulative cellular non-aromatic polymeric material is configured through application of pressure and heat (though in exemplary embodiments configuration may be without application of heat) to provide means for enabling localized plastic deformation in at least one selected region of body 11 to provide a plastically deformed first sheet segment having a first density located in a first portion of the selected region of body 11 and a second sheet segment having a second density lower than the first density located in an adjacent second portion of the selected region of body 11 without fracturing the sheet of insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in body 11.
A first 101 of the selected regions of body 11 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in sleeve-shaped side wall 18 as suggested in
A second 102 of the selected regions of body 11 in which localized plastic deformation is enabled by multi-layer sheet 80 is in rolled brim 16 included in body 11 as suggested in
A third 103 of the selected regions of body 11 in which localized plastic deformation is enabled by the sheet of insulative cellular non-aromatic polymeric material is in a floor mount included in body 2011 as suggested in
A fourth 104 of the selected regions of body 11 in which localized plastic deformation is enabled by multi-layer sheet 80 is in floor-retaining flange of floor mount 17 as suggested in
The compressibility of multi-layer sheet 80 used to produce insulative cup 10 allows the insulative cellular non-aromatic polymeric material to be prepared for the mechanical assembly of insulative cup 10, without limitations experienced by other non-aromatic polymeric materials. The cellular nature of the material provides insulative characteristics as discussed below, while susceptibility to plastic deformation permits yielding of the material without fracture. The plastic deformation experienced when the insulative cellular non-aromatic polymeric material is subjected to a pressure load is used to form a permanent set in the insulative cellular non-aromatic polymeric material after the pressure load has been removed. In some locations, the locations of the permanent set are positioned to provide a controlled gathering of the sheet of insulative cellular non-aromatic polymeric material.
The plastic deformation may also be used to create fold lines in the sheet to control deformation of the sheet when being worked during the assembly process. When deformation is present, the absence of material in the voids formed by the deformation provides relief to allow the material to be easily folded at the locations of deformation.
Insulative cup 10 of the present disclosure satisfies a long-felt need for a vessel that includes many if not all the features of insulative performance, ready for recyclability, high-quality graphics, chemical resistance, puncture resistance, frangibility resistance, stain resistance, and resistance to leaching undesirable substances into products stored in the interior region of the drink cup as discussed above. Others have failed to provide a vessel that achieves combinations of these features as reflected in the appended claims. This failure is a result of the many features being associated with competitive design choices. As an example, others have created vessels that based on design choices are insulated but suffer from poor puncture resistance, and leech undesirable substances into products stored in the interior region. In comparison, insulative cup 10 overcomes the failures of others by using an insulative cellular non-aromatic polymeric material.
A potential feature of a cup formed of insulative cellular non-aromatic polymeric material according to exemplary embodiments of the present disclosure is that the cup has low material loss.
Another potential feature of a cup formed of the insulative cellular non-aromatic polymeric material according to the present disclosure is that the cup can be placed in and go through a conventional residential or commercial dishwasher cleaning cycle (top rack) without noticeable structural or material breakdown or adverse effect on material properties. This is in comparison to beaded expanded polystyrene cups or containers, which can break down under similar cleaning processes. Accordingly, a cup made according to one aspect of the present disclosure can be cleaned and reused.
Another potential feature of an article formed of the insulative cellular non-aromatic polymeric material according to various aspects of the present disclosure is that the article can be recycled. Recyclable means that a material can be added (such as regrind) back into an extrusion or other formation processes without segregation of components of the material, i.e., an article formed of the material does not have to be manipulated to remove one or more materials or components prior to re-entering the extrusion process. For example, a cup having a printed film layer laminated to the exterior of the cup may be recyclable if one does not need to separate out the film layer prior to the cup being ground into particles. In contrast, a paper-wrapped expanded polystyrene cup may not be recyclable because the polystyrene material could not practicably be used as material in forming an expanded polystyrene cup, even though the cup material may possibly be formed into another product. As a further example, a cup formed from a non-expanded polystyrene material having a layer of non-styrene printed film adhered thereto may be considered non-recyclable because it would require the segregation of the polystyrene cup material from the non-styrene film layer, which would not be desirable to introduce as part of the regrind into the extrusion process.
Recyclability of articles formed from the insulative cellular non-aromatic polymeric material of the present disclosure minimizes the amount of disposable waste created. In comparison, beaded expanded polystyrene cups that break up into beads and thus ordinarily cannot easily be reused in a manufacturing process with the same material from which the article was formed. In addition, paper cups that typically have an extrusion coated plastic layer or a plastic lamination for liquid resistance ordinarily cannot be recycled because the different materials (paper, adhesive, film, plastic) normally cannot be practicably separated in commercial recycling operations.
A potential feature of a cup formed of the insulative cellular non-aromatic polymeric material according to one aspect of the present disclosure is that it possesses unexpected strength as measured by rigidity. Rigidity is a measurement done at room temperature, at an elevated temperature (e.g., by filling the cup with a hot liquid), and a decreased temperature (e.g., by filling the cup with a cold liquid) and measuring the rigidity of the material. The strength of the cup material is important to reduce the potential for the cup being deformed by a user and the lid popping off or the lid or sidewall seal leaking.
A potential feature of a cup formed of the insulative cellular non-aromatic polymeric material according to the present disclosure is that the cup is resistant to puncture, such as by a straw, fork, spoon, fingernail, or the like, as measured by standard impact testing, as described hereinbelow. Test materials demonstrated substantially higher impact resistance when compared to a beaded expanded polystyrene cup. Accordingly, a cup formed one aspect as described herein can reduce the likelihood of puncture and leakage of hot liquid onto a user.
A feature of a cup with a compressed brim and seam formed of the material according to one aspect as described herein is that a greater number of such cups can be nested in a given sleeve length because the seam is thinner and the side wall angle can be minimized (i.e., more approaching 90° with respect to the cup bottom) while providing a sufficient air gap to permit easy de-nesting. Conventionally seam-formed cups having a seam substantially thicker than the side wall requires a greater side wall angle (and air gap) to allow for de-nesting, resulting in fewer cups being able to be nested in a given sleeve length.
A feature of a cup formed of the material according to one aspect of the present disclosure is that the brim may have a cross-section profile of less than about 0.170 inches (4.318 mm) which may be due to localized cell deformation and compression. Such a small profile is more aesthetically pleasing than a larger profile.
A feature of a cup formed of the material according to one aspect of the present disclosure is that the rolled brim diameter can be the same for cups of different volumes, enabling one lid size to be used for different cup sizes, assuming the cup rims outside diameters are the same. As a result, the number of different size lids in inventory and at the point of use may be reduced.
The material formulation may have properties that allow multi-layer sheet 80 to be compressed without fracturing.
The insulative cellular non-aromatic polymeric material of the present disclosure may be formed into a strip, which can be wrapped around other structures. For example, a strip of the material according to one aspect of the present disclosure that can be used as a wrapping material may be formed and wrapped around a pipe, conduit, or other structure to provide improved insulation. The sheet or strip 80 may have a layer of adhesive, such as a pressure sensitive adhesive, applied to one or both faces. The strip may be wound onto a roll. Optionally, the strip may have a release liner associated therewith to make unwinding the strip from the roll easier. The polymer formulation may be adapted to provide the requisite flexibility to form a wrap or windable strip, for example, by using one or more polypropylene or other polyolefin materials that have sufficient flexibility to enable the extruded sheet to be flexible enough to be wound onto a roll. The insulative cellular non-aromatic polymeric material may be formed into a sleeve that can be inserted over a cup to provide additional insulation.
In exemplary embodiments, sheets formed from the insulative cellular non-aromatic polymeric material of the present disclosure may be cut at the die or be flaked and used as a bulk insulator.
The formulation and insulative cellular non-aromatic polymeric material of the present disclosure satisfies a long-felt need for a material that can be formed into an article, such as a cup, that includes many if not all of the features of insulative performance, ready for recyclability, puncture resistance, frangibility resistance, and other features as discussed herein. Others have failed to provide a material that achieves combinations of these features as reflected in the appended claims. This failure is a result of the features being associated with competitive design choices. As an example, others have created materials and structures therefrom that based on design choices are insulated but suffer from poor puncture resistance, inability to effectively be recyclable. In comparison, the formulations and materials disclosed herein overcome the failures of others by using an insulative cellular non-aromatic polymeric material.
The cup may be formed from an extruded sheet of material by any of the extrusion processes suggested in
An insulative cup 2010 in accordance with the present disclosure can be formed during a cup forming process. Localized plastic deformation is provided in accordance with the present disclosure in, for example, four regions 2101, 2102, 2103, and 2104 of a body 2011 of insulative cup 2010 comprising an insulative cellular non-aromatic polymeric material as suggested in
A first embodiment of an insulative cup 2010 having four regions 2101-2104 where localized plastic deformation provides segments of insulative cup 2010 that exhibit higher material density than neighboring segments of insulative cup 2010 in accordance with the present disclosure is shown in
An insulative cup 2010 comprises a body 2011 including a sleeve-shaped side wall 2018 and a floor 2020 coupled to body 2011 to define an interior region 2014 bounded by sleeve-shaped side wall 2018 and floor 2020 as shown, for example, in
Body 2011 is formed from a strip a multi-layer sheet 2080 as disclosed herein. In accordance with the present disclosure, multi-layer sheet 2080 comprises insulative cellular non-aromatic polymeric material 2082 configured (by application of pressure—with or without application of heat) to provide means for enabling localized plastic deformation in at least one selected region (for example, regions 2101-2104) of body 2011 to provide a plastically deformed first material segment having a first density located in a first portion of the selected region of body 2011 and a second material segment having a second density lower than the first density located in an adjacent second portion of the selected region of body 2011 without fracturing the insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in body 2011.
A first region 101 of the selected regions of body 2011 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in sleeve-shaped side wall 2018 as suggested in
A second region 2102 of the selected regions of body 2011 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in a rolled brim 2016 included in body 2011 as suggested in
A third region 2103 of the selected regions of body 2011 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in a floor mount 2017 included in body 2011 as suggested in
A fourth region 2104 of the selected regions of body 2011 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is in floor-retaining flange 2026 of floor mount 2017 as suggested in
Sleeve-shaped side wall 2018 of body 2011 includes a pair of tabs 2514, 2512 that mate to provide side wall 2018 with a frustoconical shape in the illustrative embodiment shown in
Upright fence 2513 of side wall 2018 is C-shaped in a horizontal cross-section and each of upright inner and outer tabs 2514, 2512 has an arcuate shape in a horizontal cross-section as suggested in
Upright fence 2513 of side wall 2018 has an inner surface 2513i bounding a portion of interior region 2014 and an outer surface 25130 facing away from interior region 2014 and surrounding inner surface 2513i of upright fence 2513 as shown, for example, in
Rolled brim 2016 of body 2011 is coupled to an upper end of sleeve-shaped side wall 2018 to lie in spaced-apart relation to floor 2020 and to frame an opening into interior region 2014 as suggested in
Floor mount 2017 of body 2011 is coupled to a lower end of sleeve-shaped side wall 2018 and to floor 2020 to support floor 2020 in a stationary position relative to sleeve-shaped side wall 2018 to form interior region 2014 as suggested in
Floor 2020 of insulative cup 2010 includes a horizontal platform 2021 bounding a portion of interior region 2014 and a platform-support member 2023 coupled to horizontal platform 2021 as shown, for example, in
Platform-support member 2023 of floor 2020 has an annular shape and is arranged to surround floor-retaining flange 2026 and lie in an annular space provided between horizontal platform 2021 and connecting web 2025 as suggested in
Floor-retaining flange 2026 of floor mount 2017 is arranged to lie in a stationary position relative to sleeve-shaped side wall 2018 and coupled to floor 2020 to retain floor 2020 in a stationary position relative to sleeve-shaped side wall 2018 as suggested in
Floor-retaining flange 2026 of floor mount 2017 is ring-shaped and includes an alternating series of upright thick and thin staves arranged to lie in side-to-side relation to one another to extend upwardly toward a downwardly facing underside of horizontal platform 2021. A first 2261 of the upright thick staves is configured to include a right side edge 2261R extending upwardly toward the underside of horizontal platform 2021. A second 2262 of the upright thick staves is configured to include a left side edge 2262L arranged to extend upwardly toward underside of horizontal platform 2021 and lie in spaced-apart confronting relation to right side edge 2261R of the first 2261 of the upright thick staves. A first 2260 of the upright thin staves is arranged to interconnect left and right side edges 2262L, 2261R and cooperate with left and right side edges 2262L, 2261R to define therebetween a vertical channel 2263 opening inwardly into a lower interior region 3264 bounded by horizontal platform 2021 and floor-retaining flange 2026 as suggested in
Floor-retaining flange 2026 of floor mount 2017 has an annular shape and is arranged to surround a vertically extending central axis CA intercepting a center point of horizontal platform 2021 as suggested in
Each first material segment in the insulative cellular non-aromatic polymeric material has a relatively thin first thickness. Each companion second material segment in the insulative cellular non-aromatic polymeric material has a relatively thicker second thickness.
Body 2011 is formed from a sheet 2011S of insulative cellular non-aromatic polymeric material that includes, for example, a strip of insulative cellular non-aromatic polymeric material 2011S1 and a skin 2011S2 coupled to one side of the strip of insulative cellular non-aromatic polymeric material 11S1 as shown in
As an example, a polymeric formulation for forming insulative cellular non-aromatic polymeric material comprises a base resin blend comprising a high density polyethylene (HDPE), a low density polyethylene (LDPE), or a combination thereof. In some embodiments, the formulation may comprise cell-forming agents including a chemical nucleating agent, a physical blowing agent, or a combination thereof.
In some embodiments, the HDPE may be a homopolymer, a copolymer, an enhanced polyethylene, combinations thereof, or any suitable alternative. One exemplary HDPE described herein is DMDA 8007 by Dow Chemical.
In some embodiments, the LDPE may be a homopolymer. In another embodiment, the LDPE may be a copolymer. One exemplary LDPE described herein is LDPE 621i by Dow Chemical.
Process additives, such as slip agents, antiblock agents, or antistatic agents may be added to the formulations to improve the extrusion process and provide additional properties of multi-layer sheet 80. Colorants in the form of masterbatches may also be added the formulation for each of the layers.
An insulative cup 2010 in accordance with one exemplary embodiment of the present disclosure includes a base 2012 formed to include an interior region 2014 and a rolled brim 2016 coupled to base 2012 as shown, for example, in
Side wall 2018 extends between rolled brim 2016 and support structure 2019 as shown in
Referring again to
Support structure 2019 includes a floor-retaining flange 2026 and a connecting web 2025 as shown in
In another embodiment shown in
As shown in
The compressibility of the insulative cellular non-aromatic polymeric material of the multi-layer sheet 2080 used in accordance with the present disclosure to produce insulative cup 2010 allows the insulative cellular non-aromatic polymeric material to be prepared for the mechanical assembly of insulative cup 2010, without limitations experienced by other polymeric materials. The cellular nature of the insulative cellular non-aromatic polymeric material disclosed herein provides insulative characteristics as discussed below, while susceptibility to plastic deformation permits yielding of the insulative cellular non-aromatic polymeric material without fracture. The plastic deformation experienced when multi-layer sheet 2080 is subjected to a pressure load is used to form a permanent set in the insulative cellular non-aromatic polymeric material after the pressure load has been removed. In some locations, the locations of the permanent set are positioned in illustrative embodiments to provide, for example, controlled gathering of the insulative cellular non-aromatic polymeric material.
Plastic deformation may also be used to create fold lines in multi-layer sheet 2080 to control deformation of the material when being worked during a cup assembly process. When deformation is present, the absence of material in the voids formed by the deformation provides relief to allow the material to be folded easily at the locations of deformation. Referring now to
Portion 2602 illustratively includes a structure of cells 2614 that are enclosed by a non-aromatic polymeric material 2624 with the cells 2614 closed to encapsulate a blowing agent comprising a gas such as CO2, for example. When pressure is applied at a location 2616, localized areas 2618, 2620, 2622 of reduced cell size are created as the cells 2614 are reduced in size and the non-aromatic polymeric material 2624 flows to alter the shape of the cells 2614. The flow of non-aromatic polymeric material 2624 results in more non-aromatic polymeric material 2624 being contained within a unit of volume than in undeformed areas such as areas 2626 and 2628, for example. Thus, when a sufficient load is applied, the thickness of the insulative cellular non-aromatic polymeric material is reduced and the density in localized areas is increased.
In some instances, plastic deformation is achieved with a combination of force and heat. Heating the insulative cellular non-aromatic polymeric material may reduce the force necessary to deform the material. Localized heating results in softening that permits plastic flow, at lower forces, to accomplish the desirable permanent set. This permits deformation of the cells to achieve a thinner, denser material in localized areas in the insulative cellular non-aromatic polymeric material.
In one illustrative embodiment, the present disclosure provides a strip 2652 of insulative cellular non-aromatic polymeric material having predominantly closed cells 2614 dispersed in the insulative cellular non-aromatic polymeric material 2624 that exhibits unexpected, desirable physical properties at a given material thickness. Such properties include, for example, insulative properties, strength/rigidity properties, and puncture resistance properties. The illustrative material may be provided in a form such as, for example, an insulative cellular non-aromatic polymeric material sheet, strip, tube, thread, pellet, granule or other structure that is the result of extrusion of a polymer-based formulation, as herein described, through an extruder die. As described herein, multi-layer sheet 2080 comprises a film layer 2056 and polymeric-lamination layer 2054 to establish multi-layer sheet 2080 as well as a variety of final products such as cups or insulative containers, wraps, wound rolls of material, and the like.
In one embodiment shown in
In another embodiment shown in
In illustrative embodiments, an insulative cup is assembled from components that are formed from a material that is insulative. The insulative material includes a cellular non-aromatic polymeric structure that is tough and rigid. The insulative cellular non-aromatic polymeric material is deformable plastically under pressure load such that the material takes a permanent set after the pressure load has been removed to create structural features facilitating the formation of the insulative cup. In some embodiments, orderly gathering of the material when folded or deformed is facilitated by the structure of the insulative cellular non-aromatic material. In illustrative embodiments, the insulative cellular non-aromatic polymeric material is flexible to permit the cup to be used in sub-freezing temperatures without fracturing the material. As used herein, the term non-aromatic polymer refers to a polymer that is devoid of aromatic ring structures (e.g., phenyl groups) in its polymer chain.
Aromatic molecules typically display enhanced hydrophobicity when compared to non-aromatic molecules. As a result, it would be expected that changing from a polystyrene-based insulative cellular polymeric material to a polypropylene-based insulative cellular polymeric material would result in a change in hydrophobicity with a concomitant, but not necessarily predictable or desirable, change in surface adsorption properties of the resulting material. In addition, by virtue of the hydrocarbon chain in polystyrene, wherein alternating carbon centers are attached to phenyl groups, neighboring phenyl groups can engage in so-called pi-stacking, which is a mechanism contributing to the high intramolecular strength of polystyrene and other aromatic polymers. No similar mechanism is available for non-aromatic polymers such as polypropylene. Moreover, notwithstanding similar chemical reactivity and chemical resistance properties of polystyrene and polypropylene, polystyrene can be either thermosetting or thermoplastic when manufactured whereas polypropylene is exclusively thermoplastic. As a result, to the extent that surface adsorption properties, manufacturing options, and strength properties similar to those of polystyrene are sought, likely alternatives to polystyrene-based insulative cellular polymeric materials would be found in another aromatic polymer rather than in a non-aromatic polymer.
In illustrative embodiments, the insulative cellular non-aromatic polymeric material is used as a substrate in a composite sheet that includes a film laminated to the insulative cellular non-aromatic polymeric material. In some embodiments, the film is reverse printed before being laminated to the substrate so that the printing is visible through the film, with the film forming a protective cover over the printing. In some other embodiments, the ink layer 2066 forms outer surface 2106.
In illustrative embodiments, the insulative cellular non-aromatic polymeric material may include one or more polyethylene materials as a base material. The laminated film may also comprise polyethylene so that the entire cup may be ground up and re-used in the same process.
As an example, a polymeric formulation for forming insulative cellular non-aromatic polymeric material 2082 comprises a base resin blend comprising a high density polyethylene (HDPE), a low density polyethylene (LDPE), or a combination thereof. In some embodiments, the formulation may comprise cell-forming agents including a chemical nucleating agent, a physical blowing agent, or a combination thereof.
In some embodiments, the HDPE may be a homopolymer, a copolymer, an enhanced polyethylene, combinations thereof, or any suitable alternative. One exemplary HDPE described herein is DMDA 8007 by Dow Chemical.
In some embodiments, the LDPE may be a homopolymer. In another embodiment, the LDPE may be a copolymer. One exemplary LDPE described herein is LDPE 621i by Dow Chemical.
Process additives, such as slip agents, antiblock agents, or antistatic agents may be added to the formulations to improve the extrusion process and provide additional properties of multi-layer sheet 2080. Colorants in the form of masterbatches may also be added the formulation for each of the layers.
As suggested in
Strip 2082 of insulative cellular non-aromatic polymeric material is used form insulative cup 2010. Insulative cup 2010 includes, for example, body 2011 and floor 2020 as shown in
As shown in
The resultant effect of the formation of depressions 2518 on the insulative cellular non-aromatic polymeric material is shown in
As shown in
In another exemplary embodiment, the side wall is not compressed about the first and second edges. As a result, a thickness T2 may be greater than thickness T1. In one example where compression does not occur, thickness T2 may be about twice thickness T1.
In another exemplary embodiment, just one edge is compressed. Further, in another embodiment, a portion of one or both edges is compressed.
Side wall seam 2034 continues up base 2012 and into rolled brim 2016 as shown in
The compression of first and second edges 2512, 2514 permits brim dimension B2 to match brim dimension B1, regardless of the brim geometry. As will be discussed in further detail below, the shape of the brim may vary from the geometry of brim 2016 in other embodiments. Brim 2016 is configured to serve as both a drinking brim and a sealing brim. As seen in
Alternative embodiments of a rolled brim are disclosed in
A rolled brim 2016B has wall thickness X1 that is reduced and thinned during the brim rolling process that results in a reduction at X2 and a further reduction at X3 as shown in
In still another embodiment, rolled brim 2016C approximates a solid brim with a first wall dimension X1 that is reduced to X2, further reduced at X3, and rolled about itself at X4 and X5 as shown in
Side wall 2018 is formed during cup-manufacturing process 2040 using a body blank 2500 as suggested in
Fold line 2516 has a radius R3 measured between center 2510 and a fold line 2516 and fold line 2516 has a length S3. As shown in
Fold line 2516 shown in
As shown in
Depressions 2518 and fold line 2516 are formed by a die that cuts body blank 2500 from multi-layer sheet 2080, or a strip of printed-insulative cellular non-aromatic polymeric material and is formed to include punches or protrusions that reduce the thickness of the body blank 2500 in particular locations during the cutting process. The cutting and reduction steps could be performed separately as suggested in
As shown in
Referring again to the embodiment of
As one illustrative example of a method of manufacturing, insulative cup 2010 is made in accordance with cup-manufacturing process 2040 as shown in
An unexpected property of multi-layer sheet 2080 including a strip of insulative cellular non-aromatic polymeric material 2082 is its ability to form noticeably smooth, crease and wrinkle free surfaces when bent to form a round article, such as insulative cup 2010. Surface 2106 is smooth and wrinkle free as is surface 2108. The smoothness of the surfaces 2106 and 2108 of the present disclosure is such that the depth of creases or wrinkles naturally occurring when subjected to extension and compression forces during cup-manufacturing process 2040 is less than 100 micron and even less than 5 microns in most instances. At less than 10 microns, the creases or wrinkles are not visible to the naked eye.
Body blank forming step 2150 includes a laminated-roll loading step 24511, an optional annealing step 24511a, a compressing step 24512, a cutting step 24513, a collecting scrap step 24514, and an accumulating blanks step 24515 as shown in
Cup-base forming step 2452 includes a body blanks loading step 24521A, a heating body blank step 24522A, a wrapping body blank step 24523A, a forming side wall step 24524A, a laminated-roll loading step 24521B, a cutting floor blanks step 24522B, a shaping floor step 24523B, a heating floor step 24524B, a heating body step 24525A, a wrapping body step 24526, and a floor-seam forming step 24527 as shown in
Laminated-roll loading step 24521B loads another laminated roll 2076 onto the cup-forming machine to cause laminated sheet 2080 to be drawn into cup-forming machine for processing. Cutting floor blanks step 24522B cuts laminated sheet 2080 to cause floor blank 2090 to be cut from a blank-carrier sheet 2094. Blank-carrier sheet 2094 may then be collected and recycled. Shaping floor step 24523B forms floor 2020 by inserting floor blank 2090 into the mandrel of the cup-forming machine. Heating floor step 24524B applies heat 2096 to floor 2020 at the same time heating body step 24525A applies heat 2096 to side wall 2018. Wrapping body 24526 wraps support structure 2019 around platform-support member 2023 of floor 2020. Floor-seam forming step 24527 compresses floor 2020 and side wall 2018 to establish a floor seam or seal between floor 2020 and side wall 2018 to establish base 2012 which is then ready for brim-forming step 2453 as shown in
The cup-base forming step 2452 advantageously maintains the thickness T1 of the side wall 2018 as compared to a thermoforming process. Rather than heating an insulative cellular non-aromatic polymeric material and working it over a mandrel in the thermoforming process, subjecting portions of the wall of the resulting cup to thinning and potentially reducing the insulative and structural properties thereof, cup-base forming step 2452 is an assembly process that does not require the entire side wall 2018 to be subjected to melting temperatures. This provides the advantage of maintaining consistency in thickness T1 of side wall 2018 and, thereby, consistent and superior insulating properties as compared to vessels subjected to a deep draw thermoforming process.
Brim-forming step 2453 includes a transferring cup-base step 24531, an optional lubricating top-portion step 24532, heating top-portion step 24533, and rolling top-portion step 24534 as shown in
Cup-packaging stage 2046 includes a leak inspecting step 2461, an accumulating cups step 2462, and a packaging cups step 2463 as shown in
While the ability of insulative cellular non-aromatic polymeric material of the present disclosure to be subjected to plastic deformation under exposure to pressure loads (with or without application of heat) such that the material takes a permanent set has been discussed above, another embodiment of a body blank 2800 is shown in
In another embodiment, a body blank 2820 includes reduced areas 2822 and 2824 along the linear sides 2826 and 2828 of the body blank 2820 as shown in
In yet another embodiment, a cup 2830 includes a side wall 2832, which is formed to include a number of ribs 2834 extending from a reduced area 2838 of side wall 2832 as shown in
In still yet another embodiment, a cup 2850 shown in
The embodiments discussed herein may be formed of a raw insulative cellular non-aromatic polymeric material or any variation of composites using the insulative cellular non-aromatic polymer material as disclosed herein. This includes embodiments that laminate one or both sides with a polymeric film.
In another exemplary embodiment of a cup-forming process, the cup-manufacturing process 2040 described hereinabove is modified by not laminating the film layer to the substrate. As a result, the film layer is entirely omitted and printing may done directly on the insulative cellular non-aromatic polymeric material layer.
The material of the present disclosure may also be formed into a deformable sheet, which can be wrapped around other structures. For example, a sheet of the present material may be formed and wrapped around a pipe, conduit or other structure to provide improved insulation.
A potential feature of an insulative cup formed of insulative cellular non-aromatic polymeric material according to exemplary embodiments of the present disclosure is that the cup has a low material loss.
Another potential feature of an insulative cup formed of insulative cellular non-aromatic polymeric material according to the present disclosure is that the cup can be placed in and go through a conventional residential or commercial dishwasher cleaning cycle (top rack) without noticeable structural or material breakdown or adverse effect on material properties. This is in comparison to beaded expanded polystyrene cups or containers, which can break down under similar cleaning processes. Accordingly, a cup made according to one aspect of the present disclosure can be cleaned and reused.
Another potential feature of an insulative cup formed of insulative cellular non-aromatic polymeric material according to various aspects of the present disclosure is that the insulative cup and scrap material can be recycled. Recyclable means that a material can be added (such as regrind) back into an extrusion or other formation processes without segregation of components of the material. As an example, an insulative cup formed the insulative cellular non-aromatic polymeric material does not have to be manipulated to remove one or more materials or components prior to re-entering the extrusion process.
In another example, an insulative cup formed from a sheet including a printed film skin laminated to an exterior of an insulative cellular non-aromatic polymeric material may be recyclable if one does not need to separate out the film layer prior to the insulative cup being ground into particles. In contrast, a paper-wrapped expanded polystyrene cup may not be recyclable because the polystyrene material could not practicably be used as material in forming an expanded polystyrene cup, even though the cup material may possibly be formed into another product.
As a further example, an insulative cup formed from a non-expanded polystyrene material having a layer of printed film adhered using an adhesive thereto may be considered non-recyclable because it would require the segregation of the film layer, which would not be desirable to introduce as part of the regrind into the extrusion process. Recyclability of articles formed using the insulative cellular non-aromatic polymeric material of the present disclosure minimizes the amount of disposable waste created. In comparison, beaded expanded polystyrene cups that break up into beads and thus ordinarily cannot be reused easily in a manufacturing process with the same material from which the article was formed. In addition, paper cups that typically have an extrusion coated plastic layer or a plastic lamination for liquid resistance ordinarily cannot be recycled because the different materials (paper, adhesive, film, plastic) normally cannot be practicably separated in commercial recycling operations.
A potential feature of an insulative cup formed of insulative cellular non-aromatic polymeric material according to one aspect (a non-laminate process) of the present disclosure is that the outside (or inside or both) wall surface of the insulative cellular polyethylene sheet (prior to being formed into an insulative cup, or during cup formation, depending on the manufacturing process employed) can accept printing of high-resolution graphics. In contrast, beaded expanded polystyrene cups have a surface which typically is not smooth enough to accept printing other than low-resolution graphics. Like beaded expanded polystyrene cups, uncoated paper cups also typically do not have a smooth enough surface for such high-resolution graphics. Paper cups have difficulty reaching insulation levels and require a designed air gap incorporated into or associated with the paper cup to achieve insulation. Such designed air gap may be provided by a sleeve slid onto and over a portion of the paper cup.
A potential feature of an insulative cup formed of insulative cellular non-aromatic polymeric material according to one aspect of the present disclosure is that it possesses unexpected strength as measured by rigidity and in particular rigidity at ambient temperature. Rigidity can be measured at elevated temperature (e.g., by filling the cup with a hot liquid), room temperature (e.g., by filling the cup with a room temperature liquid), or at a cool temperature (e.g., by filling the cup with a cold liquid). done at room temperature and at an elevated temperature and measuring the rigidity of the material. The strength of the cup material is important to minimize deformation of the cup as the cup is being handled by a user.
In some embodiments, cup 2010 sheet has a particular rigidity at ambient temperature when unfilled and unlidded. In some embodiments, cup 2010 has an ambient temperature rigidity of at least about 200 gf or at least 220 gf. In some embodiments, cup 2010 has a rigidity at ambient temperature of about 200 gf, about 210 gf, about 220 gf, about 230 gf, about 240 gf, about 250 gf, about 260 gf, about 275 gf, about 300 gf, about 325 gf, about 350 gf, about 375 gf, about 400 gf, about 425 gf, about 450 gf, about 475 gf, or about 500 gf. In some embodiments, the ambient temperature rigidity is within a range of about 200 gf to about 500 gf, about 200 gf to about 500 gf, about 200 gf to about 400 gf, or about 200 gf to about 300 gf. In a second set of ranges, the ambient temperature rigidity is about 200 gf to about 350 gf, about 220 gf to about 350 gf, about 240 gf to about 300 gf, or about 260 gf to about 300 gf.
When filled with a cold liquid, cup 2010 may minimize the amount of condensation formed on the outside of the cup. In some embodiments, the condensation gain percentage measured at 70° F./80% relative humidity for 30 minutes for an ice and soda filled cup 2010 is less than about 0.8%, less than about 0.6%, or less than about 0.5% by weight of the filled cup. The condensation weight gain may be about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5%, about 0.6%, or about 0.8% of the filled cup.
A potential feature of an insulative cup formed of insulative cellular non-aromatic polymeric material according to the present disclosure is that insulative cup is resistant to puncture, such as by a straw, fork, spoon, fingernail, or the like, as measured by standard impact testing, as described below. Test materials demonstrated substantially higher impact resistance when compared to a beaded expanded polystyrene cup. As a result, an insulative cup in accordance with the present disclosure may minimize the likelihood of puncture and leakage of liquid.
Insulative cup 2010 of the present disclosure satisfies a long-felt need for a vessel that includes many if not all the features of insulative performance, ready for recyclability, high-quality graphics, chemical resistance, puncture resistance, frangibility resistance, stain resistance, and resistance to leaching undesirable substances into products stored in the interior region of the drink cup as discussed above. Others have failed to provide a vessel that achieves combinations of these features as reflected in the appended claims. This failure is a result of the many features being associated with competitive design choices. As an example, others have created vessels that based on design choices are insulated but suffer from poor puncture resistance and leech undesirable substances into products stored in the interior region. In comparison, insulative cup 2010 overcomes the failures of others by using an insulative cellular non-aromatic polymeric material.
A formulation comprised a base resin blend comprising DMDA 8007 HDPE available from Dow Chemical and 621i LDPE available from Dow Chemical. The base resin blend was combined with: Hydrocerol™ CF-40E™ as a chemical nucleating agent, HT60000 talc, available from Heritage Plastics, as a physical nucleating agent, and Ampacet 102823 as process aid. CO2 was the physical blowing agent. Percentages were about:
75%
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. CO2 was added to the molten resin mixture to expand the resin and reduce density. The formed mixture was extruded through a die head into a 0.05 inches thick strip.
A polymeric-lamination layer comprised Dow DMDA 8007 as a base resin. The base resin was blended with Ampacet J11 as the colorant.
Percentages by weight were:
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. The molten mixture was extruded onto the extruded insulative cellular non-aromatic polymeric material described above to form a co-extruded sheet.
A 1 mil film comprising Dow Elite 5960G was coupled to the extruded polymeric-lamination layer of the co-extruded sheet to form a multi-layer sheet. Blanks were cut from the multi-layer sheet and used to form cups in accordance with the present disclosure.
The extrusion laminated material from Example 1 was tested for density, closed cell count, rigidity, and condensation.
50%
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. CO2 (1.2 wt % of the formulation) was added to the molten resin mixture to expand the resin and reduce density. The formed mixture was extruded through a die head into a 0.05 inches thick strip.
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. The molten mixture was extruded onto the extruded insulative cellular non-aromatic polymeric material described above to form a co-extruded sheet. A 1 mil film comprising Dow Elite 5960G was coupled to the extruded polymeric-lamination layer of the co-extruded sheet to form a multi-layer sheet.
The extrusion laminated material was tested for density, closed cell count, and aspect ratio.
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. CO2 (1.2 wt % of the formulation) was added to the molten resin mixture to expand the resin and reduce density. The formed mixture was extruded through a die head into a 0.05 inches thick strip.
A 1-mil polymeric-lamination layer of Dow DMDA 8007 HDPE was extruded onto the extruded insulative cellular non-aromatic polymeric material described above to form a co-extruded sheet. A 1 mil film comprising Dow Elite 5960G was coupled to the extruded polymeric-lamination layer of the co-extruded sheet to form a multi-layer sheet.
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. CO2 (1.2 wt % of the formulation) was added to the molten resin mixture to expand the resin and reduce density. The formed mixture was extruded through a die head into a 0.05 inches thick strip.
A 1-mil polymeric-lamination layer of Dow DMDA 8007 HDPE was extruded onto the extruded insulative cellular non-aromatic polymeric material described above to form a co-extruded sheet. A 1 mil film comprising Dow Elite 5960G was coupled to the extruded polymeric-lamination layer of the co-extruded sheet to form a multi-layer sheet.
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. CO2 (1.2 wt % of the formulation) was added to the molten resin mixture to expand the resin and reduce density. The formed mixture was extruded through a die head into a 0.05 inches thick strip.
A 0.75 mil polymeric-lamination layer of Dow DMDA 8007 HDPE was extruded onto the extruded insulative cellular non-aromatic polymeric material described above to form a co-extruded sheet. A 1 mil film comprising Dow Elite 5960G was coupled to the extruded polymeric-lamination layer of the co-extruded sheet to form a multi-layer sheet.
The multi-layer sheets from Examples 4-6 were formed into cups and evaluated compared to a PP-foam cup. Each cup was be tested with 220 g ice then filled the remainder up to ¼″ of brim with soda conditioned at 73° F. The cups were lidded and straws placed into the cups. Each cup (and dish that holds cup) was be weighed (to the nearest mg) prior to placement in the environmental chamber. The cups were tested at 70° F./80% RH for 30 minutes. After the 30 minutes, the cups were be weighed again (to the nearest mg). The percent weight gain was tabulated. Results are shown below.
The formulation was added to an extruder hopper. The extruder heated the formulation to form a molten resin mixture. CO2 (1.1 wt % of the formulation) was added to the molten resin mixture to expand the resin and reduce density. The formed mixture was extruded through a die head into a strip.
A 1 mil polymeric-lamination layer of 96% polyethylene regrind of the laminate and 4% Milliken Ultrabalance Natural 1001 was extruded onto the extruded insulative cellular non-aromatic polymeric material described above to form a co-extruded sheet. A 1 mil film comprising Dow Elite 5960G was coupled to the extruded polymeric-lamination layer of the co-extruded sheet to form a multi-layer sheet. The multi-layer sheet had the properties shown in Table 4.
A cup was formed out of a multi-layer sheet similar to Example 8. The resulting cup had the properties shown in Table 5.
Although only a number of exemplary embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.
As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint and that the range incorporates the endpoint.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal embodiment. “Such as” is not used in a restrictive sense, but for explanatory purposes.
Disclosed are components that can be used to perform the disclosed methods, equipment, and systems. These and other components are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these components are disclosed while specific reference of each various individual and collective combinations and permutation of these may not be explicitly disclosed, each is specifically contemplated and described herein, for all methods, equipment, and systems. This applies to all aspects of this application including, but not limited to, steps in disclosed methods. Thus, if there are a variety of additional steps that can be performed it is understood that each of these additional steps can be performed with any specific embodiment or combination of embodiments of the disclosed methods.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the scope or spirit of the present disclosure. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice disclosed herein. It is intended that the specification and examples be considered as exemplary only.
It should further be noted that any publications and brochures referred to herein are incorporated by reference in their entirety.
This application is a Continuation of U.S. patent application Ser. No. 17/410,386, filed Aug. 24, 2021, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 63/070,361, filed Aug. 26, 2020, each of which is expressly incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
63070361 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17410386 | Aug 2021 | US |
Child | 18635727 | US |