Insulated metal panel with integrated collector and method for its manufacture

Abstract
An insulated metal building panel (100) with integrated un-glazed solar thermal collectors includes an outer metal skin (102) which provides the finished exterior surface, an insulating core (108) which provides the building insulation, an inner metal skin (104) which provides an interior finished surface, and a plurality of fluid conduits (110) and manifolds (112) between the interior and exterior skins, embedded in the core. The conduits circulate a fluid capable of heat transfer. The panels can also include photovoltaic cells (120) mounted to the outer skin. The panels can yield heat as well as gain heat, and can therefore be used as integral parts of hydronic heating and cooling systems. In different embodiments, the panels are suitable for use as floors, walls, and roofs of buildings. The panels minimize the number of components which must be field-assembled, and can provide a rapidly erected, weather-resistant, building envelope.
Description
BACKGROUND
Prior Art

Most nations are seeking to reduce their dependence on fossil fuels. The reasons include a desire to limit carbon dioxide emissions and other by-products of combustion which have been shown to contribute to global warming, reducing our dependence on foreign oil and the political limitations imposed by that dependence, and realigning the nation's economy to produce sustainable products.


A significant percentage of the nation's energy is consumed in the manufacture of buildings and building components, and a much larger percentage is consumed heating and cooling buildings.


Solar radiation falls uniformly, but not equally accessibly, across most nations. Unsurprisingly, it is most accessible in regions where buildings have high cooling loads, while in regions where it is less accessible due to seasonal weather, it is more precious.


Building cooling consumes a major part of the nation's energy, and is currently accomplished in several ways: building orientation, solar shading, evaporative (swamp) cooling, or in very hot climates, heat-pump units, chillers, refrigeration compressors, condensers, and fan-coil units.


The following is a list of some prior art that appears relevant to solar radiation and building cooling.















Patent or Pub. Nr.
Kind Code
Issue or Pub. Date
Patentee or Applicant







4,051,209
B1
1977 Sep. 27
Tabler


4,010,733
B1
1977 Mar. 08
Moore


4,147,582
B1
1979 Apr. 03
Brollo


4,178,912
B1
1979 Dec. 18
Felter


4,347,093
B1
1982 Aug. 31
Mayo et al.


4,392,008
B1
1983 Jul. 05
Cullis et al.


4,607,132
B1
1986 Aug. 19
Jarnagin


4,743,485
B1
1988 May 10
Ting


5,542,260
B1
1996 Aug. 06
Bourne et al.


5,773,117
B1
1998 Jun. 30
Tognelli


5,931,381
B1
1999 Aug. 03
Fiedrich


6,182,903
B1
2001 Feb. 06
Fiedrich


6,220,523
B1
2001 Apr. 24
Fiedrich


6,270,016
B1
2001 Aug. 07
Fiedrich


6,422,269
B1
2002 Jul. 23
Johansson et al.


6,729,081
B2
2004 May 04
Nath et al.


6,959,736
B2
2005 Nov. 01
Jarvenkyla


7,605,328
B2
2009 Oct. 20
Sager et al.


7,638,353
B2
2009 Dec. 29
Beernink et al.


7,644,736
B2
2010 Jan. 12
Bittenbender et al.


2005/0199234
A1
2005 Sep. 15
Leighton


2006/0070621
A1
2006 Apr. 06
Neumann et al.


2009/0223511
A1
2009 Sep.10
Cox









Panels

Many buildings use insulated sandwich panels that provide three functions when used as a building envelope; an exterior weather-tight surface, thermal insulation, and an interior finished surface.


The panels currently used in building construction are produced in a batch process in which the skins and core are cut to size and bonded together, or the panels are produced in a continuous roll-forming process which consists of; coils of sheet metal fed through corrugating rolls to form top and bottom skins, foam injection equipment to extrude foam between the skins, and a saw at the end to cut the panels to length.


The panels currently used in building construction for floors, walls, and roofs achieve high insulation values. The panels eliminate thermal bridging through framing members typically found in conventional stick-built construction. The panels effectively seal against air infiltration. Insulated metal panels are well-developed technology, and are much less expensive than conventional construction of equivalent thermal performance.


Several types of panel systems are currently available. For example the above patents to Tognelli, Tabler, and Brollo show existing, commercially available insulated panels. Ting shows panels with gas relief channels, and some commercially available panels incorporate electrical conduits, but I have found that the efficiency and advantages of such panels are limited.


Plastic Conduit

Several types of extrudable plastic conduits, such as polyethylene (PE), cross-linked polyethylene (PEX), or polypropylene (PP), are known. For example Johansson, Jarvenkyla, and Bittenbender above show plastic conduit used in hydronic radiant systems (heating or cooling systems that transfer heat by circulating a fluid through a closed system of pipes) to circulate heated or cooled fluid to conditioned spaces within buildings. In some configurations, the conduits are field-installed directly in cementitious flooring, or gypsum floor underlayment. In other configurations, conduits are field-installed into grooves machined into wood or composite subflooring. In still other configurations, conduits are field-attached to the underside of wood subflooring. In yet other configurations, conduits are used to move heated or cooled fluid to wall-mounted radiant convectors. Extrudable plastic conduit is much less expensive and quicker to install than metallic piping.


Hydronic Cooling

There exist several approaches to hydronic heating and cooling. For example, Bourne and Fiedrich's patents above show the use of circulating fluids to cool conditioned spaces.


Solar Thermal Roofing

Many existing solar thermal panels are made as discrete assemblies, designed to be attached independently to building structures. However, several types of roofing systems with integrated collectors have been proposed, for example by Moore, Feller, Mayo, and Leighton. I have found that these roofing and integrated collectors typically have at least some of the following drawbacks: they have collector manifolds which appear very complex and prone to leakage; the fluid conduits may be inaccessible for future maintenance; many parts may be pre-cut, but must be field-assembled in a time-consuming manner; they require complex and expensive manufacturing processes; they do not provide cooling; they are prone to damage from freezing; they do not generate photovoltaic electricity; they are un-insulated; they are unfinished on the interior; they are difficult to install; they may damage the structure to which they are attached.


Photovoltaic Cells

Several types of photovoltaic collectors are currently used in building construction by attaching them directly to metal roofing panels. These are typically flexible, low-cost, thin-film cells, as shown by Beernink and Nath above. Alternatively cells may be printed directly onto a substrate, as shown by Sager. While both approaches are very inexpensive, they produce low wattage per unit area, unlike the relatively high output of well-known flat-plate glazed crystalline photovoltaic collectors.


Photovoltaic cells generate heat as a by-product of electrical generation. Photovoltaic cell efficiency falls off somewhat as temperatures rise. In conventional installations, flat-plate crystalline photovoltaic cells are often elevated above the roof surface to provide cooling air currents, and thin-film cells attached to metal roofing panels often have an air space below the roofing panel for cooling.


With both thin-film and flat-plate crystalline cells, current installations typically leave lengths of inter-connect wiring exposed. In the event of fire during sunny conditions, firefighters or emergency personnel may disconnect a building's main electrical service from the electrical grid. This does not disable the photovoltaic cells, and the exposed wiring can carry a substantial risk of shock to personnel working near the cells, particularly when cutting holes in the roof for smoke evacuation.


Combined Solar Thermal and Photovoltaic

Cullis, Jarnagin, and Cox above show solar collectors that combine both solar thermal and photovoltaic collection. These all suffer from the following drawbacks: the collectors require additional mounting methods to secure them to the building structure. Mounts, conduits, conductors, drains, and other components of the collectors are exposed in an unsightly manner. The collectors appear to be manufactured of extruded aluminum and/or glass which are both high net-embodied-energy (i.e. very energy intensive to manufacture) materials. These collectors generally require complex and expensive manufacturing processes.


SUMMARY

I have discovered a method and apparatus that corrects and eliminates at least some of the shortcomings of the prior art. Fluid conduits and/or photovoltaic cells are incorporated into structural insulated metal panels which can be easily assembled from component parts, or panels can be produced on continuous roll-forming lines, enabling efficient material utilization and very cost-effective production. The panels can be configured both as solar collectors and radiant hydronic heaters. The panels can yield heat as well as gain heat, and can therefore also be used as components of hydronic cooling systems. The supply and return manifolds of the solar thermal panels, and the connections and output wiring of the photovoltaic panels, are elegantly concealed yet accessible for maintenance. The panels can be rapidly erected in the field, providing an early weather-resistant building envelope, and the panels can provide the full building insulation as well as the finished interior and exterior surfaces.





DRAWING FIGURES


FIG. 1 is a perspective view of a roof panel with fluid conduits adjacent to the exterior surface



FIG. 1A is a perspective view of the roof panel ridge detail with fluid conduit manifold



FIG. 1B is a section view of the roof panel ridge detail with fluid conduit manifold and electrical junction box



FIG. 1C is a section view of the roof panel eave detail with fluid conduit manifold



FIG. 2 is a perspective view of a wall panel with fluid conduits adjacent to the interior surface



FIG. 2A is a section view of the wall panel adjacent to a floor panel



FIG. 3 is a perspective view of a floor panel with fluid conduits adjacent to the interior surface





REFERENCE NUMERALS

















100
Roof panel
102
Exterior skin


103
Exterior Corrugations
106
Panel-to-panel joint


104
Interior skin
110
Fluid conduits


108
Insulating core
116
Removable sheet metal


112
Fluid manifold

ridge cap


118
Removable sheet metal
120
Thin-film photovoltaic



eave trim

cell


122
Electrical conductors
124
Electrical junction box


200
Wall panel
202
Exterior skin


204
Interior skin
206
Panel-to-panel joint


208
Insulating core
210
Fluid conduits


214
Fluid manifold
216
Removable lower wall sheet


217
Field-Installed Insulation

metal cover


300
Floor panel
302
Exterior skin


304
Interior skin
306
Panel-to-panel joint


308
Insulating core
310
Fluid conduits


312
Fluid manifold
316
Removable sheet metal


317
Field-installed Insulation

floor cover


318
Cementitious underlayment
320
Underlayment Stop


322
Accessible maintenance chase
324
Structural Floor Members









First Embodiment Description
Roof Panel—FIGS. 1 through 1C


FIG. 1 shows a perspective view of a first embodiment of an insulated metal roof panel that, as will be described, also includes solar-thermal fluid conduits and thin-film photo-voltaic collectors. An insulated metal panel, shown generally at 100, comprises a thin metal exterior skin 102 with longitudinal corrugations, a thin metal interior skin 104, and an insulating core 108. Panel 100 further includes a plurality of fluid conduits 110


Panels like that of FIG. 1 can be produced in several ways: 1) the conduits, cores, and skins can be cut to size and bonded together in a batch process; and 2) existing panel fabrication machines; which include un-coilers to handle coils of sheet metal, corrugating rolls to form top and bottom skins, and foam injection equipment to extrude foam between the skins, can be modified by the addition of spools which carry rolls of plastic conduit and guides which are controllable for position and tension. In operation, the plastic conduit is fed between the top and bottom skins at the same lineal rate as the corrugating rolls feed the skins and at the same rate that the foam expands and consolidates to form the core. The guides position the plastic conduits to achieve good thermal contact to the designated sheet metal skin.



FIG. 1A shows a perspective view of two panels 100, as shown in FIG. 1, joined together at an angle to form the crest or ridge of a roof. The intersection of the two panels forms a chase or cavity for manifold 112 for conveying fluid. A removable, sheet metal ridge cap 116 covers the upper ends of panels 100 and manifold 112.



FIG. 1B is a section view of the roof panel of FIG. 1A showing ridge cap 116 in place over the ends of two panels 100, manifold 112, one of fluid conduits 110, a photovoltaic solar collector 120, and an electrical junction box 124. An electrical conduit 122 conveys current from solar collector 120 to junction box 124. Photovoltaic solar collectors 120 are bonded to the exterior surface of panel 100 running parallel to the panel edge.



FIG. 1C is a section view of an outer edge of the roof panel. The outer edge of the panel forms an cave or overhang. Skins 102 and 104, insulating core 108, conduit 110, and manifold 112. A removable cave trim 118 covers and protects the lower end of panel 100, conduit 110, and manifold 112.


Panels 100 can extend the full length of the roof slope, from cave to ridge. The longitudinal edges fit together with interlocking, weather-tight joints 106 (FIG. 1)


Skins 102 and 104 are preferably made of roll-formed, 0.55 to 0.85 mm thick galvanized steel or galvalume (surface-treated aluminum), although other thicknesses, methods of forming, and materials can be used. Recycled materials can be used, if desired. They can be painted or left bare.


Insulating core 108 is preferably made of CFC-free isocyanurate foam having a density of 2.2 to 2.5 pounds per cubic foot (35.2 to 40.0 kg/m3) density, but other materials such as polyurethane, phenolic, expanded polystyrene (EPS), or extruded polystyrene (XPS), can be used for specific applications; to address high or low temperatures, damp, or insect prone locations. The core can also be fabricated from mineral wool in order to achieve fire-resistive panels. In all configurations, core 108 prevents interior skin 104 from coming in contact with exterior skin 102, thereby preventing thermal bridging or heat transfer through framing members typical in conventional construction.


Fluid conduit 110 is made of extrudable plastic, such as polyethylene (PE), cross-linked polyethylene (PEX) or polypropylene (PP), although other materials can be used. Fluid conduit 110 may be coated with an isolating layer or sleeve to prevent chemical interaction between the conduits and the insulating core.


In a roof-collector configuration, conduit 110 is positioned precisely in the panel fabrication process to contact outer skin 102 such that the contact promotes thermal conduction. Where conduit 110 conflicts with a roof pipe penetration or roof duct penetration, the conduit can be isolated, or blanked-off at manifolds 112.


In the present embodiment, fluid conduits 110 connect to manifolds 112 at the roof ridge. The manifolds and connections are covered by removable sheet metal ridge cap 116. As such, the manifolds and connections are completely concealed, but are accessible for future maintenance. The proximity of ridge manifold 112 and removable sheet metal ridge cap 116 makes it convenient to locate automatic air bleeder valves (not shown used to bleed air from the fluid system) at the high points of the hydronic system at the ridge.


At the lower end, fluid conduits 110 connect to manifolds 112 at the eave. The manifolds and connections are covered by removable sheet metal eave trim 118. As such, the manifolds and connections at this end are also completely concealed, but are accessible for future maintenance.


The panels, conduits, manifolds, and photovoltaic collectors can be incorporated into complete radiant hydronic systems including pumps, valves, heat exchangers, expansion tanks, and monitoring and control equipment by those having ordinary skill in the art.


The arrangement of conduits and manifolds shown readily lends itself to configuration as a “drain-back” system. Drain-back systems are used in extremely cold climates to prevent freezing. In a drain-back system, when the circulation pumps cease pumping, the fluid medium within conduits 110 and manifolds 112 drains by gravity out of the collector into a holding tank. The fluid is replaced by air that does not expand and damage the fluid conduits as a freezing fluid would. Potable water can be used as the circulation fluid, if desired.


In non-drain-back systems, the fluid medium stays in the fluid conduits whether or not it is circulating. Non-drain-back systems in cold climates require anti-freezing agents such as ethylene glycol. In non-drain-back systems there is always a risk of cross-contamination from anti-freezing agents to potable water.


The panels can be incorporated into complete drain-back systems by those having ordinary skill in the art.


First Embodiment Operation
FIGS. 1 through 1C

When panels 100 are exposed to incident solar radiation, the radiation warms exterior skin 102. This heat is transferred by conduction from skin 102, through fluid conduit 110, to a fluid (not shown) circulating within conduit 110 and manifolds 112, thereby warming the fluid. The warmed fluid is then moved elsewhere, typically by a pump (not shown) where its heat is extracted.


Panels 100 are low-temperature collectors. There is no glazing or transparent covering, and the panels do not take advantage of the “greenhouse effect” which would prevent heat collected by the conduits from being re-radiated back into the atmosphere. However, the area available for solar thermal collection can be very large—the entire sun-facing surface of the building. This collects many BTUs but in a relatively narrow band of usable heat. This low-temperature heat can be stored, or used directly to heat the conditioned spaces of the building, or used to pre-heat fluid to a conventional hot-water hydronic boiler, or to pre-heat domestic hot water with or without a heat exchanger.


Under conditions of no insolation (no incident solar radiation, i.e., at night) and/or cool outdoor temperatures, roof panels used as exterior building covering are available to act as radiant surfaces to transfer heat from the circulating fluid to the exterior metal skin Of the panel, thereby cooling the fluid.


This embodiment is midway between solar shading and air conditioning on the gradient of increasing cooling complexity, but it is energy efficient, requiring only fractional horsepower circulation pumps in lieu of fans and compressors.


Under winter conditions, by circulating heated fluid through the conduits, the roof can be used as a radiant surface to melt snow. The photovoltaic solar collectors performance can increase snow is melted and the photovoltaic surface is exposed to the sun.


First Alternative Embodiment Description
Wall Panel—FIGS. 2 and 2A


FIG. 2 shows a perspective view of an alternative embodiment of an insulated panel 200, similar in construction to the previous embodiment. A wall panel 200 is typically installed vertically, and comprises an exterior skin 202 that functions as the exterior finished surface of a wall. An interior skin 204 functions as the interior finished surface of a wall. Skins 202 and 204 are separated by an insulating core 208.


As in the previous embodiment, panels 200 contain fluid-filled conduits 210 that are enclosed in core 208 and held in thermal contact with exterior skin 202.



FIG. 2A shows a sectional view of a wall panel 200 adjacent to a floor panel 300. In a wall configuration, manifolds and various other plumbing connections (not shown) are provided at the top of the wall, and manifolds 214 are provided at the bottom of the wall in a chase, or passageway, under a removable sheet metal cover 216. Insulation 217 is field-installed after manifold 214 is installed, but prior to the installation of cover 216. As such, the manifolds and connections are completely insulated and concealed, but are accessible for future maintenance. Where conduit 110 conflicts with a door, window, or other wall penetration, the conduit can be isolated, or blanked-off at manifolds 112.


Where wall panel 200 is used in a sun-facing location, photovoltaic solar collectors can be bonded to the exterior surface to the panel. The wiring, conductors, or leads from the photovoltaic collectors are installed in the chase or passageway protected by removable sheet metal cover 216.


First Alternative Embodiment Operation
FIGS. 2 and 2A

When wall panels 200 are exposed to insolation, the panels (exterior metal skin 202) transfer the radiant energy to the fluid conduits 210, and thence to the circulating fluid.


Under conditions of no insolation (night) and/or cool (shaded) outdoor temperatures, wall panels used as exterior building covering are available to act as radiant surfaces to transfer heat from the circulating fluid to the exterior metal skin of the panel, thereby cooling the fluid.


Second Alternative Embodiment Description
Floor Panel—FIG. 3


FIG. 3 shows a perspective, sectional view of an alternative embodiment of an insulated panel 300. A floor panel 300 comprises a downward-facing exterior skin 302 and an upward-facing interior skin 304 that are separated by an insulating core 308. The panel construction is as described in the embodiments above, except that in the present configuration, the fluid conduits are positioned precisely during manufacture to contact interior skin 304 such that the contact promotes thermal conduction. An underlayment 318 is installed over the entire floor area. The underlayment can be cementitious, composite, plywood, or particle board. An underlayment stop 320 is placed 10 cm to 20 cm (4″ to 8″) from exterior wall 200 (FIG. 2A), and an accessible maintenance chase 322 thus formed has insulation 317 installed, and is then covered with a removable sheet metal floor cover 316. The underlayment can be exposed, stained, painted, or can be covered with any finish flooring material. Fluid conduits 310 are connected to manifolds 312 in the accessible maintenance chase 322. Floor panels 300 are attached to under-floor structure 324, shown in FIGS. 2A and 3 as steel joists.


Interior skin 304 of the floor panels affords a high degree of protection to the fluid conduits 310 during the course of construction.


Operation of Second Alternative Embodiment
FIG. 3

In this embodiment, circulating fluid transfers heat to fluid conduits 310, which in turn transfer heat to the interior skin 302, which in turn transfers heat to underlayment 318, which becomes a radiant surface to warm the conditioned space.


The technology of radiant hydronic heat is well established in which precise control of the circulating fluid temperature gives precise temperature control of the conditioned space. The large volume of moving air which is typically needed for forced-air furnaces to attain such accurate control is not required. Operationally, fractional-horsepower pumps replace multi-horsepower air handlers. The panels are incorporated into complete radiant hydronic systems including pumps, valves, heat exchangers, expansion tanks, and monitoring and control equipment by those having ordinary skill in the art.


Under conditions of elevated temperatures in the conditioned space, floor panels are available to act as collectors; heat from the underlayment 318 transfers to the interior metal skin 304 of the panel, to the fluid conduits 310, and thence to the circulating fluid. In the floor collector configuration, heat is removed from the floor and transferred to the circulating fluid thereby cooling the floor.


Third Alternative Embodiment Description
Special Skins

In a third embodiment, not shown, the panels are manufactured with stainless steel skins meeting NSF (food handling) standards, or with any metal required for a laboratory service. The skins can be embossed, textured, or coated to meet architectural requirements for color, light reflectance, acoustic absorption, longevity, corrosion resistance, or other architectural application. These floors, walls, ceilings, and roofs are suitable for food service, laboratories, medical facilities, which require high-wear, impervious surfaces and/or frequent cleaning.


Fourth Alternative Embodiment Description
Photovoltaic Panel—FIG. 1B

In Alternative Embodiment 4, a photovoltaic cell 120 is attached to the exterior surface of panels facing towards the sun. Typically, the cells are flexible, thin-film, relatively low watts-per-square-meter, photovoltaic collectors.


The spacing of the longitudinal corrugations (103 in FIG. 1) or projections on the exterior metal skin of the panels may be adjusted to accommodate photovoltaic cells. The cells can be factory or field installed directly to the flats or valleys of the panel.


Alternatively, the photovoltaic cells can be printed (see Sager, supra) directly onto the steel coil stock used to form the exterior metal skins of the panels.


The output conductors or wiring for the photovoltaic cells are located at the upper end of the cells and extend to the ridge. Electrical conduits and junction boxes 124 under the removable sheet metal ridge cap 116 are provided to protect the electrical wiring and personnel. The conduits are then joined to the building electrical system in a concealed, weather-tight manner.


The cells are incorporated into complete solar photovoltaic systems with conduit, conductors, grid-tied or stand-alone inverters, circuit breakers, and monitoring and control devices, by those having ordinary skill in the art.


The longitudinal corrugations in the exterior skins offer some small means of protection from falling objects to the cells, not available to flat-plate, crystalline, photovoltaic cells. Such flat-plate, crystalline, photovoltaic cells often must be elevated above the roof surface to provide for cooling air currents, making them more prone to damage.


Operation of Fourth Alternative Embodiment
FIG. 1B

Under conditions of solar gain, the photovoltaic cells generate electrical current. The electric current generated can be used to charge batteries in an off-grid installation, or to offset purchased electricity in a grid-tied installation. Although the output of thin-film cells is considered low, the area available for the photovoltaic part of this embodiment can be very large, covering the entire sun-facing surface of the building.


Photovoltaic cells generate heat as a by-product of electrical generation. Photovoltaic cell efficiency falls off somewhat as temperatures rise. Placing the solar-thermal fluid conduits appropriately on the inside of the exterior skin may reduce the temperature of the photovoltaic cells placed on the outside of the exterior skin, thereby increasing cell efficiency, and may also increase heat'transfer to the circulating fluid in a synergistic manner.


Because the panels are un-glazed, before temperatures approach the point of damaging the photovoltaic cells, the excess heat merely re-radiates into the atmosphere rather than being trapped by the “greenhouse effect”.


In the event of fire during sunny conditions, firefighters may disconnect a building's main electrical service from the electrical grid. This does not disable the photovoltaic cells, and the substantial risk of shock exists to firefighters working near the cells, particularly cutting holes in the roof for smoke evacuation. This embodiment protects the electrical wiring under removable sheet metal caps and in conduit, and provides additional safety for firefighters.


CONCLUSION, RAMIFICATIONS, AND SCOPE

In all configurations, the panels allow rapid erection, provide finished interior wall and ceiling surfaces, and exterior wall and roof surfaces, and are weather tight, with extremely low invested hours per square foot of semi-skilled labor. All fluid conductor connections can be completed after the panels are in place and weather tight. All fluid conductors can be tested and inspected under pressure, and if necessary repaired, prior to the final covers being installed. With the covers installed, all manifolds, supply and return piping, and conduits and conductors are protected and concealed.


In all embodiments, the panels draw from a number of distinct areas of research and commercial effort: insulated building panel manufacturing, radiant heating systems, solar thermal collectors, solar photovoltaic collectors, and solar panel mounting systems.


These various embodiments adhere to several fundamental tenets: they address the longstanding problems of global warming and carbon emissions, both in terms of low net-embodied-energy in the panels themselves, and in low operating energy over the life of the building in which they are installed; they combine well-understood existing technologies; they are cost-effective; and they are easily and quickly installed without sophisticated expertise or equipment.


While the above descriptions contain many specificities, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presently preferred embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. For example, materials may be substituted, sizes can be changed, shapes can be changed, and work anticipated to occur in a production setting may be better accomplished in the field, and vice versa. Thus the scope should be determined by the appended claims and their legal equivalents, and not by the examples given.

Claims
  • 1. An integrated panel for building construction, comprising: (a) a fabricated metal skin which forms a weather-resistant exterior surface, said exterior skin having a plurality of longitudinal edges which are shaped to facilitate joining with like panels, wherein said edge joints resist water penetration and air infiltration,(b) a fabricated metal skin which forms a finished interior surface, the longitudinal edges of said interior skin being shaped to facilitate joining with like panels,(c) an insulating core between said exterior skin and said interior skins, and(d) a plurality of extruded conduits which can circulate fluid capable of heat transfer, said conduits being located between said exterior skin and said interior skin and placed within said insulating core such that said conduits contact said exterior skin.
  • 2. The panel of claim 1 wherein said metal skins are fabricated of metals suitable for food or laboratory service, or coated to meet other environmental requirements.
  • 3. The panel of claim 1 wherein said metal skins are fabricated of metals or materials suitable for architectural requirements.
  • 4. The panel of claim 1 wherein said core is arranged to meet at least one environmental requirement selected from the group consisting of dampness, high temperature, low temperature, and fire resistance.
  • 5. The panel of claim 1, further including an isolating layer or sleeve positioned to prevent chemical interaction between said conduits and said insulating core.
  • 6. The panel of claim 1, further including at least one photovoltaic cell bonded to said exterior skin.
  • 7. The panel of claim 6, further including a removable flashing cap for covering and protecting said photovoltaic cell from damage, and personnel from shock hazard.
  • 8. The panel of claim 6 wherein said photovoltaic cell is positioned at a distance from said plurality of said extruded plastic conduits so as to increase the temperature of the circulating fluid and also prevent overheating of said photovoltaic cells.
  • 9. The panel of claim 1, further including a plurality of panels that form building floors, building walls, or building roofs, said panels containing cavities, chases, and accessible covers for the connection and maintenance of said fluid conduits to inlet and outlet manifolds.
  • 10. A method to manufacture integrated panels in a batch process, comprising: (a) providing an exterior fabricated metal skin,(b) providing an interior fabricated metal skin,(c) said exterior and said interior metal skins each further including a plurality of longitudinal edges shaped to join with like panels, and when joined in joints,(d) said edge joints being arranged to resist air and water penetration,(e) said exterior skin comprising a finished exterior surface,(f) said interior skin comprising a finished interior surface,(g), providing a thermally insulating core between said exterior and said interior skins,(h) providing a plurality of plastic conduits in thermal contact with said exterior skin, said conduits joined at their ends with manifolds capable of circulating fluids through said conduits and said manifolds,(i) providing a fluid, whereby when said fluid is pumped through said manifolds and said conduits, said fluid can extract heat from said exterior skin when said exterior skin is hotter than said fluid and said fluid can yield heat to said exterior skin when said exterior skin is cooler than said fluid.
  • 11. The method of claim 10 wherein said conduits are placed between said exterior and said interior skins and embedded within said insulating core during panel assembly.
  • 13. The method of claim 10 wherein said conduits are inserted between said exterior and said interior skins and embedded within said insulating core after panel assembly.
  • 14. The method of claim 10, further including providing an isolation layer or sleeve to prevent chemical interaction between said conduits and said insulating core.
  • 15. The method of claim 10, further including a plurality of panels assembled to form building floors, building walls, or building roofs, with cavities, chases, and accessible covers for the connection and maintenance of said fluid conduits to inlet and outlet manifolds.
  • 16. An apparatus to manufacture integrated panels in a continuous process, comprising: (a) providing an exterior fabricated metal skin,(b) providing an interior fabricated metal skin,(c) said exterior skin and said interior skin, each further including a plurality of longitudinal edges shaped to join with like panels,(d) providing a thermally insulating core between said exterior skin and said interior skin,(e) providing a plurality of plastic conduits in thermal contact with said exterior skin,(f) designed to work in conjunction with existing machines which produce building panels in continuous processes.
  • 17. The apparatus of claim 16, further including a plurality of spools on which coils of plastic conduit are wound, and a plurality of corresponding guides, wherein said spools unroll said conduits through said guides, which embed the conduits into designated areas in said thermally insulating core between said exterior skin and said interior skin at substantially the same lineal rate as the continuous panel process.
  • 18. The apparatus of claim 17, further including a means for enabling the direction and the friction of said guides to be adjustable to control tension and straightness of said conduits, and to control contact between said conduits and said exterior fabricated skin.
  • 19. The apparatus of claim 16, further including an isolation layer or sleeve to prevent chemical interaction between said conduits and said thermally insulating core