1. Field of the Invention
The present invention generally relates to building wall structures and, more particularly, is directed to an insulated poured concrete wall with integral T-beam supports and the method of making same on site.
2. Description of the Prior Art
Concrete walls can be formed in various ways. Some are constructed from concrete blocks on footings, some can be formed by pouring or pumping in uncured concrete between rigid forms, and others can be made from prefabricated members which are becoming very popular. The traditional concrete block method for wall construction involves laying many courses of block, one on top of another, to build a vertical wall wherein each block must be individually placed and surrounded by mortar. This method is both time consuming and labor intensive.
Poured concrete walls have many benefits over other types of concrete walls. They can be quickly constructed, are relatively easy to construct, are versatile, and durable. The poured wall forms are generally planar structures and typically made of wood, aluminum, steel, or a combination of these materials. For poured walls, two series of coplanar wall forms are held in a spaced apart, generally parallel relationship to create the cavity which will form the concrete wall. The wall forms are typically held in the correct spaced apart relationship by a series of retaining (cross) ties extending between the form assemblies. The retaining ties commonly include holes formed in each end whereby pins are used to join adjacent coplanar forms together. Once the wall forms are in place, concrete is poured into the cavity between the forms and, after the concrete has cured, the forms are disassembled for reuse. The protruding ends of the retaining or cross ties are then broken off. One drawback of all concrete walls however, is that they are poor insulators. A typical concrete wall has an insulating “R” value of approximately 1.0.
To improve the insulating qualities of concrete walls, several methods have been developed for incorporating insulation boards, such as polystyrene sheets, within the concrete wall, or, on one or both exterior surfaces of the concrete wall. A concrete wall with 2.5 inches of polystyrene insulation on one side has an insulating “R” value of approximately 13.0; whereas, a concrete wall with 2.5 inches of polystyrene insulation on both exterior surfaces of the wall has an insulating “R” value of approximately 26.0.
One method to provide such an insulated poured concrete wall is set forth in U.S. Pat. No. 4,541,211 wherein an insulation board is sandwiched between two concrete walls. The insulation board is held midway between the pair of spaced apart wall forms by a special retaining clip 36 attached to the mid-portion of the cross-ties that retains the forms together and then concrete is poured into the two vertical void regions defined between the opposite sides of the insulation board and the opposite wall forms. Retainers 54 are used to mechanically connect the insulation board to the concrete wall layers on the opposite sides of the insulation board. In U.S. Pat. No. 5,744,076, insulation panels are provided on either one or both sides of the wall during the concrete pouring process. Elongated F-shape retaining strips that are attached to the form cross-ties are used to position the insulation panel(s) between the spaced apart opposite form walls. A similar method is taught by U.S. Pat. No. 5,987,830 but uses a different insulation retaining clip attached to the form cross ties. U.S. Pat. No. 5,992,114 teaches another method for insulating both sides of the concrete wall wherein spaced apart insulation boards are used for the form walls. In U.S. Pat. No. 6,438,917, the insulation board is provided with a groove along its vertical elongated edge that mates with retaining clips attached to the cross ties so as to position the insulation board(s) within the opposite sides of the forms and against the inner wall surface of one of the forms and/or also against the inner wall surface of the other form to thereby form a wall structure having insulation on both sides of the concrete wall. U.S. Pat. No. 6,634,148 teaches a similar method of making an insulated wall structure during the pouring operation wherein an elongated, notched T-shaped retaining strip which engages the cross-ties is utilized to position the insulation board adjacent one wall of the forms and to hold same in said position as concrete is poured into the cavity between the insulation board and the opposite wall of the form. U.S. Pat. No. 7,059,577 shows yet another method similar to the above prior art teaching wherein an elongated T-shape retainer strip is utilized to retain the insulation board in position against one wall of the form while concrete is poured into the open space between the insulation board and the opposite wall of the forms. The T-shape retainer is attached to the cross ties that connect together the spaced apart forms. US patent No. 2009/0173870 A1 describes a concrete forming apparatus with an outer form and an inner form held upright and in a spaced apart relationship via interconnecting tie rods 18. Between the inner and outer forms is a sheet of insulation 22 that's suspended along the tie rods (either centrally or offset). To stop the insulation from ripping when concrete is poured into the forms, the tie rods are passed through the insulation via a strengthening sleeve 28. Additionally, spacing rods 24 are used to keep the insulation away from the inner and outer forms and the spacing rods pass through strengthening spools 26 located perpendicularly within the insulation. U.S. Pat. No. 7,059,577 B1 patent describes an insulated concrete wall system employing inner and outer forms 12. The inner form abuts insulation panels 14, held into place and anchored to the poured concrete wall via “T” stud 16 which has a front face 26 that is visible in the finished wall and serves as a place for drywall to be anchored. The “T” studs also have an anchoring portion 30 which extends into the concrete wall beyond the insulation panels. The insulation panels, concrete forms and “T” studs are held in position via cross-ties 24 which pass between the insulation panels and through slots in the “T” stud 32. And U.S. Pat. No. 5,409,193 patent shows an apparatus and method for applying insulation to one or both sides of a poured concrete wall at the time the wall is poured. Insulation panels 12 are suspended inside the forms 22 using “F” strips 14 that affix to novel cross-ties 16 which hold the forms upright and spaced. Once the concrete is poured and cured, the cross-ties remain embedded in the body of the concrete, as do the “F” strips which hold the insulation securely against the wall. Each of the above methods includes in one way or another, specialized retainer clips that cooperate with the cross-ties. In addition thereto, each of the above methods produces a wall structure having a given-thickness concrete portion and then the insulation board(s) just adds to this given-thickness.
It is well known in the art, a concrete wall, such as a basement wall must be of a certain thickness, depending upon its vertical height, to support a predetermined load. Generally, the greater the height of the wall, the greater its thickness needed to support a predetermined load. And generally speaking, the thicker the wall, the more concrete is needed and, more concrete usually equates to more and increased costs. The above-described insulated, concrete poured walls inventions were basically directed to increasing the insulation “R” value of the poured wall, but none of them addressed the problem of the amount of concrete utilized in a given wall structure in an attempt to reduce the amount of concrete and thus the cost savings resulting therefrom.
The Zimmerman U.S. Pat. No. 4,570,398 patent, assigned to Superior Walls, introduced a new method for constructing basement walls. The key to the Zimmerman wall was the use of “precast concrete studs” for vertical height and strength. The precast studs were specifically designed to match their anticipated use. For a common residential basement wall, typically, the studs are two inches wide by six inches in depth and eight feet in height. These precast concrete studs are essentially rectangular in cross section but could contain a central narrower web to reduce weight and material cost. Steel reinforcing oriented along the length are cast into the studs to increase their strength, and several holes are formed in the central region to permit subsequent laying of electrical wires or water pipes through the studs within the walls that they form. Additionally, when the studs are cast, a pressure treated wood strip is cast onto one long, narrow edge, the edge that forms the interior basement wall, for easy attachment thereto of drywall or the like. These concrete precast studs are normally manufactured in a building, warehouse or shop and then transported to the basement site for installation. At the site, the studs are set on a base beam and spaced on two foot centers and extend vertically upward eight feet where a top wooden plate connects the concrete vertical studs together. After the stud construction is completed, the exterior walls of the basement are constructed. This begins with the attachment to the exterior of the concrete studs, one or more layers of rigid sheath insulation by pushing the sheath insulation against fasteners protruding from the concrete studs. A layer of wire mesh is then attached over the entire surface outside of the insulation, and then, concrete is sprayed onto the outer surface of the wire mesh at high velocity. The thickness of the sprayed concrete is between one to two inches thick. With the use of the precast concrete studs, the inventor was able to reduce the thickness of the concrete (maximum thickness of 2 inches) of the wall structure and at the same time increase the insulation R value of the wall structure by providing the insulation sheaths. The exterior of the wall structure would appear to be a monolithic smooth surface, whereas, the interior surface of the wall structure is stepped and offset with the plurality of spaced, six inch depth concrete studs projecting inwardly into the basement area from the insulation sheaths.
In a further improvement, rather than constructing the wall structure, with the precast concrete studs, on site, as described in the above '398 patent, Zimmerman utilized the precast concrete stud construction concept to manufacture prefabricated structural wall panels as shown and described in his U.S. Pat. Nos. 4,605,529 and 4,751,803 patents. The prefabricated wall panel is accomplished within an assembly jig which permits the wall panel to be manufactured in a horizontal position, so that conventional concrete delivery trucks can be used as a material source. Basically, in the assembly jig, spaced precast concrete studs with fasteners protruding from one edge are used to build the panel while oriented in a horizontal plane. Rigid sheet insulation is attached to the outside of the concrete studs and wire mesh is laid upon the sheet insulation. Concrete is then poured onto the insulation, the wire mesh and the protruding fasteners to form a continuous water-proof outer surface. Horizontal top and bottom beams are bonded to the concrete studs and are formed at the same time as the outer concrete surface. After setting of the concrete, the wall panel is one integral modular concrete structure which is transported on large trucks to a construction site for erection of several modules together to form the wall structure. Normally, this requires the use of a very large crane since the precast wall panels are extremely heavy. And in U.S. Pat. Nos. 4,934,121 and 5,055,252, Zimmerman describes and defines the method and means for connecting the prefabricated wall panels together at the job site. Basically, the panels are bolted together to form a rigid structure in thus forming an integral wall structure, such as the basement walls of a house. Here again, with the utilization of the precast concrete stud, the thickness of the concrete of the prefabricated panels that make up the final wall structure is considerable less than an equivalent block wall or standard poured wall. Also, we again have the same interior wall profile as in the above described '398 patented structure having a staggered offset profile with the precast concrete studs projecting inwardly further than the insulation panels. And yet another improvement to the Superior Wall prefabricated panels can be seen in U.S. Pat. No. 6,494,004 B1 (ZIMMERMAN) which shows a jig made of insulation panels that form the mold for a prefabricated concrete wall. The mold is assembled via a series of interconnecting foam panels, onto and into which concrete is poured forming the wall with integrated studs and insulation. Each stud is created using a metal channel 12 that holds three pieces of insulation in a “U” configuration, panel 16 at the base of the metal channel with panels 14 extending up along the sides. Suspended on panels 14 are panels 16 which comprise the inside surface of the concrete wall. Panels 14 and 16 are grooved to accept one another and stabilize the form during pouring. The resulting prefabricated wall has a continuous outer concrete surface with integrated studs and insulation comprising the inside of the wall; a stepped configuration.
The “Superior Wall” prefabricated panels have gained considerable market success in recent years and has many advantages and is ideally suited for certain construction projects and now there are several other companies that manufacture, sell, and erect similar such prefabricated panels, such as Titan Walls, Inc., Ideal Precast, and Specialty Precast Company. Some examples of other prior art prefabricated panels can be seen in the following: U.S. Pat. No. 5,313,753 discloses a prefabricated concrete wall 10 which consists of a continuous concrete planar face 12 integrated with studs 14 and adjacent insulation panels 16. The inner face of the studs has channels 20 housing polystyrene strips 50 for receiving drywall screws and the inner profile of the wall is planar. The wall 10 is attached to the footer via “L” brackets 32. U.S. Pat. No. 6,427,406 B1 patent teaches a preformed concrete wall that can be a cavity wall, best seen in
One major disadvantage of using prefabricated panels is that for erection at the site, a large crane is required to lift and move the prefabricated panels into place and generally, these panels are set on a thin layer of compacted, crushed fine gravel which is in direct contrast to the long standing practice used for block and poured wall construction where a “concrete footing” (footer) is required for supporting the wall and the load supported by the wall. Although the prefabricated panel wall construction meets the code requirements in many areas, it is questionable over the long run whether such compacted crush stone base is equivalent to the traditional footer construction, especially in the northern areas of the country where freezing and thawing must be taken into consideration in the construction of such walls. Thus, there is a desire in the marketplace to have an insulated concrete wall structure that is constructed using the poured wall method and which wall structure is supported on a typical well-known footer and which wall structure provides a planar interior wall surface.
The present invention provides an insulated concrete wall structure designed to satisfy the aforementioned need. The wall structure of the present invention is a concrete wall poured onsite in thereby eliminating the need for large cranes and the like at the construction site as required when using prefabricated wall panels. Further, the wall structure of the present invention incorporates the use of concrete T-beam supports which are formed onsite through the use of spaced insulations panels that not only provides an insulated wall structure with a high R value factor, but in addition thereto, the use of the integral concrete T-beam supports require less concrete and thus less costly as compared to standard poured walls having the same load bearing capacity. In the preferred embodiment, the insulated wall structure is formed on a concrete footer and the upright T-beam supports are formed on the footer and the upper ends of the upright T-beam supports are integrally connected together by a concrete box beam formed onsite along with the formation of the upright T-beam supports for unitary construction. Furthermore, upright rebars extend through each of the T-beam supports and are integrally connected to the lower footer and integrally connected to the upper box beam for interconnecting the T-beam supports, the footer and the box beam in a unified structure. And still further, the use of the insulation panels in the present invention not only provides for an insulated wall structure with a high R value, but also serve as the means for forming the unitary T-beam supports and the box beam, and also additionally provides the wall structure with an inner wall completely covered with insulation panels having a relatively smooth planar surface rather than an offset, stepped interrupted surface as is the case when using prefabricated panels.
Accordingly, the present invention is directed to an insulated poured concrete wall structure formed onsite and integrally interconnected to a base, comprising (a) a plurality of concrete upright T-beam supports supported on and spaced along the base; (b) a plurality of insulation panels with each insulation panel being attached to and spanning between adjacent T-beam supports; (c) a horizontal concrete box beam spanning across upper ends of the plurality of insulation panels and across and integrally connected to upper ends of the plurality of upright T-beam supports; and (d) at least one vertically extending rebar passing through at least one of the plurality of upright T-beam supports with the lower end of the rebar projecting into and integrally connected to the base and with the upper end of the rebar projecting into and integrally connected to the box beam whereby the box beam, the plurality of T-beam supports and the base are integrally interconnected to form a unitary rigid wall structure.
More particularly, preferably the base is a concrete poured footer and includes at least one bore hole for accepting the lower end of the rebar for integrally connecting the rebar to the base during the pouring of the uncured concrete. Further, each of the T-beam supports includes a cross-leg and a middle-leg being integral with and perpendicular to the cross-leg and the plurality of middle-legs are equally spaced apart and the plurality of cross-legs are are integral with one another in thereby forming a continuous unitary outer wall of the wall structure. Still further, each of the plurality of insulation panels are rectangular in shape having opposite edge faces and opposite rear and front faces with each insulation panel spanning between adjacent T-beam supports with the opposite edge faces contacting the respective middle-leg of adjacent T-beam supports and with the rear face of each respective insulation panel contacting against the cross-leg formed by the adjacent spaced apart T-beam supports. Additionally, the wall structure includes a vertically extending C-shaped channel attached to an inward face-edge of each of the middle-legs of the plurality of T-beam supports and a second smaller insulation panel is contained within an open face of the C-shaped channel in thereby providing an inward insulation panel wall of the wall structure with a smooth planar surface.
Furthermore, the thickness of the cross-leg and the middle leg of each of the T-beam supports are substantially equal, however, the thickness of the middle-leg can be greater than the thickness of the cross-leg. The depth thickness of each of the insulation panels is at least as thick as the depth thickness of the middle-leg of the T-beam support which is perpendicularly disposed relative to the cross-leg of the T-beam support.
Still further, the present invention is also directed to a method of forming an insulated poured concrete wall structure on-site having integral concrete T-beam supports, comprising the steps of (a) erecting a pair of spaced apart inner and outer forms on a base in defining a wall cavity therebetween for receiving uncured concrete; (b) placing a series of insulation panels having opposite side edges and opposite front and rear faces into the wall cavity and positioning the insulation panels within the wall cavity such that the front face of each insulation panel abuts against an inner face of the inner form and the rear face of each insulation panel is spaced away from an inner face of the outer form in defining an outer wall cavity having a horizontal thickness and such that the respective side edges of adjacent insulation panels are spaced apart in defining a plurality of support wall cavities each being perpendicular to and integral with the outer wall cavity and each having a horizontal thickness at least as thick as the horizontal thickness of the outer wall cavity; and (c) pouring uncured concrete onsite into the outer wall cavity and the plurality of support wall cavities in thereby forming a unitary, insulated wall structure having a plurality of integral T-beam supports. Additionally, the forming method further includes providing a box beam cavity at an upper end portion of the inner and outer forms that extends above and is integral with the outer wall cavity and the support wall cavity for forming a horizontally extending box beam during the pouring of the uncured concrete such that the outer wall, the support wall and the box beam to be formed are structurally interconnected.
More particularly, for structural reinforcement at least one horizontally extending rebar is suspended within the box beam cavity prior to pouring of the uncured concrete. The rebar is supported on horizontal rebar retainers attached to the top edge of each of the series of spaced apart insulation panels. And for structural integrity, a series of aligned spaced apart holes are provided in the base and at least one vertically extending rebar is suspended within at least one of the pluralities of support wall cavities with one end of the rebar being disposed within the box beam cavity and the other end of the rebar is disposed within one of the spaced apart holes provided in the base. Preferably, each of the support wall cavities includes a rebar that has one end projecting into the box beam cavity and the opposite end inserted in one of the holes in the base so as to structurally interconnect the box beam and the T-beam supports, to be formed during the concrete pouring operation, to the base. The vertically extending rebars are suspended in the support wall cavities by supporting the upper ends of the rebars in a retainer attached to upper ends of adjacent insulation panels whereas the lower ends of the rebars are retained in the holes provided in the base. The series of insulation panels are aligned along the inner surface of the inner form and are spaced away from the inner surface of the outer form by wall spacers extending between the outer wall form and the rear face of the insulation panels and the series of aligned insulation panels are equally spaced apart by spacers extending between adjacent panels during the positioning of the panels within the wall cavity. And additionally, a vertically extending C-shaped channel is positioned within each of the plurality of support wall cavities and located between the side edges of adjacent insulation panels for retaining a small insulation panel therewithin such that the interior surface of the wall structure is completely covered with insulation material which presents a relatively continuous, non-interrupted planar surface.
These and other features and advantages of the present invention will become apparent to those skilled in the art upon a reading of the following detailed description when taken in conjunction with the drawings wherein there is shown and described an illustrative embodiment(s) of the invention.
In the course of the following detailed description, reference will be made to the attached drawings in which:
In the following description, like reference characters designate like or corresponding parts throughout the several views of the drawings. Also in the following description, it is to be understood that such terms as “forward”, “rearward”, “left”, “right”, “upwardly”, “downwardly”, and the like are words of convenience and are not to be construed as limiting terms.
Referring now to the drawings, and particularly to
Basically, the wall structure 10 includes a plurality of upright T-beam supports 12 integrally attached to and spaced along the footer F with each T-beam support 12 having a cross-leg 12A and a middle leg 12B and with said cross-legs 12A being integrally connected to form a continuous outer wall 14; a plurality of insulation panels 16 integrally attached to and spanning between the spaced apart T-beam supports 12; and a box beam 18 spanning across and integrally connecting the upper ends 12C of the upright T-beam supports 12 in thereby forming an integral, insulated wall structure.
For illustrational purposes only, the wall structure 10, as depicted in the drawings, has been specifically designed for a basement wall having a height of approximately nine feet. For a clearer understanding of the wall structure, as well as for the method for forming the wall structure, specific dimensions are given, however, said dimensions are not to be considered as limiting in anyway. Typically, a nine foot (9.0′) high, un-insulated basement wall of cinder block or poured concrete has a continuous thickness of approximately eight to ten inches (8.0-10.0″) depending upon the amount of reinforcement bars utilized. In the subject invention, for an equivalent load bearing basement wall, the wall structure 10 has reinforced concrete T-beam supports 12 spaced on two foot (2.0′) centers along the footer F with the cross-legs 12A having a horizontal thickness of approximately two and one-half inches (2.5″) such that the outer concrete wall 14 of the wall structure 12, which is formed by the cross-legs 12A, is also two and one-half inches (2.5″) in thickness and with the middle-legs 12B of the T-beam supports 12 having a thickness of about three inches (3.0″) and a depth of about six inches (6.0″). The wall structure 10 further includes the reinforced, concrete box-beam 18 that spans across and integrally connects the upper ends 12C of the upright T-beam supports 12. The box-beam 18t has a vertical height of approximately three and one-half inches (3.5″) and a depth dimension of approximately nine and a half inches (9.5″), as measured in a horizontal direction as seen in
Still referring to
In the preferred embodiment, the wall structure 10 further includes a C-shape metal channel 26 disposed along the inner face 12D of each of the upright T-beam supports 12, as best seen in
In
With particular reference to
In General—Wall Structure Construction
Referring again to
Disposed within and between wall forms 30A, 30B are a plurality or series of spaced apart insulation panels 16 aligned in a parallel relationship with their respective opposite side edges 16A, 16B facing toward one another and so oriented such that the inner front face 16C of each insulation panel 16 rests in an abutting relationship against the inner surface of the inner form 30B and with the outer rear face 16D being spaced inwardly away from the inner surface of the outer form 30A, as best shown in
After the insulations panels 16 have been installed in the forms 30A, 30B, as explained above and before the concrete pouring operation, a single rebar retainer 52 (
Method for Forming Wall Structure
Now referring specifically to
As stated before, the wall structure 10 is constructed at the job site with the use of pouring forms 30 that are erected upon concrete footer F which have been previously formed and the concrete has been cured. One of the first steps to be completed before erecting the forms is to bore or drill holes 22A in the footer F. The holes 22A are of a predetermined depth, and are spaced apart along the footer F a pre-calculated distance from one another so as to be positioned in the mid-portion of the middle-leg 12B of the upright T-beam supports 12 so as to accept the lower end of the single rebar 22 that extends upwardly therefrom, through the T-beam support 12, and up into the box beam 18, see
Once the corner form C is so erected, corresponding sections of form 30, with outer and inner walls 30A, 30B, are added sequentially to the open ends of the corner form C with the outer and inner walls 30A, 30B being connected by connecting pins 32 to the corresponding outer and inner corner walls CA, CB so as to build the wall structure 10 on and along the footer F. For illustration, the sequence of steps will be described in detail for building only a portion of the wall structure along one corner opening of the corner form C and it should be easily appreciated by those skilled in the art that this sequence of steps will be repeated until all adjoining walls of the basement are completed. It should also be pointed out in this illustrative example, the wall structure 10 is for a rectangular basement and each of the four corners of the basement are of solid concrete construction as provided for by corner forms C; however, other constructions are possible for the corners, for example the corners could be constructed in an insulated wall fashion similar to the wall structure 10 of the present invention.
After the holes 22A are drilled in footer F and the corner form C erected as shown in
Now after the first section of forms 30A, 30B with the installation of a first panel 16 therewithin is completed, as just described above, a second section of forms 30A, 30B, identical to said first form section, is erected and connected to the one open end of the completed first section form in the same manner with connecting pins 34 as is shown in
After the second section is completed as explained above, another or third consecutive section is completed in an identical procedure as said second section and this is repeated over and over again until the forms and panels are completely erected and installed for the intended wall structure to be built. Either during the above method steps or after same have been completed, the single rebar retainers 52 are installed in the box beam cavity 18A on the top surface of adjacent insulation panels 16 as described above with reference to
Uncured concrete is poured into the wall cavity 29 defined by the spaced apart forms 30 up to the top of the forms 30 in thereby filling the support wall cavities 12E which form the middle leg 12B of the T-beam supports 12; the outer wall cavity 12F which form the cross-leg 12A of the T-beam supports 12 and also the outer wall 14 of wall structure 10; and the box beam cavity 18A which forms the top box beam 18 at the upper end of the wall structure 10 and which is integrally interconnected to the footer F by the upright rebars 22. Once the concrete has cured, the forms 30 are removed for re-use, leaving an insulated wall structure 10, as shown in
It is thought that the wall structure and method of forming same of the present invention and many of its attendant advantages will be understood from the foregoing description and it will be apparent that various changes made be made in the form, construction and arrangement thereof without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form hereinbefore described being merely a preferred or exemplary embodiment thereof.
This patent application claims the benefit of U.S. provisional application No. 61/277,302; filed Sep. 23, 2009.
Number | Name | Date | Kind |
---|---|---|---|
3415023 | Lebreton | Dec 1968 | A |
4291513 | Ankarswed | Sep 1981 | A |
4541211 | Garrett | Sep 1985 | A |
4570398 | Zimmerman | Feb 1986 | A |
4605529 | Zimmerman | Aug 1986 | A |
4751803 | Zimmerman | Jun 1988 | A |
4934121 | Zimmerman | Jun 1990 | A |
5055252 | Zimmerman | Oct 1991 | A |
5313753 | Sanger | May 1994 | A |
5381635 | Sanger | Jan 1995 | A |
5409193 | Baxter | Apr 1995 | A |
5656194 | Zimmerman | Aug 1997 | A |
5692356 | Baxter | Dec 1997 | A |
5845445 | Blackbeard | Dec 1998 | A |
5987830 | Worley | Nov 1999 | A |
5992114 | Zelinsky et al. | Nov 1999 | A |
6003278 | Weaver et al. | Dec 1999 | A |
6338231 | Enriquez | Jan 2002 | B1 |
6427406 | Weaver et al. | Aug 2002 | B1 |
6438917 | Kubica | Aug 2002 | B2 |
6463702 | Weaver et al. | Oct 2002 | B1 |
6494004 | Zimmerman | Dec 2002 | B1 |
6622452 | Alvaro | Sep 2003 | B2 |
6634148 | Shidler | Oct 2003 | B2 |
7059577 | Burgett | Jun 2006 | B1 |
7124547 | Bravinski | Oct 2006 | B2 |
7530203 | Hare et al. | May 2009 | B1 |
20090173870 | Long, Sr. | Jul 2009 | A1 |
20090301030 | Nojima et al. | Dec 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
61277302 | Sep 2009 | US |