The presently disclosed subject matter relates generally to insulated coolers and methods of manufacturing the same and, more particularly, to insulated, waterproof soft cooler bags utilizing closed-cell foam on all sides and having a flexible zipper mechanism along the middle of the top surface of the cooler bag.
Coolers are commonly used to keep food and drinks cool on picnics, camping trips, beach trips, and other excursions where conventional refrigeration is not a feasible option. Traditional coolers (i.e., “ice chests”) were box-shaped and had a galvanized exterior. Over time, coolers came to have hard plastic exteriors. But hard-body coolers are often inconvenient because their fixed shape can make them difficult to stow or transport. Further, such hard-body coolers can be difficult for an individual to carry. As a result, soft-body coolers became a popular alternative. But while soft-body coolers can be easier to stow or transport, they often fail to provide the same performance as a hard-body cooler. In particular, soft-body coolers have a tendency to leak and sweat, and they are generally incapable of providing the same temperature-maintaining functionality as a hard-body cooler. And often, soft-body coolers lack insulation on the top of the cooler, therefore severely decreasing the cooler's temperature maintenance properties. Further, soft-body coolers have inadequate zipper mechanisms that tend to pull away or tear out easily from the body of the soft-body cooler. Moreover, these zipper mechanisms are assembled in such a way as to have holes that decrease the cooler's insulating capabilities.
Accordingly, there is a need for improved soft-body coolers to address the above-mentioned deficiencies. Embodiments of the present disclosure are directed to these and other considerations.
Briefly described, embodiments of the presently disclosed subject matter relate to insulated, waterproof, soft-body (i.e., soft-side) coolers and methods of manufacturing the same. The soft-side cooler may comprise an outer shell, an inner liner, an insulating core, and a zipper mechanism or zipper configuration. The insulating core can be disposed between the outer shell and the inner liner and (have opposing first and second vertical walls. The opposing first and second vertical walls can each comprise an upper portion and a lower portion. Additionally, the insulating core can be disposed between and affixed to at least one of the outer shell and the inner liner). In some embodiments, the insulating core can comprise a single piece of closed-cell foam that, in some embodiments. In some embodiments, the single piece of closed-cell foam can comprise contouring that permits the single piece of closed-cell foam to be folded and joined to form a five-sided enclosure that provides exceptional insulation for food and beverages and other items stored in the soft-side cooler. In some embodiments, the single piece of closed-cell foam can comprise contouring about the top edge of the insulating core that permits an upper section of to fold over an insulating compartment when the soft-side cooler is zipped to provide a sixth side of insulation.
The soft-side cooler may comprise a zipper mechanism that allows for zipping down the middle of the top of the soft-side cooler. The zipper mechanism can allow for wide-mouth opening that provides a user easy access to the insulated compartment. Further, as will be understood, the zipper can transition the cooler to and from open and closed positions. In some configurations, when the cooler is in the open potion, the upper portions of the first and second vertical walls are substantially parallel with the lower portions of the first and second vertical walls, and when the cooler is in the closed position, the upper portions of the first and second vertical walls are substantially perpendicular to the lower portions of the first and second vertical walls. Thus, in the closed positions, the upper portions join to form a sixth side of insulation. In some embodiments, the zipper configuration may comprise an outer lip, an inner lip, and a zipper. In certain embodiments, the zipper mechanism comprises a zipper tape that can be sandwiched between the outer lip and the inner lip. The zipper configuration may further comprise a strap that minimizes or eliminates openings where the zipper mechanism attaches to the body of the cooler thus increasing the insulating capacity of the cooler. In some embodiments, the zipper mechanism is configured to cause opposing upper sections of the insulating core to fold in toward one another when the zipper is zipped to a closed position. Further, the zipper may be configured and incorporated into the cooler in a manner that is secure, increases the insulating capacity of the cooler, and provides an appealing, finished product.
The foregoing summarizes only a few aspects of the presently disclosed subject matter and is not intended to be reflective of the full scope of the presently disclosed subject matter as claimed. Additional features and advantages of the presently disclosed subject matter are set forth in the following description, may be apparent from the description, or may be learned by practicing the presently disclosed subject matter. Moreover, both the foregoing summary and following detailed description are exemplary and explanatory and are intended to provide further explanation of the presently disclosed subject matter as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate multiple embodiments of the presently disclosed subject matter and, together with the description, serve to explain the principles of the presently disclosed subject matter; and, furthermore, are not intended in any manner to limit the scope of the presently disclosed subject matter.
The various embodiments of the presently disclosed subject matter are described with specificity to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, it has been contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or elements similar to the ones described in this document, in conjunction with other present or future technologies.
It should also be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural references unless the context clearly dictates otherwise. References to a composition containing “a” constituent is intended to include other constituents in addition to the one named. Also, in describing the preferred embodiments, terminology will be resorted to for the sake of clarity. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents which operate in a similar manner to accomplish a similar purpose.
Herein, the use of terms such as “having,” “has,” “including,” or “includes” are open-ended and are intended to have the same meaning as terms such as “comprising” or “comprises” and not preclude the presence of other structure, material, or acts. Similarly, though the use of terms such as “can” or “may” is intended to be open-ended and to reflect that structure, material, or acts are not necessary, the failure to use such terms is not intended to reflect that structure, material, or acts are essential. To the extent that structure, material, or acts are presently considered to be essential, they are identified as such.
It is also to be understood that the mention of one or more method steps does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Moreover, although the term “step” may be used herein to connote different aspects of methods employed, the term should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly required.
The components described hereinafter as making up various elements of the invention are intended to be illustrative and not restrictive. Many suitable components that would perform the same or similar functions as the components described herein are intended to be embraced within the scope of the invention. Such other components not described herein can include, but are not limited to, for example, similar components that are developed after development of the presently disclosed subject matter.
To facilitate an understanding of the principles and features of the invention, various illustrative embodiments are explained below. In particular, the presently disclosed subject matter is described in the context of a waterproof, leak-proof, soft-side cooler that demonstrates improved insulative capacity.
Referring now to the figures, wherein like reference numerals represent like parts throughout the views, the connector system will be described in detail.
As discussed, according to some embodiments, a soft-side cooler 100 can comprise a three-layer design.
In some embodiments, the inner surface 305 of the outer shell 300 (i.e., the surface that can be in direct contact with the insulating core 310) can be coated with or comprise a reflective material. As will be appreciated, the reflective material can reflect cooler temperatures from the interior of the cooler 100 back toward the cooler's 100 interior. Further, the reflective material can reflect warmer, external temperatures, away from the interior of the soft-side cooler 100.
In some embodiments, the outer shell 300 can be constructed from a durable, pliable material that is adapted to promote temperature maintenance and prevent leaking. Further, in some embodiments, the outer shell 300 can be waterproof to keep the soft-side cooler 100 from leaking or prevent outside substances from entering the cooler body. In some embodiments, the outer shell 300 may be constructed from various materials such as denier nylon, which may incorporate UV reflection. Further, the outer shell 300 may comprise a thermoplastic elastomer (TPE) coating. For example, in some embodiments, the outer shell 300 may comprise TPE-coated nylon, 1000 denier luggage grade nylon, tarpaulin, or PU-coated nylon depending on the desired properties of the cooler. It is understood that other materials may be used to construct the outer shell 200. As will be appreciated, such features can help the soft-side cooler 100 maintain interior temperature despite exposure to direct sunlight. It is understood that other materials may be used to construct the outer shell 300 that will provide similar functionalities and advantages.
In some embodiments, the outer shell 300 can include various accessories to serve various needs. For example, in some embodiments, the outer shell 300 may include backpack straps such that the soft-side cooler 100 can be transported on a user's back as a backpack. In some embodiments, the outer shell 300 may comprise a plurality of side-release buckles, which can also serve as bottle openers. Further, the outer shell 300 may be equipped with a plurality of tie downs. In some embodiments, the tie downs may be constructed from stainless steel. Further, the outer shell 300 may comprise a plurality of carabiners, which can be carabiner bowtie daisy chains. As will be understood and appreciated, the tie downs and carabiners can be used to secure the soft-side cooler to a variety of surfaces or objects.
As shown at
As previously discussed, in some embodiments, the insulating core 310 can be constructed from closed-cell foam. The closed-cell foam can serve a dual purpose: prevent warm air from entering the interior of the cooler 100 and keep cold air from leaving the interior of the cooler 100. Additionally, as will be appreciated, closed-cell foam is more rigid than open-cell foam, thereby providing for a more structured interior. Further, as will be appreciated, because closed-cell foam can be folded, bent, and carved, the use of closed-cell foam can allow for an insulating core 310 that can be constructed from a single piece, as will be discussed further in relation to
In some embodiments, the insulating core 310 may comprise opposing vertical walls (or side walls) 322, which may comprise an upper section 325 and lower section 330. In some embodiments, the upper sections 325 are opposing and can fold over toward one another and over the insulating compartment thereby providing six-sided insulation. Further, in some embodiments, the upper sections 325 may have a thickness that is less than the thickness of the lower sections 330.
In some embodiments, as shown in
As discussed previously, in some embodiments, the upper sections 325 can be folded toward one another to create a closed state and form a sixth side of insulation. Thus, when the upper sections 325 are folded toward one another, the upper sections 407 of the end walls may further contribute to the sixth side of insulation, according to some embodiments. For example, as shown in
As will be appreciated and understood, the foam base and foam body can have various dimensions and foam thicknesses according to the needs of the user. It is understood that the thickness of the foam corresponds to the insulative capacity of the soft-side cooler. According to an example embodiment, the foam base 405 may have a thickness of approximately 1 inch to 1.5 inches. According to an example embodiment, the lower sections 330 and 409 can have a thickness of approximately 0.75 inches to 1 inch. The upper sections 325 and 407 can have a thickness of 0.5 inches to 0.75 inches. Thus in some embodiments, the lower sections 330 and 409 have a greater thickness than the upper sections 325 and 407 of the foam body. As will be understood, these dimensions are exemplary and are not intended to be limiting as the thicknesses of the components can be changed depending on the needs of the soft-side cooler because certain implementations may require maintaining lower or higher temperatures than others. For example, when used in a medical setting to transport human tissue or organs, it may be necessary to maintain a lower temperature than when used to transport food or drinks. Accordingly, it may be necessary for the foam base 305, lower sections 330 and 409, and upper sections 325 and 407 to have greater thicknesses and thus greater insulation capacity.
In some embodiments, the closed-cell foam can be folded as shown in
As shown in
In some embodiments of the present disclosure, each pair of opposing ends of the stringer may be affixed to a strap 650. The strap 650 can be constructed from nylon, rubber, or another suitable webbing material that provides strength and flexibility.
In some embodiments, the zipper tape 632 can comprise an additional rubber strip which attaches to the zipper tape 632 along a length of the cooler. In some embodiments, the rubber strip also attaches within the straps 650 at each of the opposing ends of the zipper stringer 636. As will be appreciated, this additional rubber strip can permit flexibility while zipping because the rubber material will stretch as the zipper is closed. The additional strip can also help prevent the zipper mechanism 632 from ripping off of the cooler 100 and can increase the soft-side cooler's 100 capacity by providing extra flex. Further, in some embodiments, the rubber strip can be attached to the zipper tape 632 and also be sandwiched between the top end 652 and a bottom end 654. In some embodiments, the zipper tape 632 can be constructed from rubber or another flexible material to provide similar functionality.
As shown at
Additionally, as shown in
Further, in some embodiments, the bottom end 654 can be doubled over for added reinforcement. For example, in some embodiments as shown at
Accordingly, the zipper mechanism 320 as illustrated in
For example, and as discussed above, a zipper tape 632 of the zipper mechanism can be disposed between an inner lip 620 and an outer lip 610 along the top edge of the soft-side cooler. Accordingly, these three surfaces (i.e., the outer lip 610, zipper tape 632, and inner lip 620) can be stitched together (illustrated by 660A on the outside of the cooler and 660B on the inside of the cooler) along the top edge of the soft-side cooler thus ensuring the zipper is securely affixed to the soft-sided cooler. In some embodiments, the outer lip 610 can be attached to an outer surface of the outer shell 300 and the inner lip 620 can be attached to an inner surface of the inner liner 315 via both upper stitching 660A and 660B and lower stitching 670A and 670B. In some embodiments, the inner lip 620 can be doubled over 622 to provide added strength. Further, in some embodiments and as shown in
Additionally, in some embodiments, the bottom edge 622 of the inner lip 620 can be doubled over such that it abuts the inner surface of the inner liner 315. Accordingly, as shown in
While the present disclosure has been described in connection with a plurality of exemplary aspects, as illustrated in the various figures and discussed above, it is understood that other similar aspects can be used or modifications and additions can be made to the described aspects for performing the same function of the present disclosure without deviating therefrom. For example, in various aspects of the disclosure, methods and compositions were described according to aspects of the presently disclosed subject matter. In particular, aspects of the present disclosure have been described in relation to a soft-side cooler comprising closed-cell foam, but aspects of the disclosed technology can be used with soft-side coolers comprising open-cell foam. Additionally, other equivalent methods or composition to these described aspects are also contemplated by the teachings herein. Therefore, the present disclosure should not be limited to any single aspect, but rather construed in breadth and scope in accordance with the appended claims.
This Application claims priority to and benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 62/119,451 filed Feb. 23, 2015, which is hereby incorporated by reference herein in its entirety as if it fully set forth below.
Number | Name | Date | Kind |
---|---|---|---|
4509645 | Hotta | Apr 1985 | A |
4706856 | Jacober | Nov 1987 | A |
4765476 | Lee | Aug 1988 | A |
4819793 | Willard | Apr 1989 | A |
5501338 | Preston | Mar 1996 | A |
5509279 | Brown | Apr 1996 | A |
5562228 | Ericson | Oct 1996 | A |
5758513 | Smith | Jun 1998 | A |
5857778 | Ells | Jan 1999 | A |
6027249 | Bielinski | Feb 2000 | A |
6065873 | Fowler | May 2000 | A |
6067813 | Smith | May 2000 | A |
6116045 | Hodosh | Sep 2000 | A |
6247328 | Mogil | Jun 2001 | B1 |
6409066 | Schneider | Jun 2002 | B1 |
7011224 | Sheng-Bin | Mar 2006 | B2 |
7162890 | Mogil | Jan 2007 | B2 |
7240513 | Conforti | Jul 2007 | B1 |
7313927 | Barker | Jan 2008 | B2 |
7730739 | Fuchs | Jun 2010 | B2 |
8640937 | Pruchnicki | Feb 2014 | B2 |
9139352 | Seiders et al. | Sep 2015 | B2 |
9422099 | Mitchell | Aug 2016 | B2 |
20040035143 | Mogil | Feb 2004 | A1 |
20080245096 | Hanson | Oct 2008 | A1 |
20110259894 | Cheung | Oct 2011 | A1 |
20160101924 | Mitchell | Apr 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160244239 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
62119451 | Feb 2015 | US |