The invention relates to an insulating body for multi-shell construction elements such as doors, windows, facade elements or composite sections, for spacing apart and thermally separating at least two profiled section elements relative to each other, comprising fastening projections provided on opposite sides for fixation at corresponding receptacles of the profiled section elements.
The invention further relates to such a construction element with insulating body, in particular a framed glass panel, with at least two profiled section elements that are spaced apart from each other by an insulating body.
In multi-shell construction elements such as doors, windows, facade elements, other composite sections or the like, it is conventional to space apart and thermally separate by means of insulating bodies profiled section elements from each other that form an outer shell and an inner shell and preferably are in the form of light metal sections of aluminum or aluminum alloys. In practice, usually insulating stays are used, as disclosed, for example, in U.S. Pat. No. 7,104,019 B2. The known insulating stays have at both opposite sides or ends fastening projections, referred to also as fastening legs, that widen toward their ends and are held in a complementary receptacles such as, for example, undercut grooves of the profiled section elements. For a fixed connection with the profiled section elements, at least one wall of the receiving groove which is initially produced with excess size is pressed with deformation thereof against the fastening projection contained therein—this is the so-called curling process—and, in this way, the insulating body is held not only in the longitudinal direction of the stay but also in a non-slidable way within the groove.
In general, several insulating stays are used that are spatially tightly neighboring each other. Also, it is required in many construction positions to provide additional guides or receptacles for fitting parts such as locking elements. The plurality of required components result in a plurality of assembly steps.
It is an object of the present invention to simplify the configuration of multi-shell construction elements.
In accordance with the invention, this is achieved in regard to the insulating body in that at least one side of the insulating body comprises at least two fastening projections and the insulating body forms a hollow chamber with an inner guiding contour which is designed for receiving and guiding fitting parts.
This is further achieved in connection with the multi-shell construction element in that the construction element comprises an insulating body according to the invention.
By configuring the insulating body with at least two fastening projections on at least one side so that at least two fastening projections of the same insulating body are engaging one of the two profiled section elements to be connected, the two profiled section elements are not only spaced apart from each other but are also secured against tilting. For this purpose, up to now at least two insulating stays are required in practice. Since the insulating body according to the invention also forms a hollow chamber that comprises an inner guiding contour for receiving and guiding fitting parts, the requirement for separate components between the profiled section elements that receive the fitting parts, for example, locking elements, is eliminated. The hollow chamber which is formed by the one-piece (monolithic) insulating body must not be closed mandatorily for this purpose. It is sufficient when the guiding contour provides for a reliable guiding action of the received fitting part, for example, a locking pin; optionally, guiding can be realized with adjoining walls of the connected profile section elements.
In particular window frames and door frames are often of a multi-part configuration, as described above, and require in general also fitting parts for locking, for example, locking pins. The latter have usually a circular cross section or rods with a contour that has at least partially the shape of a circular circumference segment. Preferably, the guiding contour of the insulating body has therefore also areas that have the shape of a circular circumference segment.
A preferred embodiment of the insulating body comprises a base member of at least two spaced apart insulating stays which are extending from one profiled section element to the other and are connected transverse thereto by a transverse stay which at least partially forms the guiding contour. The transverse stay can be of a dome shape so as to bulge toward one of the profiled section elements and forms thus not only the guiding contour but also imparts to the insulating body a high stability.
The multi-functionality of the insulating body according to the invention can be further improved in that it is provided with one or a plurality of outwardly open receptacles for additional functional elements. These receptacles which are preferably designed as undercut grooves can receive, for example, seals, fastening elements for adjoining components, fixations or other fitting elements.
In the interior of the insulating body, it is also advantageous to provide one or a plurality of recesses, preferably with planar surface, in which the projections of fastening elements can be accommodated without disturbance. These recesses should therefore be so deep that projections as, for example, the heads or other parts of sheet metal nuts, blind rivets or countersunk rivets will not project into the guiding contour and thus will not contact fitting parts that are to be received in the guiding contour.
The insulating body moreover may comprise one or a plurality of outwardly projecting guiding stays; such a guiding stay can be provided in addition to the at least three fastening projections of the insulating body or can also replace one of the fastening projections. The guiding stay can thus also be a “fastening projection”.
Preferred is however an embodiment in which a guiding stay is arranged on one side of the insulating body, facing one of the profiled section elements, between two fastening projections. In this way, an additional utilization is provided which will be explained with the aid of the construction element which is also claimed. In an advantageous compact and well utilizable construction, the fastening projection or the fastening projections on one side of the insulating body project father outwardly than the guiding stay.
By means of the described insulating body, a novel multi-shell construction element can be formed that has a reduced number of components with increased functionality. When in this context in the guiding contour of the insulating body, for example, a locking element is slidably guided, the need for further guiding components is eliminated. The construction element can therefore be made slimmer than is conventional; this is in particular advantageous for framed glass panels when the facing width (elevation width) of the profiled section elements forming the frame is to be reduced.
When using an insulating body with an outwardly projecting guiding stay; with a guiding stay arranged between two fastening projections on one side of the insulting body; with fastening projection(s) on one side of the insulating body that project(s) farther outwardly than the guiding stay, a further problem that is encountered in particular in case of tall windows or glass doors can be solved. Multi-shell construction elements, in particular when of a dark color, are subject to thermal expansion when exposed to sun irradiation on only one side; this can lead to the construction component deforming by a significant amount. In practice, in the past the insulating stays that are used are separated again in the upper area of the construction element at one of the two profiled section elements. In order for the profiled section elements to still be connected, they are secured by displaceable clamps. This means additional assembly expenditure, still with reduced strength.
A construction element according to the invention provides that the guiding stay of the insulating body is slidable in one of the profiled section elements but is captively secured therein while the existing fastening projections are initially non-slidably and fixedly connected to the profiled section elements. In the areas in which thermal deformation occurs, on one side of the insulating body the fastening projection or fastening projections can be separated from the insulating body. They can thus remain within the profiled section elements. However, the guiding stay is not separated and reliably secures, even within the now slidable area, the profiled section elements to each other.
In a multi-shell construction element according to the invention, the insulating body and at least one of the profiled section elements can also supplement each other in such a way that the guiding contour, which is predetermined by the insulating body, can be continued or extended by a guiding contour area provided at the profiled section element. This is in particular useful in construction elements of minimal thickness that require insulating bodies of a corresponding minimal depth.
Further advantages and details result from the claims and the embodiments illustrated in the drawing to be explained in the following.
The insulating body 1 has on opposite sides, i.e., each side facing one of the two profiled section elements 2, 3, respectively, two fastening projections 8 which are formed as outwardly widening fastening legs and engage receptacles 9 of the profiled section elements 2, 3. The fastening projections 8 are fixedly connected in practice in that pressure is applied to the exterior sides 11 of the receptacles 9 and cause deformation so that the exterior sides 11 contact tightly the fastening projections 8 and secure them such that they are non-slidable. This method is referred to as curling.
In addition, the insulating body 1 comprises a guiding stay 12 which is guided in a matching guiding receptacle 13 of the profiled section element 2 so as to be slidable but captively secured. For this purpose, the illustrated embodiment with a T-shaped guiding stay 12 and a substantially C-shaped guiding receptacle 13 are beneficial. Positioning of the guiding stay 12 between the fastening projections 8 and selecting its length so as to be reduced relative to the fastening projections 8 has the advantage that during curling of the fastening projections 8 pressure is not indirectly applied to the guiding receptacle 13 so that the sliding action of the guiding stay 12 is maintained. In areas in which, for example, by thermal action, the profiled section element 2 is deformed relative to the profiled section element 3, the non-slidable connection of the insulating body 1 can be released in such an embodiment from the profiled section element 2 in that the connection of the fastening projections 8 is separated from the remaining part of the insulating body 1, for example, at the position that is indicated in
The insulating body 1 illustrated in
Both embodiments of the insulating body (
The specification incorporates by reference the entire disclosure of German priority document 10 2016 125 602.1 having a filing date of Dec. 23, 2016.
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 125 602.1 | Dec 2016 | DE | national |