Insulating boot for electrosurgical forceps

Abstract
Either an endoscopic or open bipolar forceps includes a flexible, generally tubular insulating boot for insulating patient tissue, while not impeding motion of the jaw members. The jaw members are movable from an open to a closed position and the jaw members are connected to a source of electrosurgical energy such that the jaw members are capable of conducting energy through tissue held therebetween to effect a tissue seal. A knife assembly may be included that allows a user to selectively divide tissue upon actuation thereof. The insulating boot may be made from a viscoelastic, elastomeric or flexible material suitable for use with a sterilization process including ethylene oxide. An interior portion of the insulating boot may have at least one mechanically interfacing surface that interfaces with a mechanically interfacing surface formed between the shaft and a jaw member or with a mechanically interfacing surface disposed or formed on the shaft or a jaw member.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to an insulated electrosurgical forceps and more particularly, the present disclosure relates to an insulating boot for use with either an endoscopic or open bipolar and/or monopolar electrosurgical forceps for sealing, cutting, and/or coagulating tissue.


2. Background of Related Art


Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.


It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.


In order to effectively seal larger vessels (or tissue) two predominant mechanical parameters must be accurately controlled—the pressure applied to the vessel (tissue) and the gap distance between the electrodes—both of which are affected by the thickness of the sealed vessel. More particularly, accurate application of pressure is important to oppose the walls of the vessel; to reduce the tissue impedance to a low enough value that allows enough electrosurgical energy through the tissue; to overcome the forces of expansion during tissue heating; and to contribute to the end tissue thickness which is an indication of a good seal. It has been determined that a typical fused vessel wall is optimum between 0.001 and 0.006 inches (about 0.03 mm to about 0.15 mm). Below this range, the seal may shred or tear and above this range the lumens may not be properly or effectively sealed.


With respect to smaller vessels, the pressure applied to the tissue tends to become less relevant whereas the gap distance between the electrically conductive surfaces becomes more significant for effective sealing. In other words, the chances of the two electrically conductive surfaces touching during activation increases as vessels become smaller.


Many known instruments include blade members or shearing members which simply cut tissue in a mechanical and/or electromechanical manner and are relatively ineffective for vessel sealing purposes. Other instruments rely on clamping pressure alone to procure proper sealing thickness and are not designed to take into account gap tolerances and/or parallelism and flatness requirements which are parameters which, if properly controlled, can assure a consistent and effective tissue seal. For example, it is known that it is difficult to adequately control thickness of the resulting sealed tissue by controlling clamping pressure alone for either of two reasons: 1) if too much force is applied, there is a possibility that the two poles will touch and energy will not be transferred through the tissue resulting in an ineffective seal; or 2) if too low a force is applied the tissue may pre-maturely move prior to activation and sealing and/or a thicker, less reliable seal may be created.


As mentioned above, in order to properly and effectively seal larger vessels or tissue, a greater closure force between opposing jaw members is required. It is known that a large closure force between the jaws typically requires a large moment about the pivot for each jaw. This presents a design challenge because the jaw members are typically affixed with pins which are positioned to have small moment arms with respect to the pivot of each jaw member. A large force, coupled with a small moment arm, is undesirable because the large forces may shear the pins. As a result, designers must compensate for these large closure forces by either designing instruments with metal pins and/or by designing instruments which at least partially offload these closure forces to reduce the chances of mechanical failure. As can be appreciated, if metal pivot pins are employed, the metal pins must be insulated to avoid the pin acting as an alternate current path between the jaw members which may prove detrimental to effective sealing.


Increasing the closure forces between electrodes may have other undesirable effects, e.g., it may cause the opposing electrodes to come into close contact with one another which may result in a short circuit and a small closure force may cause pre-mature movement of the tissue during compression and prior to activation. As a result thereof, providing an instrument which consistently provides the appropriate closure force between opposing electrode within a preferred pressure range will enhance the chances of a successful seal. As can be appreciated, relying on a surgeon to manually provide the appropriate closure force within the appropriate range on a consistent basis would be difficult and the resultant effectiveness and quality of the seal may vary. Moreover, the overall success of creating an effective tissue seal is greatly reliant upon the user's expertise, vision, dexterity, and experience in judging the appropriate closure force to uniformly, consistently and effectively seal the vessel. In other words, the success of the seal would greatly depend upon the ultimate skill of the surgeon rather than the efficiency of the instrument.


It has been found that the pressure range for assuring a consistent and effective seal is between about 3 kg/cm.2 to about 16 kg/cm2 and, preferably, within a working range of 7 kg/cm2 to 13 kg/cm2. Manufacturing an instrument which is capable of providing a closure pressure within this working range has been shown to be effective for sealing arteries, tissues and other vascular bundles.


Various force-actuating assemblies have been developed in the past for providing the appropriate closure forces to effect vessel sealing. For example, one such actuating assembly has been developed by Valleylab Inc., a division of Tyco Healthcare LP, for use with Valleylab's vessel sealing and dividing instrument commonly sold under the trademark LIGASURE ATLAS®. This assembly includes a four-bar mechanical linkage, a spring and a drive assembly which cooperate to consistently provide and maintain tissue pressures within the above working ranges. The LIGASURE ATLAS® is presently designed to fit through a 10 mm cannula and includes a bi-lateral jaw closure mechanism which is activated by a foot switch. A trigger assembly extends a knife distally to separate the tissue along the tissue seal. A rotating mechanism is associated with distal end of the handle to allow a surgeon to selectively rotate the jaw members to facilitate grasping tissue. U.S. Pat. Nos. 7,101,371 and 7,083,618 and PCT Application Serial Nos. PCT/US02/01890, now WO2002/080799, and PCT/US01/11340, now WO2002/080795, describe in detail the operating features of the LIGASURE ATLAS® and various methods relating thereto. Co-pending U.S. application Ser. No. 10/970,307, now U.S. Pat. No. 7,232,440, relates to another version of an endoscopic forceps sold under the trademark LIGASURE V® by Valleylab, Inc., a division of Tyco Healthcare, LP. In addition, commonly owned, co-pending U.S. patent application Ser. No. 10/873,860, filed on Jun. 22, 2004 and entitled “Open Vessel Sealing Instrument with Cutting Mechanism and Distal Lockout”, now U.S. Pat. No. 7,252,667, and incorporated by reference in its entirety herein discloses an open forceps which is configured to seal and cut tissue which can be configured to include one or more of the presently disclosed embodiments described herein. The entire contents of all of these applications are hereby incorporated by reference herein.


For example, the co-pending, commonly owned U.S. patent application Ser. No. 10/970,307 filed on Oct. 21, 2004 and entitled “Bipolar Forceps Having Monopolar Extension”, now U.S. Pat. No. 7,232,440, discloses an electrosurgical forceps for coagulating, sealing, and/or cutting tissue having a selectively energizable and/or extendable monopolar extension for enhanced electrosurgical effect. The instrument includes a monopolar element which may be selectively extended and selectively activated to treat tissue. Various different designs are envisioned which allow a user to selectively energize tissue in a bipolar or monopolar mode to seal or coagulate tissue depending upon a particular purpose. Some of the various designs include: (1) a selectively extendable and energizable knife design which acts as a monopolar element; (2) a bottom jaw which is electrically and selectively configured to act as a monopolar element; (3) tapered jaw members having distal ends which are selectively energized with a single electrical potential to treat tissue in a monopolar fashion; and (4) other configurations of the end effector assembly and/or bottom or second jaw member which are configured to suit a particular purpose or to achieve a desired surgical result.


However, a general issue with existing electrosurgical forceps is that the jaw members rotate about a common pivot at the distal end of a metal or otherwise conductive shaft such that there is potential for both the jaws, a portion of the shaft, and the related mechanism components to conduct electrosurgical energy (either monopolar or as part of a bipolar path) to the patient tissue. Existing electrosurgical instruments with jaws either cover the pivot elements with an inflexible shrink-tube or do not cover the pivot elements and connection areas and leave these portions exposed.


SUMMARY

It would be desirous to provide electrosurgical instruments with a flexible insulating boot that both permits pivoting and other associated movements of the jaw members and also reduces the potential for stray or miscellaneous currents affecting surrounding tissue.


The present disclosure relates to an electrosurgical forceps having a shaft with jaw members at a distal end thereof. The jaw members are movable about a pivot by actuation of a drive assembly that moves the jaw members from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping and treating tissue. The forceps also includes a movable handle that actuates the drive assembly to move the jaw members relative to one another.


At least one jaw member is adapted to connect to a source of electrical energy such that at least one of the jaw members is capable of conducting energy to tissue held therebetween to treat tissue. A flexible insulating boot is disposed on at least a portion of an exterior surface of at least one jaw member. The insulating boot is configured and made from a material that insulates tissue from various exposed areas of the shaft and the jaw members.


In one particularly useful embodiment, one end of the insulating boot is disposed on at least a portion of an exterior surface of the shaft and another end of the insulating boot is disposed on at least a portion of an exterior surface of at least one jaw member proximate the pivot such that movement of the jaw members is substantially unimpeded. In another embodiment according to the present disclosure, the insulating boot is made of at least one of a viscoelastic, elastomeric, and flexible material suitable for use with a sterilization process that does not substantially impair structural integrity of the boot. In particular, the sterilization process may include ethylene oxide.


The jaw members (or jaw member) may also include a series of stop members disposed thereon for regulating distance between the jaw members such that a gap is created between the jaw members during the sealing process.


The forceps may also include a knife that is selectively deployable to cut tissue disposed between the jaw members.


In one embodiment, the jaw members are configured to treat tissue in a monopolar fashion, while in another embodiment, the jaw members are configured to treat tissue in a bipolar fashion.


In one embodiment of the present disclosure, the present disclosure is directed to an electrosurgical forceps for sealing tissue having a pair of first and second shaft members each with a jaw member disposed at a distal end thereof. The jaw members are movable about a pivot from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween. At least one of the jaw members includes an electrically conductive sealing plate adapted to communicate electrosurgical energy to tissue held therebetween and a flexible insulating boot disposed on at least a portion of an exterior surface of at least one jaw member.


In yet another useful embodiment, the present disclosure relates to an electrosurgical forceps having a housing with a shaft affixed thereto. The shaft includes first and second jaw members attached to a distal end thereof. The forceps includes an actuator for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. Each jaw member is adapted to connect to a source of electrosurgical energy such that the jaw members are selectively capable of conducting energy to tissue held therebetween to treat tissue.


The forceps also includes a knife that is selectively moveable within a knife channel defined within at least one of the jaw members to cut tissue disposed therebetween. A monopolar element is housed within at least one jaw member and is selectively movable from a first proximal position within the jaw members to a second distal position within the jaw member(s). The monopolar element may be connected to the source of electrosurgical energy and may be selectively activatable independently of the jaw members. The forceps includes a flexible insulating boot disposed on at least a portion of at least one jaw member.


The present disclosure relates also to an electrosurgical forceps that includes a shaft having a pair of jaw members at a distal end thereof. The jaw members are movable about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue. At least one of the shaft and at least one of the jaw members form at least one mechanically interfacing surface thereon. The forceps includes a movable handle that actuates a drive assembly to move the jaw members relative to one another. At least one of the jaw members is adapted to connect to a source of electrical energy such that the at least one jaw member is capable of conducting energy to tissue held therebetween. A flexible insulating boot is disposed on at least a portion of an exterior surface of at least one jaw member. An interior portion of the insulating boot has at least one mechanically interfacing surface. The at least one mechanically interfacing surface of the interior portion of the insulating boot interfaces with the mechanically interfacing surface formed on the shaft and at least one of the jaw members.


In one particularly useful embodiment, the at least one mechanically interfacing surface of the interior portion of the insulating boot and the at least one mechanically interfacing surface formed on at least one of the shaft and at least one of the jaw members may be configured in a key-like translational interlocking interface configuration. In one particularly useful embodiment, the at least one mechanically interfacing surface of the interior portion of the insulating boot and the at least one mechanically interfacing surface formed on at least one of the shaft and at least one of the jaw members may be configured in a key-like translational interlocking interface configuration.


The present disclosure relates also to an electrosurgical forceps for sealing tissue that includes a pair of first and second shaft members each having a jaw member disposed at a distal end thereof. The jaw members are movable about a pivot from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween. At least one of the shaft members and at least one of the jaw members form at least one mechanically interfacing surface therebetween. At least one of the jaw members includes an electrically conductive sealing plate adapted to communicate electrosurgical energy to tissue held therebetween. The forceps includes a flexible insulating boot disposed on at least a portion of an exterior surface of at least one jaw member. An interior portion of the insulating boot has at least one mechanically interfacing surface. The at least one mechanically interfacing surface of the interior portion of the insulating boot interfaces with the at least one mechanically interfacing surface formed between at least one of the shaft members and one of the jaw members.


In one particularly useful embodiment, the at least one mechanically interfacing surface of the interior portion of the insulating boot and the at least one mechanically interfacing surface formed between at least one of the shaft members and at least one of the jaw members may be configured as a groove-like interlocking interface.


The present disclosure relates also to an electrosurgical forceps that includes a housing having a shaft affixed thereto. The shaft includes first and second jaw members attached to a distal end thereof. At least one of the shaft and at least one of the jaw members have at least one mechanically interfacing surface disposed therebetween. The forceps includes an actuator for moving jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The jaw members are adapted to connect to a source of electrosurgical energy such that the jaw members are selectively capable of conducting energy through tissue held therebetween to treat tissue. The forceps includes a knife that is selectively moveable within a knife channel defined within at least one of the first and second jaw members to cut tissue disposed between the first and second jaw members. A monopolar element is housed within at least the first jaw member and selectively movable from a first position within the first jaw member to a second position distal to the first jaw member. The monopolar element is connected to the source of electrosurgical energy and is selectively activatable independently of the jaw members. A flexible insulating boot is disposed on at least a portion of each jaw member. An interior portion of the insulating boot has at least one mechanically interfacing surface. The at least one mechanically interfacing surface of the interior portion of the insulating boot interfaces with the at least one mechanically interfacing surface disposed between the shaft and at least one of the jaw members.


In one particularly useful embodiment, the at least one mechanically interfacing surface of the interior portion of the insulating boot and the at least one mechanically interfacing surface disposed between the shaft and at least one of the jaw members may be configured as a groove-like interlocking interface.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a left, perspective view of one version of the present disclosure that includes an endoscopic bipolar forceps showing a housing, a shaft and an end effector assembly having an insulating boot according to the present disclosure;



FIG. 2 is an enlarged, left perspective view of the end effector assembly with the jaw members shown in open configuration having the insulating boot according to the present disclosure;



FIG. 3 is a full perspective view of the end effector assembly of FIG. 1 having the insulating boot according to the present disclosure;



FIG. 4 is an exploded top, perspective view of the housing and internal working components thereof of the endoscopic bipolar forceps of FIG. 1 with parts separated;



FIG. 5 is an enlarged, top, perspective view of the end effector assembly having the insulating boot of the present disclosure with parts separated;



FIG. 6 is an enlarged, perspective view of the knife assembly with parts separated;



FIG. 7 is an enlarged view of the indicated area of detail of FIG. 6 showing a knife blade of the knife assembly;



FIG. 8 is a greatly-enlarged, perspective view of a distal end of the knife assembly;



FIG. 9 is a greatly-enlarged, perspective view of a knife drive of the knife assembly;



FIG. 10 is a cross-section of the housing with the end effector shown in open configuration having the insulating boot of the present disclosure and showing the internal, electrical routing of an electrosurgical cable and electrical leads;



FIG. 11 is a greatly-enlarged view of the indicated area of detail of FIG. 10;



FIG. 12 is a side, cross section of the shaft and end effector assembly with the end effector assembly having the insulating boot of the present disclosure;



FIG. 13 is a side, cross section of the housing showing the moving components of the drive assembly during actuation and the end effector assembly;



FIG. 14 is a greatly-enlarged view of the indicated area of detail in FIG. 13;



FIG. 15 is a greatly-enlarged view of the indicated area of detail in FIG. 13;



FIG. 16 is an enlarged, side view of the end effector assembly shown in an open configuration and having the insulating boot of the present disclosure;



FIG. 17 is a side view of the end effector assembly shown in a closed configuration and having the insulating boot of the present disclosure with the jaw members in the closed position;



FIG. 18 is an enlarged, rear, perspective view of the end effectors shown grasping tissue;



FIG. 19 is a side, cross section of a tissue seal after separation by the knife assembly;



FIG. 20 is a left, front perspective view of an open forceps with a cutting mechanism having an insulating boot according to the present disclosure;



FIG. 21 is a right, rear perspective view of the forceps of FIG. 20;



FIG. 22 is an enlarged, left perspective view of one of the jaw members of the forceps of FIG. 20;



FIG. 23 is an enlarged, perspective view of the other jaw member of the forceps of FIG. 20;



FIG. 24 is a side cross sectional view showing the forceps of FIG. 20 in open configuration for grasping tissue;



FIG. 25 is a rear, perspective view of the forceps of FIG. 20 shown grasping tissue with a ratchet mechanism shown prior to engagement;



FIG. 26 is a side view of an endoscopic forceps showing a housing, a shaft, an end effector assembly having an insulating boot according to the present disclosure and a trigger assembly in a first position;



FIG. 27 is an enlarged, cross section taken along line 27-27 of FIG. 26;



FIG. 28 is an enlarged, side view of the trigger assembly of FIG. 26;



FIG. 29 is an enlarged, side view of the embodiment of an end effector assembly of FIG. 26 having the insulating boot according to the present disclosure and showing relative extension of a monopolar element from a distal end of the end effector assembly;



FIG. 30 is a side view of the trigger assembly in a second position for advancing a knife within the end effector assembly and having the insulating boot according to the present disclosure;



FIG. 31 is a side view of the trigger assembly in a third position for extending a monopolar element from a distal end of the end effector assembly;



FIG. 32 is a side view of an alternate embodiment of the present invention showing a second actuator advancing the monopolar element relative to the distal end of the end effector;



FIG. 33A is an enlarged, side schematic view of one embodiment of an end effector assembly having the insulating boot according to the present disclosure and showing relative movement of a first jaw member relative to a second jaw member prior to advancement of the knife through the end effector assembly;



FIG. 33B is an enlarged, side schematic view of the end effector assembly showing relative movement of the knife through the end effector assembly to divide tissue;



FIG. 33C is an enlarged, side schematic view of the end effector assembly showing relative movement of the knife extending from the distal end of the end effector assembly;



FIG. 34A is an enlarged, side schematic view of another embodiment of an end effector assembly having the insulating boot according to the present disclosure;



FIG. 34B is schematic view of another embodiment of an end effector assembly capable of being configured with the insulating boot according to the present disclosure and showing a series of electrical connections to a control switch and a generator to enable both bipolar activation and monopolar activation;



FIG. 34C is a table showing the various modes of operation of the forceps utilizing the end effector configuration of FIG. 34B;



FIG. 35A and 35B are enlarged views of an alternate embodiment of the second jaw member configured with an insulating boot according to the present disclosure;



FIGS. 36A and 36B are enlarged views of another alternate embodiment of the second jaw member configured with an insulating boot according to the present disclosure;



FIGS. 37A and 37B are enlarged views of another alternate embodiment of the end effector assembly configured with an insulating boot according to the present disclosure showing the monopolar element in an extended configuration;



FIGS. 38A and 38B are enlarged views of yet another alternate embodiment of the second jaw member configured with an insulating boot according to the present disclosure;



FIG. 39 is a cross-sectional profile view of one embodiment of the present disclosure in which the shaft and end effector assembly of the endoscopic bipolar forceps of FIG. 1 further includes an insulating boot with interfacing surfaces and an extension shroud extending distally from the interfacing surfaces;



FIG. 40 is a cross-sectional profile view of an insulating boot with interfacing surfaces and an extension shroud extending distally from the interfacing surfaces and having a tapered profile according to the present disclosure;



FIG. 41 is a cross-sectional profile view of an insulating boot with interfacing surfaces without an extension shroud according to the present disclosure;



FIG. 42A is a cross-sectional view of a shaft member or jaw members having mechanically interfacing surfaces interfacing with mechanically interfacing surfaces of the interior portion of the insulating boot in a rotational key-like rotational interlocking interface according to the present disclosure;



FIG. 42B is a cross-sectional profile view of a shaft member or jaw members having mechanically interfacing surfaces interfacing with mechanically interfacing surfaces of the interior portion of the insulating boot in a key-like translational interlocking interface;



FIG. 43A is an elevation view of the endoscopic bipolar forceps of FIG. 1 showing a shaft and an end effector assembly having an insulating boot with a distal end having a concave curvature overlapping the proximal end of the jaw members of the end effector assembly;



FIG. 43B is a cross-sectional view of the endoscopic bipolar forceps of FIG. 1 showing rigid jaw members having a substantially circular cross-section and a flexible insulating boot having a substantially oval cross-section;



FIG. 44 is a cross-sectional profile view of one embodiment of the present disclosure in which the shaft and end effector assembly of the endoscopic bipolar forceps of FIG. 39 includes the insulating boot with interfacing surfaces and an extension shroud of FIG. 40 and further includes a heat shrink material wrapped around the proximal end of the insulating boot;



FIG. 45 is a profile view of the shaft and end effector assembly of the endoscopic bipolar forceps of FIG. 1 further including a translucent insulating boot with an alignment indicator having a linear configuration according to the present disclosure; and



FIG. 46 illustrates an insulating boot with an alternate alignment indicator in the form of an arrow according to the present disclosure.





DETAILED DESCRIPTION

Referring initially to FIGS. 1-3, one particularly useful endoscopic forceps 10 is shown for use with various surgical procedures and generally includes a housing 20, a handle assembly 30, a rotating assembly 80, a trigger assembly 70, a knife assembly and an end effector assembly 100 that mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue 420 (see FIGS. 18-19). For the purposes herein, forceps 10 will be described generally. However, the various particular aspects of this particular forceps are detailed in commonly owned U.S. patent application Ser. No. 10/460,926, filed on Jun. 13, 2003, and entitled “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS,” now U.S. Pat. No. 7,156,846, and previously mentioned U.S. patent application Ser. No. 10/970,307, now U.S. Pat. No. 7,232,440, the entire contents of each of which are incorporated by reference herein. Forceps 10 includes a shaft 12 that has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 that mechanically engages the housing 20. As will be discussed in more detail below, the end effector assembly 100 includes a flexible insulating boot 500 configured to cover at least a portion of the exterior surfaces of the end effector assembly 100.


Forceps 10 also includes an electrosurgical cable 310 that connects the forceps 10 to a source of electrosurgical energy, e.g., a generator (not shown). The generator includes various safety and performance features including isolated output, independent activation of accessories, and Instant Response™ technology (a proprietary technology of Valleylab, Inc., a division of Tyco Healthcare, LP) that provides an advanced feedback system to sense changes in tissue many times per second and adjust voltage and current to maintain appropriate power. Cable 310 is internally divided into cable lead 310a, 310b and 310c that each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100. (See FIG. 11).


Handle assembly 30 includes a fixed handle 50 and a movable handle 40. Fixed handle 50 is integrally associated with housing 20 and handle 40 is movable relative to fixed handle 50. Rotating assembly 80 is integrally associated with the housing 20 and is rotatable approximately 180 degrees in either direction about a longitudinal axis “A” (See FIG. 1). Details of the rotating assembly 80 are described in more detail below.


As best seen in FIGS. 2 and 4, housing 20 is formed from two (2) housing halves 20a and 20b that each include a plurality of interfaces 27a-27f that are dimensioned to mechanically align and engage one another to form housing 20 and enclose the internal working components of forceps 10. Fixed handle 50 that, as mentioned above, is integrally associated with housing 20, takes shape upon the assembly of the housing halves 20a and 20b. Movable handle 40 and trigger assembly 70 are of unitary construction and are operatively connected to the housing 20 and the fixed handle 50 during the assembly process. Rotating assembly 80 includes two halves that, when assembled, form a knurled wheel 82 that, in turn, houses a drive assembly 150 and a knife assembly 140.


As mentioned above, end effector assembly 100 is attached at the distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Movable handle 40 of handle assembly 30 is ultimately connected to a the drive assembly 150 that, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween. All of these components and features are best explained in detail in the above-identified commonly owned U.S. application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846.


Turning now to the more detailed features of the present disclosure as described with respect to FIGS. 1-4, movable handle 40 includes a finger loop 41 that has an aperture 42 defined therethrough that enables a user to grasp and move the handle 40 relative to the fixed handle 50. As best seen in FIG. 4, movable handle 40 is selectively moveable about a pair of pivot pins 29a and 29b from a first position relative to fixed handle 50 to a second position in closer proximity to the fixed handle 50 that, as explained below, imparts movement of the jaw members 110 and 120 relative to one another. The movable handle include a clevis 45 that forms a pair of upper flanges 45a and 45b each having an aperture 49a and 49b, respectively, at an upper end thereof for receiving the pivot pins 29a and 29b therethrough and mounting the upper end of the handle 40 to the housing 20. In turn, each pin 29a and 29b mounts to a respective housing half 20a and 20b.


Each upper flange 45a and 45b also includes a force-actuating flange or drive flange 47a and 47b, respectively, each of which is aligned along longitudinal axis “A” and which abut the drive assembly 150 such that pivotal movement of the handle 40 forces actuating flange against the drive assembly 150 that, in turn, closes the jaw members 110 and 120.


Movable handle 40 is designed to provide a distinct mechanical advantage over conventional handle assemblies due to the unique position of the pivot pins 29a and 29b (i.e., pivot point) relative to the longitudinal axis “A” of the shaft 12 and the disposition of the driving flange 47 along longitudinal axis “A”. In other words, by positioning the pivot pins 29a and 29b above the driving flange 47, the user gains lever-like mechanical advantage to actuate the jaw members 110 and 120 enabling the user to close the jaw members 110 and 120 with lesser force while still generating the required forces necessary to effect a proper and effective tissue seal.


In addition, the unilateral closure design of the end effector assembly 100 will also increase mechanical advantage. More particularly, as best shown in FIGS. 3 and 5, the unilateral end effector assembly 100 includes one stationary or fixed jaw member 120 that is mounted in fixed relation to the shaft 12 and a pivoting jaw member 110 mounted about a pivot pin 103 attached to the stationary jaw member 120. A reciprocating sleeve 60 is slidingly disposed within the shaft 12 and is remotely operable by the drive assembly 150 to move jaw member 110 relative to jaw member 120. The pivoting jaw member 110 includes a detent or protrusion 117 that extends from jaw member 110 through an aperture 62 disposed within the reciprocating sleeve 60 (FIG. 3). The pivoting jaw member 110 is actuated by sliding the sleeve 60 axially within the shaft 12 such that a distal end 63 of the aperture 62 abuts against the detent 117 on the pivoting jaw member 110 (See FIG. 3). Pulling the sleeve 60 proximally closes the jaw members 110 and 120 about tissue grasped therebetween and pushing the sleeve 60 distally opens the jaw members 110 and 120 for grasping purposes.


As best illustrated in FIGS. 3-9 and 18, a knife channel 115a and 115b runs through the center of the jaw members 110 and 120, respectively, such that a blade 185 from the knife assembly 140 can cut the tissue 420 grasped between the jaw members 110 and 120 when the jaw members 110 and 120 are in a closed position. More particularly, the blade 185 can only be advanced through the tissue 420 when the jaw members 110 and 120 are closed, thus preventing accidental or premature activation of the blade 185 through the tissue 420. The unilateral end effector assembly 100 is structured such that electrical energy can be routed through the sleeve 60 at the protrusion 117 contact point with the sleeve 60 or using a “brush” or lever (not shown) to contact the back of the moving jaw member 110 when the jaw member 110 closes. In this instance, the electrical energy would be routed through the protrusion 117 to the stationary jaw member 120.


As best illustrated in FIG. 2, jaw member 110 also includes a jaw housing 116 that has an insulative substrate or insulator 114 and an electrically conductive surface 112. Details relating to the specific structure of the jaw members 110 and 120 are disclosed in previously mentioned commonly owned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846.


As best shown in FIGS. 3 and 16, jaw member 110 includes a pivot flange 118 that, in turn, includes protrusion 117 that extends from pivot flange 118 and has an arcuately-shaped inner surface 111 dimensioned to matingly engage the aperture 62 of sleeve 60 upon retraction thereof. Pivot flange 118 also includes a pin slot 119 that is dimensioned to engage pivot pin 103 to allow jaw member 110 to rotate relative to jaw member 120 upon retraction of the reciprocating sleeve 60. As explained in more detail below, pivot pin 103 mounts to the stationary jaw member 120 through a pair of apertures 101a and 101b disposed within a proximal portion of the jaw member 120. The pivot pin 103 serves as a common joint between the jaw members 110 and 120.


Jaw member 120 is designed to be fixed to the end of a rotating tube 160 that is part of the rotating assembly 80 such that rotation of the tube 160 around axis “B” of FIG. 1 will impart rotation to the end effector assembly 100 (See FIGS. 1, 2 and 15). Details relating to the rotation of the jaw members 110 and 120 are described in the previously mentioned commonly owned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846, that is incorporated by reference herein in its entirety.


Fixed jaw member 120 is connected to a second electrical potential through tube 160 that is connected at its proximal end to lead 310c. More particularly, as best shown in FIGS. 2, 4, 10 and 11, fixed jaw 120 is welded to the rotating tube 160 and includes a fuse clip, spring clip or other electromechanical connection that provides electrical continuity to the fixed jaw member 120 from lead 310c. The rotating tube 160 includes an elongated guide slot 167 disposed in an upper portion thereof that is dimensioned to carry lead 311 therealong. Lead 311 carries a first electrical potential to movable jaw 110. A second electrical connection from lead 310c is conducted through the tube 160 to the fixed jaw member 120. Details relating to the electrical connections are described in the aforementioned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846.


A tubular insulating boot 500 is included that is configured to mount over the pivot 103 and at least a portion of the end effector assembly 100. The tubular insulating boot 500 is flexible to permit opening and closing of the jaw members 110 and 120 about pivot 103. The flexible insulating boot 500 is made typically of any type of visco-elastic, elastomeric or flexible material that is biocompatible. Such a visco-elastic, elastomeric or flexible material is preferably durable and is configured to minimally impede movement of the jaw members 110 and 120 from the open to the closed positions. The particularly selected material of the flexible insulating boot 500 has a dielectric strength sufficient to withstand the voltages encountered during electrosurgery, and is suitable for use with a sterilization process that does not substantially impair structural integrity of the boot, such as an ethylene oxide process that does not melt or otherwise impair the structural integrity of the insulating boot 500. The insulating boot 500 is dimensioned to further reduce stray electrical potentials so as to reduce the possibility of subjecting the patient tissue to unintentional electrosurgical RF energy.


As best shown in FIGS. 2, 3, 12, 16 and 17, one end of the tubular insulating boot 500 is disposed on at least a portion of the exterior surface of shaft 12 while the other end of the tubular insulating boot 500 is disposed on at least a portion of the exterior surfaces of jaw members 110 and 120. Operability of the jaw members 110 and 120 is substantially unimpeded and not affected significantly by the flexible insulating boot 500. More particularly, the tubular insulating boot 500 is maintained on the shaft 12 such that boot 500 remains in a substantially stationary position axially with respect to reciprocating sleeve 60 and the jaw members 110 and 120. The flexible insulating boot 500 expands and contracts both radially and axially to cover the pivot pin 103 and to accommodate motion of the protrusion 117 and the movable jaw member 110.


Again, as previously mentioned, since one end of the tubular insulating boot 500 is disposed on at least a portion of the shaft 12 while the other end of the tubular insulating boot 500 is disposed on at least a portion of the exterior surfaces of fixed jaw member 120 and pivoting jaw member 110, operability of the pivoting jaw member 110 and the fixed jaw member 120, either with respect to reciprocation of the reciprocating sleeve 60 or rotation of the rotating tube 160, is not significantly limited by or impeded by the flexible insulating boot 500. The tubular insulating boot 500 does not interface with the shaft 12 but rather remains in a substantially stationary position axially with respect to reciprocating sleeve 60 and the jaw members 110 and 120.


As best shown in FIGS. 1, 4 and 10, once actuated, handle 40 moves in a generally arcuate fashion towards fixed handle 50 about the pivot pins 29a and 29b that forces driving flange 47 proximally against the drive assembly 150 that, in turn, pulls reciprocating sleeve 60 in a generally proximal direction to close jaw member 110 relative to jaw member 120. Moreover, proximal rotation of the handle 40 causes the locking flange 44 to release, i.e., “unlock”, the trigger assembly 70 for selective actuation.


The operating features and relative movements of the internal working components of the forceps 10 and the trigger assembly 70 are shown by phantom representation in the various figures and explained in more detail with respect to the aforementioned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846, and also in U.S. patent application Ser. No. 10/970,307, now U.S. Pat. No. 7,232,440, the contents of both of which are incorporated herein in their entirety.


As can be appreciated, as illustrated in FIG. 15, the utilization of an over-the-center pivoting mechanism will enable the user to selectively compress the coil spring 67 a specific distance that, in turn, imparts a specific pulling load on the reciprocating sleeve 60 that is converted to a rotational torque about the jaw pivot pin 103. As a result, a specific closure force can be transmitted to the opposing jaw members 110 and 120. The combination of the mechanical advantage of the over-the-center pivot along with the compressive force associated with the compression spring 67 facilitate and assure consistent, uniform and accurate closure pressure about tissue within a desired working pressure range of about 3 kg/cm2 to about 16 kg/cm2 and, preferably, about 7 kg/cm2 to about 13 kg/cm2. By controlling the intensity, frequency and duration of the electrosurgical energy applied to the tissue, the user can seal tissue.


As best shown in FIGS. 4, 6-9 and 18, the knife assembly 140 includes an elongated rod 182 having a bifurcated distal end comprising prongs 182a and 182b that cooperate to receive a knife bar 184 therein. The knife assembly 180 also includes a proximal end 183 that is keyed to facilitate insertion into tube 160 of the rotating assembly 80. A knife wheel 148 is secured to the knife bar 182 by a pin 143. More particularly, the elongated knife rod 182 includes apertures 181a and 181b that are dimensioned to receive and secure the knife wheel 148 to the knife rod 182 such that longitudinal reciprocation of the knife wheel 148, in turn, moves the elongated knife rod 182 to sever tissue 420. More details relating to the operational features of the knife assembly 180 are discussed in the previously mentioned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846, which is incorporated herein by reference in its entirety.


As best shown in the exploded view of FIG. 4 and in FIGS. 14-15, the electrical leads 310a, 310b, 310c and 311 are fed through the housing 20 by electrosurgical cable 310. More particularly, the electrosurgical cable 310 is fed into the bottom of the housing 20 through fixed handle 50. Lead 310c extends directly from cable 310 into the rotating assembly 80 and connects (via a fused clip or spring clip or the like) to tube 60 to conduct the second electrical potential to fixed jaw member 120. Leads 310a and 310b extend from cable 310 and connect to the hand switch or joy-stick-like toggle switch 200. Details relating to the switch 200 are disclosed in the aforementioned U.S. patent application Ser. Nos. 10/460,926 and 10/970,307, now U.S. Pat. Nos. 7,156,846 and 7,232,440, respectively.


The jaw members 110 and 120 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through the tissue to form seal 450, as shown in FIGS. 18 and 19. The two electrical potentials are isolated from one another by virtue of the insulative sheathing surrounding cable lead 311. At least one of the jaw members 110 and 120 is adapted to connect to a source of electrosurgical energy (a generator (not shown)) such that at least one of the jaw members 110 and 120 is capable of conducting electrosurgical energy to tissue held therebetween.


In addition, by virtue of the flexible insulating boot 500 of the present disclosure, desired motion of and force between the jaw members 110 and 120 is maintained and substantially unimpeded while at the same time insulating boot 500 further insulates the patient tissue from possible stray energy from the exterior surfaces of the jaw members 110 and 120, and the associated elements, e.g., pivot 103 (See FIG. 2). Details relating to various forceps that may be utilized with an insulating boot include the commonly-owned aforementioned instrument described in U.S. patent application Ser. Nos. 10/460,926 and 10/970,307, now U.S. Pat. Nos. 7,156,846 and 7,232,440, respectively, and commonly-owned and concurrently filed U.S. Provisional patent application Ser. No. 60/722,177 entitled “INLINE VESSEL SEALER AND DIVIDER”, filed on Sep. 30, 2005, filed as U.S. patent application Ser. No. 11/540,335, published as U.S. Patent Application Publication No. US2007/0078456 A1, the entire contents of which are incorporated by reference herein.


As mentioned above with respect to FIG. 3, at least one jaw member, e.g., 120, may include a stop member 750 that limits the movement of the two opposing jaw members 110 and 120 relative to one another. The stop member 750 extends from the sealing surface 122 a predetermined distance according to the specific material properties (e.g., compressive strength, thermal expansion, etc.) to yield a consistent and accurate gap distance “G” (preferably between about 0.001 inches to about 0.006 inches, i.e., between about 0.03 mm to about 0.15 mm) during sealing (FIG. 18). The non-conductive stop members 750 are sprayed or otherwise deposited onto the jaw members 110 and 120 (e.g., overmolding, injection molding, etc.), stamped onto the jaw members 110 and 120 or deposited (e.g., deposition) onto the jaw members 110 and 120. For example, one technique involves thermally spraying a ceramic material onto the surface of the jaw member 110 and 120 to form the stop members 750.


As best shown in FIGS. 4, 6-9, and 18-19, as energy is being selectively transferred to the end effector assembly 100, across the jaw members 110 and 120 and through the tissue 420, a tissue seal 450 forms isolating two tissue halves 420a and 420b. The knife assembly 140 is then activated via the trigger assembly 70, to progressively and selectively divide the tissue 420 along an ideal tissue plane in precise manner to effectively and reliably divide the tissue 420 into two sealed halves 420a and 420b (See FIGS. 18-19) with a tissue gap 475 therebetween. The knife assembly 140 allows the user to quickly separate the tissue 420 immediately after sealing or, if desired, without sealing, without substituting a cutting instrument through a cannula or trocar port. As can be appreciated, accurate sealing and dividing of tissue 420 is accomplished with the same forceps 10. Again, desired motion or movement of and force between the jaw members 110 and 120 is maintained and substantially unimpeded in the presence of the flexible insulating boot 500 of the present disclosure. For example, FIG. 16 is a side view of the end effector assembly 100 having the flexible insulating boot 500 of the present disclosure illustrating the jaw members 110 and 120 in the open position. FIG. 17 is a side view of the end effector assembly 100 having the flexible insulating boot 500 of the present disclosure illustrating the jaw members 110 and 120 in the closed position.



FIGS. 20 and 21 show an open forceps 1000 for use with an insulating boot 1500 of the present disclosure. Forceps 1000 includes elongated shaft portions 1012a and 1012b each having a proximal end 1014a, 1014b and a distal end 1016a and 1016b, respectively. The forceps 1000 includes an end effector assembly 1100 that attaches to the distal ends 1016a and 1016b of shafts 1012a and 1012b, respectively. The end effector assembly 1100 includes pair of opposing jaw members 1110 and 1120 that are pivotably connected about a pivot pin 1065 and that are movable relative to one another to grasp vessels and/or tissue.


Each shaft 1012a and 1012b includes a handle 1015 and 1017, respectively, disposed at the proximal end 1014a and 1014b thereof that each define a finger hole 1015a and 1017b, respectively, therethrough for receiving a finger of the user. Finger holes 1015a and 1017b facilitate movement of the shafts 1012a and 1012b relative to one another that, in turn, pivot the jaw members 1110 and 1120 from an open position wherein the jaw members 1110 and 1120 are disposed in spaced relation relative to one another to a clamping or closed position wherein the jaw members 1110 and 1120 cooperate to grasp tissue or vessels therebetween.


Shaft 1012a is secured about pivot 1065 and positioned within a cut-out or relief 1021 such that shaft 1012a is movable relative to shaft 1012b. More particularly, when the user moves the shaft 1012a relative to shaft 1012b to close or open the jaw members 1110 and 1120, the distal portion of shaft 1012a moves within cutout 1021. One of the shafts, e.g., 1012b, includes a proximal shaft connector 1077 that is designed to connect the forceps 1000 to a source of electrosurgical energy such as an electrosurgical generator (not shown).


The distal end of the cable 1070 connects to a handswitch 1050 to permit the user to selectively apply electrosurgical energy as needed to seal tissue or vessels grasped between jaw members 1110 and 1120 (See FIGS. 20, 21 and 25). As best shown in FIGS. 22-23, jaw members 1110 and 1120 include outer insulative coatings or layers 1116 and 1126 that are dimensioned to surround the outer periphery of jaw member 1110 and 1120 and expose electrically conductive sealing surfaces 1112 and 1122, respectively on an inner facing surface thereof. The electrically conducive sealing surfaces 1112 and 1122 conduct electrosurgical energy to the tissue upon activation of the handswitch 1050 such that the two opposing electrically conductive sealing surfaces 1112 and 1122 conduct bipolar energy to seal tissue disposed between the sealing surfaces 1112 and 1122 upon activation. At least one of the jaw members 1110 and 1120 is adapted to connect to the source of electrosurgical energy (not shown) such that at least one of the jaw members 1110 and 1120 is capable of conducting electrosurgical energy to tissue held therebetween.


As best shown in FIG. 24, the upper jaw member 1110 includes an exterior surface or outer edge 1210 extending from a distal end or tip 1215 of the upper jaw member 1110. Similarly, the lower jaw member 1120 includes an exterior surface or outer edge 1220 extending from a distal end or tip 1225 of the lower jaw member 1120. In addition, in accordance with the present disclosure, generally tubular insulating boot 1500 having a length “L” may be positioned about at least a portion of the end effector assembly 1100. The distal end 1504 of the insulating boot 1500 is disposed on the outer edge 1210 of the upper jaw member 1110 at a distance “d” retracted away from the tip 1215 and at a corresponding position on the outer edge 1220 of the lower jaw member 1120 retracted away from the tip 1225.


In one embodiment, the length “L” of the insulating boot 1500 is such that the proximal end 1502 of the insulating boot 1500 is disposed on the outer edges 1210 and 1220 so that the pivot pin 1065 remains exposed. In an alternate embodiment shown in phantom in FIG. 24, the length “L” of the insulating boot 1500 is such that the proximal end 1502 of the insulating boot 1500 is disposed on the outer edges 1210 and 1220 so that the pivot pin 1065 is covered by the insulating boot 1500. Those skilled in the art recognize that the distance “d” and the length “L” of the insulating boot 1500 are chosen so as to maximize continued operability of the jaw members 1110 and 1120 to perform their intended functions.


In either embodiment, the insulating boot 1500 limits stray current dissipation to surrounding tissue upon activation and continued use of the forceps 1000. As mentioned above, the insulating boot 1500 is made from any type of visco-elastic, elastomeric or flexible material that is biocompatible and that is configured to minimally impede movement of the jaw members 1110 and 1120 from the open to closed positions. Moreover, in one embodiment, the material is selected to have a dielectric strength sufficient to withstand the voltages encountered during electrosurgery, and is suitable for use with a sterilization process that does not substantially impair structural integrity of the boot, such as an ethylene oxide process, More particularly, the insulating boot 1500 further reduces stray electrical potential so as to reduce the possibility of subjecting the patient tissue to unintentional electrosurgical RF energy.


As best shown in FIG. 24, the tubular insulating boot 1500 is disposed on at least a portion of the exterior surface 1210 of jaw members 1110 and 1120 such that operability of the jaw members 1110 and 1120 is substantially unimpeded and not affected significantly by the flexible insulating boot 1500. More particularly, the tubular insulating boot 1500 remains in a substantially stationary position axially with respect to the jaw members 1110 and 1120, i.e., the distance “d” remains substantially constant during motion of the upper jaw member 1110 with respect to the lower jaw member 1120. However, the flexible insulating boot 1500 expands and contracts both radially and axially to accommodate motion of the movable jaw member 1110, and to cover the pivot pin 1103 where applicable.


Details relating to the jaw members 1110 and 1120 and various elements associated therewith are discussed in commonly-owned U.S. application Ser. No. 10/962,116, filed on Oct. 8, 2004, and entitled “Open Vessel Sealing Instrument with Hourglass Cutting Mechanism and Over-Ratchet Safety”, now U.S. Pat. No. 7,811,283, the entire contents of which are hereby incorporated by reference herein.


As best illustrated in FIG. 23, jaw member 1120 (or jaw member 1110) includes one or more stop members 1175 disposed on the inner facing surface of the electrically conductive sealing surface 1122. The stop members are designed to facilitate gripping and manipulation of tissue and to define a gap “G” between opposing sealing surfaces 1112 and 1122 during sealing (See FIGS. 24 and 25). The separation distance during sealing or the gap distance “G” is within the range of about 0.001 inches (about 0.03 millimeters) to about 0.006 inches (about 0.016 millimeters).for optimizing the vessel sealing process.


As best seen in FIGS. 22 and 23, the jaw members 1110 and 1120 include a knife channel 1115 disposed therebetween that is configured to allow distal translation of a cutting mechanism (not shown) therewithin to sever tissue disposed between the seal surfaces 1112 and 1122. The complete knife channel 1115 is formed when two opposing channel halves 1115a and 1115b associated with respective jaw members 1110 and 1120 come together upon grasping of the tissue. Details relating to the cutting mechanism and associated actuating mechanism (not shown) are discussed in commonly-owned U.S. application Ser. No. 10/962,116, now U.S. Pat. No. 7,811,283, the entire contents of which are hereby incorporated by reference herein.



FIG. 21 shows the details of a ratchet 1030 for selectively locking the jaw members 1110 and 1120 relative to one another during pivoting. A first ratchet interface 1031a extends from the proximal end 1014a of shaft member 1012a towards a second ratchet interface 1031b on the proximal end 1014b of shaft 1012b in general vertical registration therewith such that the inner facing surfaces of each ratchet 1031a and 1031b abut one another upon closure of the jaw members 1110 and 1120 about the tissue 400. The position associated with the cooperating ratchet interfaces 1031a and 1031b holds a specific, i.e., constant, strain energy in the shaft members 1012a and 1012b that, in turn, transmits a specific closing force to the jaw members 1110 and 1120 within a specified working range of about 3 kg/cm2 to about 16 kg/cm2 when the jaw members 1110 and 1120 are ratcheted.


In operation, the surgeon utilizes the two opposing handle members 1015 and 1017 to grasp tissue between jaw members 1110 and 1120. The surgeon then activates the handswitch 1050 to provide electrosurgical energy to each jaw member 1110 and 1120 to communicate energy through the tissue held therebetween to effect a tissue seal. Once sealed, the surgeon activates the actuating mechanism to advance the cutting blade through the tissue to sever the tissue 400 along the tissue seal.


The jaw members 1110 and 1120 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through the tissue to form a tissue seal. Each jaw member, e.g., 1110, includes a uniquely-designed electrosurgical cable path disposed therethrough that transmits electrosurgical energy to the electrically conductive sealing surface 1112. The two electrical potentials are isolated from one another by virtue of the insulative sheathing surrounding each cable lead 1071a, 1071b and 1071c. In addition, to further enhance safety, as noted previously, insulating boot 1500 may be positioned about at least a portion of the end effector assembly 1000, and optionally the pivot 1065, to limit stray current dissipation to surrounding tissue upon activation and continued use of the forceps 1010. As mentioned above, the insulating boot 1500 is made from any type of visco-elastic, elastomeric or flexible material that is biocompatible and that is configured to minimally impede movement of the jaw members 1110 and 1120 from the open to closed positions.


The presently disclosed insulating boot may also be utilized with a forceps 2010 designed for both bipolar electrosurgical treatment of tissue (either by vessel sealing as described above or coagulation or cauterization with other similar instruments) and monopolar treatment of tissue. For example, FIGS. 26-32 show one embodiment of a forceps 2010 that includes a monopolar element, e.g., element 2154 that may be selectively extended and selectively activated to treat tissue. FIGS. 33A-33B show alternate embodiments of the present disclosure that show that the knife 2185 may be extended from the distal end of the end effector assembly 2100 and selectively energized to treat tissue in a monopolar fashion. FIG. 34A shows another embodiment of a forceps 2010′ wherein the bottom jaw member 2120′ extends distally from the top jaw member 2110′ to allow the surgeon to selectively energize the bottom jaw member 2120′ and treat tissue in a monopolar fashion. FIG. 34B shows yet another embodiment of a forceps 2010″ wherein the jaw members 2110″ and 2120″ include tapered distal ends that are selectively energized with a single electrical potential to treat tissue in a monopolar fashion. FIGS. 35A-38B show other configurations of the end effector assembly and/or bottom or second jaw member that are configured to suit a particular purpose or to achieve a desired surgical result. An insulating boot 2500 may be configured to cover the various uninsulated elements of the end effector assembly 1100 of the above mentioned and below further described elements including but not limited to portions of one or both of the jaw members 2110 and 2120, the pivot 2103 and the knife assembly 2180 etc. The insulating boot 2500 is contemplated to be particularly useful with forceps capable of monopolar activation since the boot prevents the various uninsulated elements from acting as alternative or unintended current sources or paths during activation that may result in unintended or undesirable tissue effects during a particular surgical procedure.


More particularly, FIGS. 26-31 show one embodiment wherein a monopolar element 2154 is housed for selective extension within one jaw member, e.g., jaw member 2120, of the end effector assembly 2100. Monopolar element 2154 is designed to move independently from knife assembly 2180 and may be extended by further proximal movement of the trigger assembly 2070 (FIGS. 26, 30 and 31) or by a separate actuator 2450 (FIG. 32).


The monopolar element 2154 may be connected to a reciprocating rod 2065 that extends through an elongated notch 2013 in the outer periphery of the shaft 2012 as best seen in FIG. 27. Drive rod 2060 that actuates the knife 2185 extends through the inner periphery of shaft 2012. In order to extend the monopolar element 2154, the jaw members 2110 and 2120 are initially closed and the knife 2185 is advanced distally utilizing the trigger assembly 2070 (See FIG. 30). As best shown in FIG. 28, the trigger 2071 is initially advanced to translate the knife 2185 distally to cut through tissue, i.e., the “cut” stage (shown in phantom). Thereafter and as shown in FIGS. 28 and 31, the trigger 2071 may be further actuated in a proximal direction to extend the monopolar element 2154, i.e., the “extend” stage (shown in phantom).


As best shown in FIG. 29, a tubular insulating boot 2500 is included that is configured to mount over the pivot 2103, connecting the upper, pivoting jaw member 2110 with the lower, fixed jaw member 2120, and over at least a portion of the end effector assembly 2100. The tubular insulating boot 2500 is flexible to permit opening and closing of the jaw members 2110 and 2120 about the pivot 2103. The flexible insulating boot 2500 is made typically of any type of visco-elastic, elastomeric or flexible material that is biocompatible. More particularly, the insulating boot 2500 is configured to reduce stray electrical potential so as to reduce the possibility of subjecting the patient tissue to unintentional electrosurgical RF energy.


As best shown in FIG. 29, one end of the tubular insulating boot 2500 is disposed on at least a portion of the exterior surface of shaft 2012 while the other end of the tubular insulating boot 2500 is disposed on at least a portion of the exterior surfaces of fixed jaw member 2120 and pivoting jaw member 2110 such that operability of the jaw members 2110 and 2120 is substantially unimpeded and not affected significantly by the flexible insulating boot 2500. More particularly, the tubular insulating boot 2500 is maintained on the shaft 2012 such that boot 2500 remains in a substantially stationary position axially with respect to reciprocating sleeve 2060 and the jaw members 2110 and 2120. The flexible insulating boot 2500 expands and contracts both radially and axially to cover the pivot pin 2103 and to accommodate motion of protrusion 2117 and the movable jaw member 2110.


Details relating to this particular embodiment of a monopolar forceps is disclosed in aforementioned commonly-owned U.S. application Ser. No. 10/970,307, now U.S. Pat. No. 7,232,440, the entire contents of which are hereby incorporated by reference herein.



FIG. 32 shows another embodiment of the present disclosure wherein the monopolar element 2154 is selectively extendible utilizing a second actuator 2450. As described above, the knife 2185 is advanced by actuating the trigger 2071 in a generally proximal direction. The monopolar element 2154 is selectively advanceable independently of the knife 2185 and may be extended when the jaw members 2110 and 2120 are disposed in either the open configuration or closed configuration. The actuator 2450 may be electrically configured to activate the monopolar element 2154 automatically once extended or manually by activation switch 2200 or perhaps another switch (not shown). As mentioned above, a safety circuit 2460 may be employed to deactivate jaw members 2110 and 2120 when the monopolar element 2154 is extended such that activation of the switch 2200 energizes the monopolar element 2154. In the case of a separate activation switch for the monopolar element, the safety circuit would deactivate the switch 2200.


In a similar manner as discussed previously with respect to FIG. 29, and as shown in FIG. 32, the tubular insulating boot 2500 is included that is configured to mount over the pivot 2103 and at least a portion of the end effector assembly 2100. The tubular insulating boot 2500 is flexible to permit opening and closing of the jaw members 2110 and 2120 about pivot 2103.


Those skilled in the art recognize that the material properties of the insulating boot 2500 and operability considerations from disposition of the insulating boot 2500 are in all respects either similar to or in some cases identical to those described in the preceding discussion with respect to FIGS. 26-31.



FIGS. 33A-33C show another alternate embodiment of the present disclosure of a forceps 2200 wherein the knife 2185 can be extended distally beyond the jaw members 2210 and 2220, respectively, and separately energized to treat tissue. In this instance, when the knife is extended beyond the jaw members 2210 and 2220, respectively, the knife 2185 becomes the monopolar element.


As illustrated in FIGS. 33A-33C and partially in FIG. 34B, once the knife 2185 extends beyond the jaw members 2110 and 2120, a safety or switch deactivates energizing circuitry to the jaw members 2110 and 2120 and activates the energizing circuitry to the knife 285 such that activation of the switch 2200 energizes the knife 2185 and the jaw members remain neutral. For example, the stop 2119 may act as a safety switch such that upon being forced by the knife 2185 out of or away from the knife channel 2115, the stop 2119 deactivates circuitry to the jaw members 2210 and 2220 and activates circuitry to the monopolar knife 2185 and the return electrode 2550. A separate lead 2069 may be used to electrically communicate with the generator 2300 (See FIG. 34B). As can be appreciated, the knife 2185 may now be used in a monopolar fashion to treat tissue.


Upon release of a trigger such as trigger 70 (See FIG. 26), the knife 2185 automatically retracts into the knife channel 2115 and back to the pre-actuated position as shown in FIG. 33A. At the same time, the stop 2119 reverts to its original position to temporarily block the knife channel 2115 for subsequent actuation.


Again, in a similar manner as discussed previously with respect to FIG. 29, the tubular insulating boot 2500 is included that is configured to mount over the pivot 2103 and at least a portion of the end effector assembly 2200. The tubular insulating boot 2500 is flexible to permit opening and closing of the jaw members 2210 and 2220 about pivot 2103.


Again, those skilled in the art recognize that the material properties of the insulating boot 2500 and operability considerations from disposition of the insulating boot 2500 are similar to those described in the preceding discussions.


As shown in FIG. 34A and partially in the schematic FIG. 34B, another embodiment of a forceps 2010′ according to the present disclosure wherein the lower jaw member 2120′ is designed to extend beyond the distal end of jaw member 2110′. In order to switch from a bipolar mode of the operation to a monopolar mode, the surgeon activates a switch or control that energizes jaw member 2120′ to a first potential and activates a return pad 2550 to a second potential. Energy is transferred from jaw member 2120, through tissue, and to the return pad 2550 to treat tissue. The distal end of jaw member 2120′ acts as the monopolar element for treating the tissue and may be shaped accordingly to enhance electrosurgical effect.



FIG. 34B shows yet another schematic embodiment of a forceps 2010″ according to the present disclosure wherein the distal ends of both jaw members 2110″ and 2120″ are shaped to treat tissue when disposed in a monopolar mode. More particularly, the distal tips 2112a″ and 2122a″ are preferably elongated or tapered to enhance energy delivery when the forceps 2010″ is disposed in the monopolar mode. When disposed in the bipolar mode, the tapered ends 2112a″ and 2122a″ do not effect treating tissue between electrically conductive plates 2112″ and 2122″.


A control switch 2505 is preferably included that regulates the transition between bipolar mode and monopolar mode. Control switch 2505 is connected to generator 2300 via cables 2360 and 2370. A series of leads 2510, 2520 and 2530 are connected to the jaw members 2110″, 2120″ and the return electrode 2550, respectively. As best shown in the table depicted in FIG. 34B, each lead 2510, 220, and 2530 is provided with an electrical potential or remains neutral depending upon the particular “mode” of the forceps 2010″. For example, in the bipolar mode, lead 2510 (and, in turn, jaw member 2110″) is energized with a first electrical potential and lead 2520 (and, in turn, jaw member 2120″) is energized with second electrical potential. As a result thereof, electrosurgical energy is transferred from jaw member 2110″ through the tissue and to jaw member 2120″. The return electrode 2550 remains off or neutral.


In a monopolar mode, jaw member 2110″ and 2120″ are both energized with the same electrical potential and the return pad 2550 is energized with a second electrical potential forcing the electrical current to travel from the jaw members 2110″ and 2120″, through the tissue and to the return electrode 2550. This enables the jaw members 2110″ and 2120″ to treat tissue in a monopolar fashion that, as mentioned above, advantageously treats a vascular tissue structures and/or allows quick dissection of narrow tissue planes. As can be appreciated, all of the leads 2510, 2520 and 2530 may be deactivated when the forceps 2010″ is turned off or idle.


Yet again, as discussed previously with respect to FIG. 29, the tubular insulating boot 2500 is included that is configured to mount over the pivot 2103 and at least a portion of the end effector assembly 2100′.



FIGS. 35A and 35B show an alternate embodiment of the forceps 2010 according to the present disclosure that includes a second or bottom jaw member 2520′ that is manufactured such that the distal end 2522a of the tissue sealing surface 2522 extends beyond the bottom jaw housing 2524. More particularly, in this particular embodiment, the tissue sealing surface 2522 is made from a stamped sheet metal that is formed atop a stamped sheet metal skeleton 2532. The proximal end of the sheet metal skeleton 2532 may be configured with various pivot points (or apertures 2534), cam slots or grooves depending upon the particular type of pivot action associated with the forceps 2010. As can be appreciated, the sealing surface 2522 may be supported atop a hem or spine 2535 that extends along the skeleton 2532 by many ways known in the art.


An insulating layer 2540 is disposed between the skeleton 2532 and the tissue sealing surface 2522 to isolate the electrically conductive sealing surface 2522′ from hem 2535 during activation. The stamped tissue sealing surface 2522′ is formed of a double layer of sheet metal material separated by a slot or knife channel 2515 that allows selective reciprocation of a knife, such as knife 2185 disclosed in FIGS. 33A-33C, therein. The distal end 2522a of the tissue sealing surface 2522 may be bent 180.degree. to provide a larger conductive surface area that extends beyond the jaw housing 2524.


It is envisioned that the tissue sealing surface 2522 may be curved or straight depending upon a particular surgical purpose. The jaw housing 2524 may be overmolded to encapsulate the hem 2535 of the skeleton 2532 and sealing plate 2522 that serves to insulate surrounding tissue from the conductive surfaces of the sealing plate 2522 as well as to give the jaw member 2520′ a desired shape at assembly.


In a similar manner as discussed previously with respect to FIG. 29, and as shown in FIG. 32, the tubular insulating boot 2500 is included of which one end is configured to mount over the sheet metal skeleton 2532 and pivot pin aperture 2534 and another end of the insulating boot 2500 configured to mount over at least a portion of an exterior surface of reciprocating sleeve 2060. The tubular insulating boot 2500 is flexible to permit opening and closing of the jaw members 2110 and 2520′ about pivot 2103.


Details relating to the forceps 2010′, which is manufactured such that the distal end 2522a′ of the tissue sealing surface 2522 extends beyond the bottom jaw housing 2524, are disclosed in previously mentioned commonly owned U.S. patent application Ser. No. 10/970,307, now U.S. Pat. No. 7,232,440, that is incorporated by reference herein.



FIGS. 36A and 36B show another embodiment of the bottom or second jaw member 2620 that includes both an electrically conductive sealing surface 2622 for sealing purposes as well as an electrically conductive surface 2632 that is designed for monopolar activation. More particularly, the bottom jaw member 2620 includes a jaw housing 2624 that supports (or encapsulates) a tissue sealing surface 2622. A knife channel 2615 is disposed along the length of the tissue sealing surface 2622 and allows reciprocation of a knife therein. An insulating layer 2634 is positioned at or proximal to the distal end of the tissue sealing surface 2622 distal to the knife channel 2615. A second conductive material 2632 (that may or may not be the same material as tissue sealing surface 2622) is disposed on the opposite side of the insulating layer 2634.


It is envisioned that the insulating material 2634 will isolate the monopolar portion 2632 during electrical activation of tissue surface 2622 and isolate the tissue surface 2622 during electrical activation of monopolar element 2632. As can be appreciated, the two different electrically conductive elements 2622 and 2632 are connected to electrical generator 2300 by different electrical connections and may be selectively activated by the user. Various switches or electrical control elements or the like (not shown) may be employed to accomplish this purpose.


Still yet again, to further enhance safety, as discussed previously with respect to FIG. 29, the tubular insulating boot 2500 is included that is configured to mount over the pivot (not shown) and at least a portion of the end effector assembly. The tubular insulating boot 2500 is flexible to permit opening and closing of the jaw members 2110 and 2620.


Bottom or second jaw member 2620 includes both an electrically conductive sealing surface 2622 for sealing purposes as well as an electrically conductive surface 2632 that is designed for monopolar activation are disclosed in previously mentioned commonly owned U.S. patent application Ser. No. 10/970,307, now U.S. Pat. No. 7,232,440, which is incorporated by reference herein.



FIGS. 37A and 37B show another embodiment of an end effector assembly 2700 according to the present disclosure that includes top and bottom jaw members 2710 and 2720, respectively each including similar jaw elements as described above, i.e., tissue sealing surfaces 2712 and 2722, respectively and insulative housings 2714 and 2724, respectively. In a similar manner as mentioned above with respect to tissue sealing surface 2622 and knife channel 2615, the tissue sealing surfaces 2712 and 2722 of jaw members 2710 and 2720 mutually cooperate to form a knife channel 2715 that allows knife 2185 to be selectively reciprocated therethrough. More particularly, jaw member 2710 includes a first part of knife channel 2715a and jaw member 2720 includes a second part of the knife channel 2715b that align to form knife channel 2715.


As best shown in FIG. 37B, knife channels 2715a and 2715b are aligned in vertical registration along one side of the jaw members 2710 and 2720 to allow reciprocation of knife 2185 therethrough. Knife channel 2715b of jaw member 2720 is wider (i.e., as measured transversally across the length of the jaw member 2720) and includes a separate channel 2715b1 that is dimensioned to slidingly receive a monopolar element 2754 therethrough. A trigger 70 (or the like) may be utilized as described above with respect to FIGS. 26-31 to extend the monopolar element 2754 for treatment of tissue. In addition, the monopolar element 2754 and the knife 2185 may be made of separate components, as shown, or the monopolar element 2754 and the knife 2185 may be integral with one another.


As can be appreciated various switching algorithms may be employed to activate both the bipolar mode for vessel sealing and the monopolar mode for additional tissue treatments (e.g., dissection). Also, a safety or lockout may be employed either electrically, mechanically or electromechanically to “lock out” one electrical mode during activation of the other electrical mode. In addition, a toggle switch (or the like) may be employed to activate one mode at a time for safety reasons. The monopolar element 2754 may also include a safety (either mechanical, electrical or electromechanical—not shown) that only allows electrical activation of the monopolar element 2754 when the monopolar element 2754 is extended from the distal end of jaw member 2720. Insulating boot 2500 is included that is configured to mount over the pivot 2103 and at least a portion of the end effector assembly 2100.



FIGS. 38A and 38B show yet another embodiment of bottom jaw member 2820 that may be utilized for both bipolar vessel sealing and monopolar tissue dissection or other monopolar tissue treatments. More particularly, jaw member 2820 includes an outer jaw housing 2824 that is overmolded to encapsulate a tissue sealing plate 2822 therein. Tissue sealing plate 2822 includes a knife channel 2815 for reciprocating a knife as described in detail above. Tissue sealing plate 2822 also includes a sealing surface 2822a that is disposed in opposing relation to a corresponding sealing surface (not shown) on the opposite upper jaw member (not shown).


Tissue sealing surface 2822 also includes a sealing surface extension 2822b that extends through a distal end 824a of the overmolded jaw housing 2824. As can be appreciated, sealing surface extension 2822b is designed for monopolar tissue dissection, enterotomies or other surgical functions and may be separately electrically energized by the user by a hand switch, footswitch or at the generator 2300 in a similar manner as described above (See FIG. 34B). As can be appreciated, the extension 2822b also serves to further anchor the sealing plate 2822 in the jaw housing 2824 during the overmolding process. Insulating boot 2500 is included that is configured to mount over the pivot 2103 and at least a portion of the end effector assembly.


Those skilled in the art recognize that while the insulating boots 500, 1500, or 2500 are disclosed as having a generally tubular configuration, the cross-section of the generally tubular configuration can assume substantially any shape such as, but not limited to, an oval, a circle, a square, or a rectangle, and also include irregular shapes necessary to cover at least a portion of the jaw members and the associated elements such as the pivot pins and jaw protrusions, etc, and are described in more detail below.



FIG. 39 illustrates one embodiment in which the shaft 12 and end effector assembly 100 of the endoscopic bipolar forceps 10 of FIG. 1. The shaft 12 and at least one of the jaw members 110 or 120 form at least one mechanically interfacing surface 3010 therebetween. An insulating boot 3500 with interfacing surfaces 3510 on an interior portion of the insulating boot 3500 and an extension shroud 3512 extending distally from the interfacing surfaces 3510 is disposed on at least a portion of an exterior surface 110a of jaw member 110 and/or at least a portion of an exterior surface 120a of jaw member 120. The at least one mechanically interfacing surface 3510 of the interior portion of the insulating boot 3500 and the at least one mechanically interfacing surface 3010 formed or disposed between the shaft 12 and at least one of the jaw members 110 or 120 may be configured as a groove-like interlocking interface to maintain the position of the boot 3500 with respect to the jaw members 110 and 120 during usage.



FIG. 40 illustrates one embodiment of an insulating boot 3500′ with interfacing surfaces 3510 and an extension shroud 3512′ extending distally from the interfacing surfaces 3510 and having a tapered profile on the interior portion of the insulating boot 3500′. FIG. 41 is a cross-sectional profile view of one embodiment of an insulating boot 3500″ with interfacing surfaces 3510′ at the distal end of the boot 3500″ and therefore the insulating boot 3500″ is without an extension shroud.



FIG. 42A illustrates one embodiment of an insulating boot 3505 with shaft member 12 or jaw members 110 or 120 having mechanically interfacing surfaces 3020 disposed or formed on an exterior surface 12a of the shaft 12 or on at least one of exterior surface 110a or 120a of jaw members 110 and 120, respectively, that interface with mechanically interfacing surfaces 3520 of the interior portion of the insulating boot 3505 in a key-like rotational interlocking interface. The interfacing surfaces 3020 and 3520 interlock with each other via rotation around the longitudinal centerline axis of the shaft 12.



FIG. 42B illustrates one embodiment of an insulating boot 3505′ with a shaft member 12 or jaw members 110 or 120 having mechanically interfacing surfaces 3020′ disposed or formed on an exterior surface 12a of the shaft 12 or on at least one of exterior surface 110a or 120a of jaw members 110 and 120, respectively, that interface with mechanically interfacing surfaces 3520′ of the interior portion of the insulating boot 3505′ in a key-like translational interlocking interface. The interfacing surfaces 3020′ and 3520′ interlock with each other via translation along the longitudinal centerline axis of the shaft 12.



FIG. 43A illustrates the endoscopic bipolar forceps 10 of FIG. 1 showing shaft 12 and end effector assembly 100 having an insulating boot 3530 with a distal end 3532 having a concave curvature 3535. The distal end 3532 of the insulating boot 3530 overlaps the proximal ends of the jaw members 110 and 120, respectively, of the end effector assembly 100 and may extend distally to the backs 110b and 120b of the jaw members 110 and 120, respectively. The concave curvature 3535 facilitates opening of the jaws 110 and 120 and reduces displacement of boot material.



FIG. 43B illustrates one embodiment of the endoscopic bipolar forceps 10 of FIG. 1 showing rigid jaw members 110 and 120 having a substantially circular cross-section and a flexible insulating boot 3530′ having a substantially oval cross-section which may facilitate conforming of the boot 3530′ to the shape of the forceps 10.



FIG. 44 illustrates one embodiment in which the shaft 12 and end effector assembly 100 of the endoscopic bipolar forceps of FIG. 39 includes the insulating boot 3500′ with interfacing surfaces 3510 and an extension shroud 3512′ of FIG. 40 having a tapered profile extending distally from the interfacing surfaces 3510. A heat shrink material 3600 is wrapped around proximal end 3502′ of the insulating boot 3500′ and around at least a portion of the exterior surface 12a of the shaft 12. The heat shrink material 3600 may provide increased insulation retention and resistance to rolling or other movement of the boot 3500′.



FIG. 45 illustrates one embodiment of the shaft 12 and end effector assembly 100 of the endoscopic bipolar forceps 10 of FIG. 1 that includes a translucent insulating boot 4500 with an alignment indicator 4502 having a linear configuration. The alignment indicator 4502 and the translucent property of the insulating boot 4500 facilitate establishment of the proper position of the insulating boot 4500 on the shaft exterior surface 12a and with respect to the jaw members 110 and 120. The boot 4500 may have a coloring tint to facilitate detecting damage or mis-positioning of the boot. In accordance with one embodiment, the jaw members 110 and 120 may be colored, e.g., blue, to indicate a particular orientation of a particular mode of operation, e.g., monopolar activation. As such, the blue jaw member and blue monopolar activation button may be used to convey to a user that monopolar energy is being employed.



FIG. 46 illustrates one embodiment of an insulating boot 4500′ with an alternate alignment indicator 4502′ in the form of an arrow pointing to the distal end of the boot 4500′. The boot 4500′, which may also be translucent and have a tint of color as described above, and the alignment indicator 4502′ again may facilitate establishment of the proper position of the insulating boot 4500′ on the shaft exterior surface 12a and with respect to the jaw members 110 and 120.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example and although the general operating components and inter-cooperating relationships among these components have been generally described with respect to a vessel sealing forceps, other instruments may also be utilized that can be configured to allow a surgeon to selectively treat tissue in both a bipolar and monopolar fashion. Such instruments include, for example, bipolar grasping and coagulating instruments, cauterizing instruments, bipolar scissors, etc.


In addition, while several of the disclosed embodiments show endoscopic forceps that are designed to close in a unilateral fashion, forceps that close in a bilateral fashion may also be utilized with the insulating boot described herein. The presently disclosed insulating boot may be configured to fit atop or encapsulate pivot or hinge members of other known devices such as jawed monopolar devices, standard laparoscopic “Maryland” dissectors and/or bipolar scissors.


While several embodiments of the disclosure have, been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical forceps for sealing tissue, comprising: a pair of first and second shaft members each having a jaw member disposed at a distal end thereof, the jaw members movable about a pivot from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween;at least one of the shaft members and at least one of the jaw members forming at least one mechanically interfacing surface therebetween;at least one of the jaw members including an electrically conductive sealing plate adapted to communicate electrosurgical energy to tissue held therebetween; anda flexible insulating boot disposed on at least a portion of an exterior surface of at least one jaw member, an interior portion of the insulating boot having at least one mechanically interfacing surface, wherein the at least one mechanically interfacing surface of the interior portion of the insulating boot includes a grove-like interlocking interface that engages the at least one mechanically interfacing surface formed between at least one of the shaft members and one of the jaw members.
  • 2. An electrosurgical forceps for sealing tissue, comprising: a pair of first and second shaft members each having a jaw member disposed at a distal end thereof, the jaw members movable about a pivot from a first position in spaced relation relative to one another to at least one subsequent position wherein the jaw members cooperate to grasp tissue therebetween;at least one of the shaft members and at least one of the jaw members forming at least one mechanically interfacing surface therebetween;at least one of the jaw members including an electrically conductive sealing plate adapted to communicate electrosurgical energy to tissue held therebetween; anda flexible insulating boot disposed on at least a portion of an exterior surface of at least one jaw member, an interior portion of the insulating boot having at least one mechanically interfacing surface, wherein the at least one mechanically interfacing surface of the interior portion of the insulating boot includes a key-like interlocking interface that engages the at least one mechanically interfacing surface formed between at least one of the shaft members and one of the jaw members.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 11/594,276 filed on Nov. 8, 2006 entitled “INSULATING BOOT FOR ELECTROSURGICAL FORCEPS” by Garrison et al., published as U.S. Patent Application Publication No. US2007/0106295 A1, now U.S. Pat. No. 7,879,035 issued on Feb. 1, 2011, which is a continuation-in-part (CIP) of U.S. patent application Ser. No. 11/529,798 filed on Sep. 29, 2006 entitled “INSULATING BOOT FOR ELECTROSURGICAL FORCEPS” by Dumbauld et al. published as U.S. Patent Application Publication No. US2007/0078458 A1, now U.S. Pat. No. 7,846,161, which claims the benefit of priority of U.S. Provisional patent application Ser. No. 60/722,213 by Scott DePierro et al., entitled “INSULATING BOOT FOR ELECTROSURGICAL FORCEPS” filed on Sep. 30, 2005, the entire contents of each of which is incorporated by reference herein.

US Referenced Citations (1098)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
1908201 Welch et al. May 1933 A
1918889 Bacon Jul 1933 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2113246 Wappler May 1937 A
2176479 Willis Oct 1939 A
2305156 Grubel Apr 1941 A
2279753 Knopp Apr 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Aug 1948 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3073311 Tibbs et al. Jan 1963 A
3100489 Bagley Aug 1963 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3561448 Peternel Feb 1971 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3801766 Morrison, Jr. Apr 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3875945 Friedman Apr 1975 A
3897786 Garnett et al. Aug 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
D249549 Pike Sep 1978 S
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4200104 Harris Apr 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4274413 Hahn et al. Jun 1981 A
4300564 Furihata Nov 1981 A
4306561 De Medinaceli Dec 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4315510 Kihn Feb 1982 A
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4513271 Reisem Apr 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4619258 Pool Oct 1986 A
4624254 McGarry et al. Nov 1986 A
4644950 Valli Feb 1987 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4674499 Pao Jun 1987 A
4685459 Xoch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
D298353 Manno Nov 1988 S
D299413 DeCarolis Jan 1989 S
4805616 Pao Feb 1989 A
4827927 Newton May 1989 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4890610 Kirwan, Sr. et al. Jan 1990 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5122139 Sutter Jun 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5158561 Rydell et al. Oct 1992 A
5169396 Dowlatshahi et al. Dec 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5267998 Hagen Dec 1993 A
5269780 Roos Dec 1993 A
5269804 Bales et al. Dec 1993 A
D343453 Noda Jan 1994 S
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5281220 Blake, III Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
D349341 Lichtman et al. Aug 1994 S
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5359993 Slater et al. Nov 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5367250 Whisenand Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5376094 Kline Dec 1994 A
D354564 Medema Jan 1995 S
5383875 Bays et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5395360 Manoukian Mar 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5417709 Slater May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454809 Janssen Oct 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5493899 Beck et al. Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5512721 Young et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5520702 Sauer et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5549604 Sutcu et al. Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsukagoshi et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626607 Malecki et al. May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5639403 Ida et al. Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
H1745 Paraschac Apr 1998 H
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762609 Benaron et al. Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5776156 Shikhman Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5830212 Cartmell et al. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
D402028 Grimm et al. Dec 1998 S
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5851214 Larsen et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5876410 Petillo Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5938589 Wako et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944718 Dafforn et al. Aug 1999 A
5951545 Schilling et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
D416089 Barton et al. Nov 1999 S
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5997565 Inoue Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6063103 Hashiguchi May 2000 A
6066139 Ryan et al. May 2000 A
6071283 Nardella et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6152924 Parins Nov 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190400 Vandemoer et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6309404 Krzyzanowski Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6329778 Culp et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
D454951 Bon Mar 2002 S
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458129 Scarfi Oct 2002 B2
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6471696 Berube et al. Oct 2002 B1
D465281 Lang Nov 2002 S
D466209 Bon Nov 2002 S
6485489 Teirstein et al. Nov 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6545239 Spedale et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6616654 Mollenauer Sep 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 De Laforcade et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656173 Palermo Dec 2003 B1
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6733501 Levine May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6821285 Laufer et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6857357 Fujii Feb 2005 B2
D502994 Blake, III Mar 2005 S
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6908463 Treat et al. Jun 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6951559 Greep Oct 2005 B1
6953430 Kodooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6976492 Ingle et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
D533274 Visconti et al. Dec 2006 S
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7169145 Isaacson et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
D538932 Malik Mar 2007 S
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7204835 Latterell et al. Apr 2007 B2
7207990 Lands et al. Apr 2007 B2
D541611 Aglassinger May 2007 S
D541938 Kerr et al May 2007 S
7211084 Goble et al. May 2007 B2
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
D545432 Watanabe Jun 2007 S
7232440 Dumbauld et al. Jun 2007 B2
D547154 Lee Jul 2007 S
7238184 Megerman et al. Jul 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podjahsky et al. Jul 2007 B2
7246734 Shelto, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jhigamian Mar 2008 B2
7347864 Vargas Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7354440 Truckal et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396265 Darley et al. Jul 2008 B2
7396336 Orszulak et al. Jul 2008 B2
7396356 Mollenauer Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7425835 Eisele Sep 2008 B2
7431721 Paton et al. Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
D582038 Swoyer et al. Dec 2008 S
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7517351 Culp et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7588565 Marchitto et al. Sep 2009 B2
7594916 Weinberg Sep 2009 B2
7597693 Garrison Oct 2009 B2
7621910 Sugi Nov 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7651493 Arts et al. Jan 2010 B2
7651494 McClurken et al. Jan 2010 B2
7655007 Baily Feb 2010 B2
7668597 Engmark et al. Feb 2010 B2
7678111 Mulier et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686827 Hushka Mar 2010 B2
7708735 Chapman et al. May 2010 B2
7717115 Barrett et al. May 2010 B2
7717904 Suzuki et al. May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D617900 Kingsley et al. Jun 2010 S
D617901 Unger et al. Jun 2010 S
D617902 Twomey et al. Jun 2010 S
D617903 Unger et al. Jun 2010 S
D618798 Olson et al. Jun 2010 S
7731717 Odom et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749217 Podhajsky Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766910 Hixson et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780662 Bahney Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7799028 Schechter et al. Sep 2010 B2
7811283 Moses et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627462 Kingsley Nov 2010 S
D628289 Romero Nov 2010 S
D628290 Romero Nov 2010 S
7828798 Buysse et al. Nov 2010 B2
7837685 Weinberg et al. Nov 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7857812 Dycus et al. Dec 2010 B2
D630324 Reschke Jan 2011 S
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130653 Sixto, Jr. et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030199869 Johnson et al. Oct 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040073256 Marchitto et al. Apr 2004 A1
20040115296 Duffin Jun 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040210282 Flock et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040250419 Sremcich et al. Dec 2004 A1
20040260281 Baxter, III et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059858 Frith et al. Mar 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050113828 Shields et al. May 2005 A1
20050149017 Dycus Jul 2005 A1
20050154387 Moses et al. Jul 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050254081 Ryu et al. Nov 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20060052779 Hammill Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070043337 McAuley Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070173804 Wham et al. Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070198011 Sugita Aug 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070225695 Mayer et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039831 Odom et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080125767 Blaha May 2008 A1
20080125797 Kelleher May 2008 A1
20080195093 Couture et al. Aug 2008 A1
20080208289 Darley et al. Aug 2008 A1
20080215050 Bakos Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080249523 McPherson et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080281311 Dunning et al. Nov 2008 A1
20080294222 Schechter Nov 2008 A1
20080296347 Shelton, IV et al. Dec 2008 A1
20080300613 Shelton, IV et al. Dec 2008 A1
20080312653 Arts et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090015832 Popovic et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090036881 Artale et al. Feb 2009 A1
20090036899 Carlton et al. Feb 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090065565 Cao Mar 2009 A1
20090076534 Shelton, IV et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090088738 Guerra et al. Apr 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088740 Guerra et al. Apr 2009 A1
20090088741 Hushka et al. Apr 2009 A1
20090088744 Townsend Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088747 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088749 Hushka et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090105750 Price et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090157071 Wham et al. Jun 2009 A1
20090157072 Wham et al. Jun 2009 A1
20090157075 Wham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090182329 Dycus Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
20090198233 Chojin Aug 2009 A1
20090204114 Odom Aug 2009 A1
20090209957 Schmaltz et al. Aug 2009 A1
20090209960 Chojin Aug 2009 A1
20090234354 Johnson et al. Sep 2009 A1
20090248021 Mckenna Oct 2009 A1
20090254081 Allison et al. Oct 2009 A1
20090261804 Mckenna et al. Oct 2009 A1
20090292282 Dycus Nov 2009 A9
20090306660 Johnson et al. Dec 2009 A1
20090318912 Mayer et al. Dec 2009 A1
20100016857 Mckenna et al. Jan 2010 A1
20100023009 Moses et al. Jan 2010 A1
20100036375 Regadas Feb 2010 A1
20100042100 Tetzlaff et al. Feb 2010 A1
20100042140 Cunningham Feb 2010 A1
20100042142 Cunningham Feb 2010 A1
20100042143 Cunningham Feb 2010 A1
20100049187 Carlton et al. Feb 2010 A1
20100057081 Hanna Mar 2010 A1
20100057082 Hanna Mar 2010 A1
20100057083 Hanna Mar 2010 A1
20100057084 Hanna Mar 2010 A1
20100063500 Muszala Mar 2010 A1
20100069903 Allen, IV et al. Mar 2010 A1
20100069904 Cunningham Mar 2010 A1
20100069953 Cunningham et al. Mar 2010 A1
20100076427 Heard Mar 2010 A1
20100076430 Romero Mar 2010 A1
20100076431 Allen, IV Mar 2010 A1
20100076432 Horner Mar 2010 A1
20100087816 Roy Apr 2010 A1
20100087818 Cunningham Apr 2010 A1
20100094271 Ward et al. Apr 2010 A1
20100094286 Chojin Apr 2010 A1
20100094287 Cunningham et al. Apr 2010 A1
20100100122 Hinton Apr 2010 A1
20100130971 Baily May 2010 A1
20100130977 Garrison et al. May 2010 A1
20100145334 Olson et al. Jun 2010 A1
20100145335 Johnson et al. Jun 2010 A1
20100179539 Nau, Jr. Jul 2010 A1
20100179543 Johnson et al. Jul 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100179546 Cunningham Jul 2010 A1
20100179547 Cunningham et al. Jul 2010 A1
20100198248 Vakharia Aug 2010 A1
20100204697 Dumbauld et al. Aug 2010 A1
20100204698 Chapman et al. Aug 2010 A1
20100217258 Floume et al. Aug 2010 A1
20100217264 Odom et al. Aug 2010 A1
20100249769 Nau, Jr. et al. Sep 2010 A1
20100249776 Kerr Sep 2010 A1
20100256635 Mckenna et al. Oct 2010 A1
20100274244 Heard Oct 2010 A1
20100280511 Rachlin et al. Nov 2010 A1
20100280515 Hixson et al. Nov 2010 A1
20100286691 Kerr et al. Nov 2010 A1
20100307934 Chowaniec et al. Dec 2010 A1
20100312235 Bahney Dec 2010 A1
20100312238 Schechter et al. Dec 2010 A1
20100312242 Odom Dec 2010 A1
20100331839 Schechter et al. Dec 2010 A1
20110004209 Lawes et al. Jan 2011 A1
20110004210 Johnson et al. Jan 2011 A1
20110009864 Bucciaglia et al. Jan 2011 A1
20110015632 Artale Jan 2011 A1
20110034918 Reschke Feb 2011 A1
20110036183 Artale et al. Feb 2011 A1
20110046623 Reschke Feb 2011 A1
20110054467 Mueller et al. Mar 2011 A1
20110054468 Dycus Mar 2011 A1
20110054469 Kappus et al. Mar 2011 A1
20110054471 Gerhardt et al. Mar 2011 A1
20110054472 Romero Mar 2011 A1
20110060333 Mueller Mar 2011 A1
20110060334 Brandt et al. Mar 2011 A1
20110060335 Harper et al. Mar 2011 A1
20110060356 Reschke et al. Mar 2011 A1
20110071522 Dumbauld et al. Mar 2011 A1
20110071523 Dickhans Mar 2011 A1
20110071525 Dumbauld et al. Mar 2011 A1
20110073246 Brandt et al. Mar 2011 A1
20110073594 Bonn Mar 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110077649 Kingsley Mar 2011 A1
Foreign Referenced Citations (217)
Number Date Country
2 104 423 Feb 1994 CA
2 520 413 Mar 2007 CA
2415263 Oct 1975 DE
2514501 Oct 1976 DE
2627679 Jan 1977 DE
3423356 Jan 1986 DE
3612646 Apr 1987 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
4403252 Aug 1995 DE
19515914 Jul 1996 DE
19506363 Aug 1996 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
10045375 Apr 2002 DE
10 2004 026179 Dec 2005 DE
20 2007 009165 Oct 2007 DE
20 2007 009317 Oct 2007 DE
19738457 Jan 2009 DE
10 2008 018406 Jul 2009 DE
0364216 Apr 1990 EP
0467501 Jan 1992 EP
0509670 Oct 1992 EP
0518230 Dec 1992 EP
0541930 May 1993 EP
0306123 Aug 1993 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589453 Mar 1994 EP
0589555 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
0517243 Sep 1997 EP
0853922 Jul 1998 EP
0875209 Nov 1998 EP
0878169 Nov 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
0950378 Oct 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1177771 Feb 2002 EP
1186274 Mar 2002 EP
1278007 Jan 2003 EP
1301135 Apr 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
0774232 Jan 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1201192 Feb 2006 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
1707143 Oct 2006 EP
1545360 Mar 2007 EP
1767163 Mar 2007 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1785097 May 2007 EP
1785098 May 2007 EP
1785101 May 2007 EP
1810625 Jul 2007 EP
1810628 Jul 2007 EP
1842500 Oct 2007 EP
1878400 Jan 2008 EP
1929970 Jun 2008 EP
1958583 Aug 2008 EP
1990019 Nov 2008 EP
1683496 Dec 2008 EP
1997438 Dec 2008 EP
1997439 Dec 2008 EP
1527744 Feb 2009 EP
2206474 Jul 2010 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2214430 Jun 1989 GB
2213416 Aug 1989 GB
61-501068 Sep 1984 JP
6-502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
6285078 Oct 1994 JP
06343644 Dec 1994 JP
6511401 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
H09-538 Jan 1997 JP
10-24051 Jan 1998 JP
11-070124 May 1998 JP
2000-102545 Sep 1998 JP
11-169381 Jun 1999 JP
11244298 Sep 1999 JP
2000-342599 Dec 2000 JP
2000-350732 Dec 2000 JP
2001-008944 Jan 2001 JP
2001-029356 Feb 2001 JP
2001-128990 May 2001 JP
2001-190564 Jul 2001 JP
401367 Nov 1974 SU
WO 8900757 Jan 1989 WO
WO 9204873 Apr 1992 WO
WO 9206642 Apr 1992 WO
WO 9319681 Oct 1993 WO
WO 9321845 Nov 1993 WO
WO 9400059 Jan 1994 WO
WO 9408524 Apr 1994 WO
WO 9420025 Sep 1994 WO
WO 9502369 Jan 1995 WO
WO 9507662 Mar 1995 WO
WO 9515124 Jun 1995 WO
WO 9520360 Aug 1995 WO
WO 9605776 Feb 1996 WO
WO 9611635 Apr 1996 WO
WO 96022056 Jul 1996 WO
WO 9613218 Sep 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9710764 Mar 1997 WO
WO 9718768 May 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9814124 Apr 1998 WO
WO 9827880 Jul 1998 WO
WO 9831290 Jul 1998 WO
WO 9843264 Oct 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9903414 Jan 1999 WO
WO 9912488 Mar 1999 WO
WO 9923933 May 1999 WO
WO 9925261 May 1999 WO
WO 9940857 Aug 1999 WO
WO 9940861 Aug 1999 WO
WO 9951158 Oct 1999 WO
WO 9966850 Dec 1999 WO
WO 0024330 May 2000 WO
WO 0024331 May 2000 WO
WO 0033753 Jun 2000 WO
WO 0036986 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO 0047124 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0101847 Jan 2001 WO
WO 0115614 Mar 2001 WO
WO 0117448 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO 0207627 Jan 2002 WO
WO 02067798 Sep 2002 WO
WO 02080783 Oct 2002 WO
WO 02080784 Oct 2002 WO
WO 02080785 Oct 2002 WO
WO 02080786 Oct 2002 WO
WO 02080793 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080798 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO 02081170 Oct 2002 WO
WO 03061500 Jul 2003 WO
WO 03090630 Nov 2003 WO
WO 03096880 Nov 2003 WO
WO 03101311 Dec 2003 WO
WO 2004028585 Apr 2004 WO
WO 2004032776 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004073488 Sep 2004 WO
WO 2004073490 Sep 2004 WO
WO 2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO 2005004734 Jan 2005 WO
WO 2005004735 Jan 2005 WO
WO 2005009255 Feb 2005 WO
WO 2005011049 Feb 2005 WO
WO 2005030071 Apr 2005 WO
WO 2005048809 Jun 2005 WO
WO 2005050151 Jun 2005 WO
WO 2005110264 Nov 2005 WO
WO 2008008457 Jan 2008 WO
WO 2008040483 Apr 2008 WO
WO 2008045348 Apr 2008 WO
WO 2008045350 Apr 2008 WO
WO 2008112147 Sep 2008 WO
WO 2009005850 Jan 2009 WO
WO 2009039179 Mar 2009 WO
WO 2009039510 Mar 2009 WO
Non-Patent Literature Citations (228)
Entry
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz.
U.S. Appl. No. 09/591,328, filed Jun. 2000, Thomas P. Ryan.
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich.
U.S. Appl. No. 12/574,001, filed Oct. 2009, Duane E. Kerr.
U.S. Appl. No. 12/574,292, filed Oct. 6, 2009, Duane E. Kerr.
U.S. Appl. No. 12/576,380, filed Oct. 9, 2009, Wayne Siebrecht.
U.S. Appl. No. 12/607,191, filed Oct. 2009, William H. Nau Jr.
U.S. Appl. No. 12/619,100, filed Nov. 16, 2009, Jennifer S. Harper.
U.S. Appl. No. 12/692,414, filed Jan. 22, 2010, Peter M. Mueller.
U.S. Appl. No. 12/696,592, filed Jan. 29, 2010, Jennifer S. Harper.
U.S. Appl. No. 12/696,857, filed Jan. 29, 2010, Edward M. Chojin.
U.S. Appl. No. 12/700,856, filed Feb. 5, 2010, James E. Krapohl.
U.S. Appl. No. 12/719,407, filed Mar. 8, 2010, Arlen J. Reschke.
U.S. Appl. No. 12/728,994, filed Mar. 22, 2010, Edward M. Chojin.
U.S. Appl. No. 12/748,028, filed Mar. 26, 2010, Jessica E.C. Olson.
U.S. Appl. No. 12/757,340, filed Apr. 9, 2010, Carine Hoarau.
U.S. Appl. No. 12/758,524, filed Apr. 12, 2010, Duane E. Kerr.
U.S. Appl. No. 12/759,551, filed Apr. 13, 2010, Glenn A. Horner.
U.S. Appl. No. 12/769,444, filed Apr. 28, 2010, Glenn A. Norner.
U.S. Appl. No. 12/770,369, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/770,380, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/770,387, filed Apr. 29, 2010, Glenn A. Horner.
U.S. Appl. No. 12/773,526, filed May 4, 2010, Duane E. Kerr.
U.S. Appl. No. 12/773,644, filed May 4, 2010, Thomas J. Gerhardt.
U.S. Appl. No. 12/786,589, filed May 25, 2010, Duane E. Kerr.
U.S. Appl. No. 12/791,112, filed Jun. 1, 2010, David M. Garrison.
U.S. Appl. No. 12/792,001, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,008, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,019, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,038, filed Jun. 2, 2010, Glenn A. Horner.
U.S. Appl. No. 12/792,051, filed Jun. 2, 2010, David M. Garrison.
U.S. Appl. No. 12/792,068, filed Jun. 2, 2010, Glenn A. Horner.
U.S. Appl. No. 12/792,097, filed Jun. 2, 2010, Duane E. Kerr.
U.S. Appl. No. 12/792,262, filed Jun. 2, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/792,299, filed Jun. 2, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/792,330, filed Jun. 2, 2010, David M. Garrison.
U.S. Appl. No. 12/822,024, filed Jun. 23, 2010, Peter M. Mueller.
U.S. Appl. No. 12/821,253, filed Jun. 23, 2010, Edward M. Chojin.
U.S. Appl. No. 12/832,772, filed Jul. 8, 2010, Gary M. Couture.
U.S. Appl. No. 12/843,384, filed Jul. 26, 2010, David M. Garrison.
U.S. Appl. No. 12/845,203, filed Jul. 28, 2010, Gary M. Couture.
U.S. Appl. No. 12/853,896, filed Aug. 10, 2010, William H. Nau, Jr.
U.S. Appl. No. 12/859,896, filed Aug. 20, 2010, Peter M. Mueller.
U.S. Appl. No. 12/861,198, filed Aug. 23, 2010, James A. Gilbert.
U.S. Appl. No. 12/861,209, filed Aug. 23, 2010, William H. Nau, Jr.
U.S. Appl. No. 12/876,668, filed Sep. 7, 2010, Sara E. Anderson.
U.S. Appl. No. 12/876,680, filed Sep. 7, 2010, Peter M. Mueller.
U.S. Appl. No. 12/876,705, filed Sep. 7, 2010, Kristin D. Johnson.
U.S. Appl. No. 12/876,731, filed Sep. 7, 2010, Kristin D. Johnson.
U.S. Appl. No. 12/877,199, filed Sep. 8, 2010, Arlen J. Reschke.
U.S. Appl. No. 12/877,482, filed Sep. 8, 2010, Gary M. Couture.
U.S. Appl. No. 12/895,020, filed Sep. 30, 2010, Jeffrey M. Roy.
U.S. Appl. No. 12/896,100, filed Oct. 1, 2010, Ryan Artale.
U.S. Appl. No. 12/897,346, filed Oct. 4, 2010, Ryan Artale.
U.S. Appl. No. 12/906,672, filed Oct. 18, 2010, Kathy E. Rooks.
U.S. Appl. No. 12/915,809, filed Oct. 29, 2010, Thomas J. Gerhardt, Jr.
U.S. Appl. No. 12/947,352, filed Nov. 16, 2010, Jason L. Craig.
U.S. Appl. No. 12/947,420, filed Nov. 16, 2010, Jason L. Craig.
U.S. Appl. No. 12/948,081, filed Nov. 17, 2010, Boris Chernov.
U.S. Appl. No. 12/948,144, filed Nov. 17, 2010, Boris Chernov.
U.S. Appl. No. 12/950,505, filed Nov. 19, 2010, David M. Garrison.
U.S. Appl. No. 12/955,010, filed Nov. 29, 2010, Paul R. Romero.
U.S. Appl. No. 12/955,042, filed Nov. 29, 2010, Steven C. Rupp.
U.S. Appl. No. 12/981,771, filed Dec. 30, 2010, James D. Allen, IV.
U.S. Appl. No. 12/981,787, filed Dec. 30, 2010, John R. Twomey.
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument” ; Innovations That Work, Jun. 2003.
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003.
Tinkcler L.F., “Combined Diathermy and Suction Forceps” , Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447.
Carbonell et al., “Comparison of the Gyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003.
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001).
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000.
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004.
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000.
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000).
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999.
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878.
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties At VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427.
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002.
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999.
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801.
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002.
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002.
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999.
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002.
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002.
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831.
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743.
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237.
Benaron et al., “Optical Time-Of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466.
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001.
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157.
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003.
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001.
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151.
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001.
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24.
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003.
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004.
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574.
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540.
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000.
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17.
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000.
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999.
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C.
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000.
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000.
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” Miccai 2005; LNCS 3750 pp. 624-632, Dated: 2005.
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C.
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999.
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000.
Int'l Search Report EP 98957771 dated Aug. 9, 2001.
Int'l Search Report EP 98957773 dated Aug. 1, 2001.
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002.
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005.
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005.
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005.
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005.
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010.
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007.
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008.
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009.
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005.
Int'l Search Report EP 05013894 dated Feb. 3, 2006.
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005.
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006.
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005.
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005.
Int'l Search Report EP 05019429.9 dated May 6, 2008.
Int'l Search Report EP 05020532 dated Jan. 10, 2006.
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006.
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006.
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006.
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006.
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006.
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006.
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006.
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006.
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006.
Int'l Search Report EP 06005185.1 dated May 10, 2006.
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006.
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009.
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006.
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006.
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007.
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007.
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007.
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007.
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007.
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007.
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007.
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007.
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010.
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007.
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007.
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007.
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007.
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007.
Int'l Search Report EP 07 014016 dated Jan. 28, 2008.
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008.
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008.
Int'l Search Report EP 07 016911 dated May 28, 2010.
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008.
Int'l Search Report EP 07 021646.0 dated Mar. 20, 2008.
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008.
Int'l Search Report EP 07 021647.8 dated May 2, 2008.
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008.
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008.
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008.
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008.
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009.
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009.
Int'l Search Report EP 09 003677.3 dated May 4, 2009.
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009.
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009.
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009.
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009.
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009.
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010.
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009.
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009.
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009.
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009.
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009.
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009.
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009.
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009.
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009.
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010.
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010.
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009.
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010.
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011.
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010.
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010.
Int'l Search Report EP 10 160870,1 dated Aug. 9, 2010.
Int'l Search Report EP 10 161596.1 dated Jul. 28, 2010.
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010.
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010.
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010.
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010.
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011.
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011.
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011.
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011.
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999.
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999.
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999.
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000.
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001.
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001.
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001.
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001.
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002.
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002.
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003.
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003.
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003.
Int'l Search Report PCT/US03/28534dated Dec. 19, 2003.
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005.
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004.
Int'l Search Report PCT/US04/15311dated Jan. 12, 2005.
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008.
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008.
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008.
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008.
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009.
Japanese Office Action for Patent Application No. 2006-269885, 2 pages dated May 28, 2012 with English translation 3 pages.
Related Publications (1)
Number Date Country
20110106079 A1 May 2011 US
Provisional Applications (1)
Number Date Country
60722213 Sep 2005 US
Divisions (1)
Number Date Country
Parent 11594276 Nov 2006 US
Child 13004984 US
Continuation in Parts (1)
Number Date Country
Parent 11529798 Sep 2006 US
Child 11594276 US