1. Technical Field
The present disclosure relates to construction panels and, in particular, to insulating constructions panels, systems and methods.
2. Description of the Background Art
Various construction techniques have been devised. Many of these techniques are directed at lowering the overall cost of construction by reducing the cost of materials, time required and/or the amount of labor required. In addition, with the recent push towards energy independence and becoming a “Green” society, various types of new or modified construction techniques have been directed at making structures (for example, homes) more energy efficient. Construction techniques have also been developed to make recycling of materials more practical and efficient.
One area of concern involves the construction of the foundation (or wall) of a structure. The function of a foundation is to support the weight of the structure and to provide a level surface to build on. The foundation will also often form the wall of a portion of the structure such as a basement wall. Foundations can be built from various types of materials including stone, brick, concrete block, treated lumber or poured concrete. Of these, poured concrete is one of the most widely used materials.
Poured concrete foundations have been built using various types of methods and can include poured slabs as well as raised perimeter foundations. One of the oldest and most basic methods of forming a poured concrete raised perimeter foundation is to use wooden forms. This method involves placing two parallel wooden structures spaced a predetermined distance from each other along the footprint or perimeter of the structure to be constructed. Concrete is a material that is very strong in compression but is relatively weak in tension. Accordingly a reinforcing bar, also known as rebar, is normally used in this type of construction and is cast into the concrete to carry the tensile loads. The rebar is arranged at predetermined positions within the parallel wooden structures and held in place with wood and/or metal ties. The concrete is then poured into the space between the wooden structures and allowed to set. After setting, the wooden structures are removed, leaving the poured concrete foundation upon which the structure can be built.
It will be appreciated that the process of setting up and breaking down the wooden structure and arranging the rebar is vary time consuming and labor intensive.
A variety of insulating concrete form systems, known as insulated concrete forms or blocks, have been developed for casting a concrete foundation or wall. Often, these systems include interlocking blocks that are formed from a pair of opposed foam panels connected together in a spaced, parallel relationship by a plurality of tie members to define a concrete receiving cavity. The blocks are aligned and stacked to define a wall, and concrete is poured into the concrete receiving cavities. The blocks are maintained in place after the concrete hardens to insulate the concrete, provide a sound barrier, insulation, and serve as a backing for finishing material.
While many insulating concrete form systems have met with some success, numerous problems exist with these systems. For example, problems are encountered while fitting the panels or blocks together, pouring the concrete into the forms, difficulty of utility installation and attachment of finishing materials to the insulated concrete wall. There are also issues with the transportation and storage of the preassembled types of blocks. Many of these systems require specially moulded corner blocks. There are also issues involved with manufacturing these form systems. For example, these form systems often require costly manufacturing processes for providing connectors or tie members embedded in the inner faces of the insulating panels or blocks.
Accordingly, there is a need for an improved insulating concrete form that overcomes the problems experienced with the previously known forms.
This application describes (in the form of methodologies, apparatuses, and systems) for insulating construction panels, systems and methods.
An insulating construction panel having a top end, a bottom end, a first end, a second end, a front side and a rear side, the panel for constructing a single or multi-cavity concrete form. The panel comprises regularly spaced coplanar passages extending through the panel from the top end toward the bottom end and at least one angular passage perpendicularly intersecting each coplanar passage at the top end and bottom end of the panel and extending toward and through at least a portion of the back end of the panel.
A tie for interlocking two or more construction panels to construct a single or multi-cavity concrete form. The tie comprises two or more elongated plates, the elongated plates including horizontal center marks on an outside face of the elongated plates, two or more angular connectors, perpendicularly intersecting the two or more elongated plates and at least one spacer joining the angular connectors.
An insulating construction panel system comprising a plurality of interlocking panels, a plurality of ties including portions insertable into slots provided in the plurality of interlocking panels, the ties maintaining the panels a predetermined distance apart to form a space into which concrete can be poured. The portions of the ties insertable into the slots provide a suitable structure into which connectors can be driven and secured when attaching finishing materials to a face of the panels.
A more complete appreciation of the present disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The following exemplary embodiments are set forth to aid in an understanding of the subject matter of this disclosure, but are not intended, and may not be construed, to limit in any way the subject matter or claims which follow thereafter. Therefore, while specific terminology is employed for the sake of clarity in describing some exemplary embodiments, the present disclosure is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents which operate in a similar manner.
An insulating panel construction system according to an embodiment of the present disclosure is shown in
When the insulating panel construction system according to embodiments of the present disclosure is erected, concrete is poured into the cavity between the panels. After the concrete sets, the panel construction system is maintained in place. The panels insulate the concrete, provide a sound barrier, insulation, and serve as a backing for finishing material.
The individual components forming the insulating panel construction system according to embodiments of the present disclosure will be described, followed by a description of how the individual components fit together to provide a superior construction system.
As shown in more detail in
According to another embodiment of the present disclosure, a multi-cavity form can be used to form a pair of parallel concrete sections, providing an additional layer of insulation, sound barrier, etc. According to this embodiment, a multi-cavity tie 70 as shown in
Embodiments of the present disclosure provide several salient features. For example, according to embodiments of the present disclosure, no webs, spacers, or ties are molded into the insulating construction panels which results in lower labor costs during production. Since the ties are not permanently embedded in the insulating construction panels, tie scraps can be easily recycled. In addition, because the insulating construction panels can be manufactured from only one type of material, recycling of scraps is easier, less expensive, and improves “Green Building” practice. The present system has no need for pre-molded corner panels. This allows the components to be packed and shipped using less volume than those using pre-molded corner panels, thus providing savings on storage, shipping and handling.
In addition, all of the insulating construction panels are interlocked by vertically lined up ties which cannot shift, therefore providing a reliable location for attaching finishing materials. The horizontal utility installation spot is located in the center of the insulating construction panels, away from ties and concrete which, in prior systems, would get in between panels during the concrete pour. This makes installation of utilities easier and results in fewer damaged tools that would otherwise be damaged by contact with stray concrete.
The shape of the rings 72 in the ties greatly improves installation and removal of reinforcing bars or tools like chalk line or measuring tape.
Since the insulating construction panels can be made from a single component, many different materials can be used to make them. For example, foam panels provide excellent insulating volume. In addition, autoclaved aerated concrete panels trademarked under the name AERCON, would provide great fire protection. Panels with a finishing surface can be used on one side to provide finished elevation without installation of additional materials. A combination of three different panels can be used with multi-cavity forms to, for example, provide fire resistant panels on one side, insulating panels in between concrete cavities and finishing panels on the other side. Of course, the use of other combinations and/or types of materials is contemplated by the present disclosure.
Insulating construction panels interlocked with other insulating construction panels to form insulating concrete forms for casting concrete. Insulating construction panels are interlocked transversely, horizontally and vertically by a plurality of ties. The insulating construction panels are connected by regularly spaced ties in a parallel relationship to form a concrete receiving cavity. Each of the panels has a top end and a bottom end, a first end and a second end and a front end and a back end. The top end and bottom end of each panel has a plurality of alternating projections and recesses being similar in dimension. The projections and recessions on the top and bottom ends are symmetrically arranged whereby the insulating construction panels can be additionally interconnected with a like member in a bi-directional, reversible or perpendicular manner. The recesses on both the top and bottom ends contain drainage grooves extending to the back end of panel. The construction panels have regularly spaced coplanar passages extending through the panel from top end to bottom end. Insulating construction panels have an L-shaped groove on the top end and bottom end extending from the first end to the second end for the purpose of receiving a T-shaped molding which is used for corner form construction. Each tie includes a pair of elongated end plates and a spacer joined by an angular connector perpendicular to the end plates. There is also the possibility of using a tie with three end plates and 3 connectors for the purpose of constructing multi-cavity forms. The end plates and connectors of ties are inserted halfway into the top end of coplanar passages of opposite construction panels. The bottom end of coplanar passages of the next row of construction panels are then interlocked onto the remaining top half of end plates and connectors. Corner construction is reinforced by T-shaped moldings containing orifices to accept the projections of the construction panels. The T-shaped moldings fit into the L-shaped groove between the top and bottom ends of construction panels. The T-shaped moldings are inserted into a T-shaped passage in the connector and held in place with pins inserted through smaller orifices in the T-shaped molding and through the tabs on the connectors.
The present application is based on and claims benefit of Provisional Application Ser. No. 61/519,511 filed May 24, 2011 and entitled “INSULATING CONSTRUCTION PANELS, SYSTEMS AND METHODS,” the entire contents of which are herein incorporated by reference.
| Number | Name | Date | Kind |
|---|---|---|---|
| 738643 | Van Camp | Sep 1903 | A |
| 4884382 | Horobin | Dec 1989 | A |
| 5428933 | Philippe | Jul 1995 | A |
| 5465542 | Terry | Nov 1995 | A |
| 5566521 | Andrews et al. | Oct 1996 | A |
| 5625989 | Brubaker et al. | May 1997 | A |
| 5704180 | Boeck | Jan 1998 | A |
| 5729936 | Maxwell | Mar 1998 | A |
| 6318041 | Stanley | Nov 2001 | B1 |
| 6526710 | Killen | Mar 2003 | B1 |
| 6860073 | Chien | Mar 2005 | B2 |
| 7739846 | Garrett | Jun 2010 | B2 |
| 7743565 | Pyo | Jun 2010 | B2 |
| 7762033 | Scott et al. | Jul 2010 | B2 |
| 7805906 | Garrett | Oct 2010 | B2 |
| 7874112 | Kovatch et al. | Jan 2011 | B2 |
| 20090007509 | Jordan et al. | Jan 2009 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20130000222 A1 | Jan 2013 | US |
| Number | Date | Country | |
|---|---|---|---|
| 61519511 | May 2011 | US |