Insulating container

Information

  • Patent Grant
  • 10442599
  • Patent Number
    10,442,599
  • Date Filed
    Monday, October 23, 2017
    7 years ago
  • Date Issued
    Tuesday, October 15, 2019
    5 years ago
Abstract
An insulating device can include an aperture having a waterproof closure which allows access to the chamber within the insulating device. The closure can help prevent any fluid leakage into and out of the insulating device if the insulating device is overturned or in any configuration other than upright. The closure also prevents any fluid from permeating into the chamber if the insulating device is exposed to precipitation, other fluid, or submersed under water. This construction results in an insulating chamber impervious to water and other liquids when the closure is sealed.
Description
FIELD

The present disclosure relates generally to non-rigid, portable, insulated devices or containers useful for keeping food and beverages cool or warm, and, more particularly, an insulating device with a waterproof closure.


BACKGROUND

Coolers are designed to keep food and beverages at lower temperatures. Containers may be composed of rigid materials such as metal or plastics or flexible materials such as fabric or foams. Coolers can be designed to promote portability. For example, rigid containers can be designed to incorporate wheels that facilitate ease of transport or coolers can be designed in smaller shapes to allow individuals to carry the entire device. Non-rigid containers can be provided with straps and/or handles and may in certain instances be made of lighter weight materials to facilitate mobility. Non-rigid coolers that maximize portability can be designed with an aperture on the top that allows access to the interior contents of the cooler. The aperture can also be provided with a closure.


SUMMARY

This Summary provides an introduction to some general concepts relating to this invention in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the invention.


Aspects of the disclosure herein may relate to insulating devices having one or more of (1) a waterproof closure (2) an outer shell, (3) an inner liner, (4) an insulating layer floating freely in between the outer shell and the inner liner, or (5) a waterproof storage compartment.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following Detailed Description, will be better understood when considered in conjunction with the accompanying drawings in which like reference numerals refer to the same or similar elements in all of the various views in which that reference number appears.



FIG. 1A shows a left front perspective view of an example insulating device in accordance with an aspect of the disclosure;



FIG. 1B shows a frontside perspective view of the example insulating device of FIG. 1A without the shoulder strap;



FIG. 2 shows a backside perspective view of the example insulating device of FIG. 1A without the shoulder strap;



FIG. 3A shows a top perspective view of the example insulating device of FIG. 1A without the shoulder strap;



FIG. 3B shows a top view of a portion of the example insulating device of FIG. 1A;



FIG. 3C shows a portion of an alternate top perspective view of the example insulating device of FIG. 1A;



FIG. 4 shows a bottom perspective view of the example insulating device of FIG. 1A;



FIG. 5A illustrates a schematic of a cross-sectional view of the example insulating device of FIG. 1A;



FIG. 5B illustrates another schematic of an enlarged portion of a cross-sectional view of the example insulating device of FIG. 1A;



FIG. 6 illustrates an exemplary process flow diagram for forming an insulating device;



FIGS. 7A-7J illustrate exemplary methods of forming an insulating device;



FIGS. 8A and 8B depict perspective views of an alternative example insulating device.



FIG. 9 depicts an example test method for determining if an insulating device maintains the contents therein.



FIG. 10 depicts an example test for determining the strength of an insulating device.





DETAILED DESCRIPTION

In the following description of the various examples and components of this disclosure, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example structures and environments in which aspects of the disclosure may be practiced. It is to be understood that other structures and environments may be utilized and that structural and functional modifications may be made from the specifically described structures and methods without departing from the scope of the present disclosure.


Also, while the terms “frontside,” “backside,” “top,” “base,” “bottom,” “side,” “forward,” and “rearward” and the like may be used in this specification to describe various example features and elements, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures and/or the orientations in typical use. Nothing in this specification should be construed as requiring a specific three dimensional or spatial orientation of structures in order to fall within the scope of the claims.



FIGS. 1-4 depict an exemplary insulating device 10 that can be configured to keep desired contents stored cool or warm for an extended period of time. The insulating device can generally include an outer shell 501, a closure 301, an insulating layer 502, and an inner liner 500. As shown in FIG. 3C, the inner liner 500 forms a chamber or receptacle 504 for receiving the desired contents therein. As shown in FIG. 1A, various handles, straps, and webs (e.g. 210, 212, 218, 224) can also be included on the insulating device 10 for carrying, holding, or securing the insulating device 10.


The insulating device 10 can be configured to keep desired contents stored in the receptacle 504 cool or warm for an extended period of time. In one example, the insulating device 10 can also be designed to maintain water inside the inner chamber or receptacle 504, and the insulating device 10 can be configured to be water “resistant” from the outside in. In other words, insulating device 10 can be formed “water tight” inside the inner liner 500, and water cannot leak into the inner liner 500 from the outside or out from the inside of the inner liner 500 when the closure 301 is in the closed position.



FIG. 4 depicts a bottom view of the insulating device 10. As shown in FIG. 4 the insulating device 10 may include a base 215 and a base support ridge 400. The base support ridge 400 can provide structural integrity and support to the insulating device 10 when the insulating device 10 is placed onto a surface.


In one example, as shown in FIGS. 3A and 4, the top of the outer shell 501 has a first perimeter circumference (Tcir) and the bottom of the outer shell 501 has a second perimeter circumference or a base perimeter 401 (Bcir). The circumference of the top of the outer shell 501 can be equal to the circumference on the bottom when folded into a cylinder, and Bcir can be equal to Tcir. In one example, the first circumference and the second circumference can both have an oval shape to form an elongated or elliptical cylinder. In one example, the top outer layer 501a can have a length of 23.5 inches and a width of 5.5 inches. Therefore, the length to width ratio of the top outer layer 501a can be approximately 4.3. Additionally, the base 215 can have a length of 20.0 inches and a width of 12.25 inches. Therefore, the length to width ratio of the base 215 is approximately 1.6. In this example, the length to width ratio of the upper wall can be greater than the length to width ratio of the base.


In one example, as shown in FIG. 5A the inner layer or inner liner 500 can be formed of a top inner liner portion or first portion 500a, an inner layer mid portion or second portion 500b, and an inner layer bottom portion 500c. The top inner liner portion 500a, the inner layer mid portion 500b, and the inner layer bottom portion 500c are secured together, by for example welding, to form the chamber 504. The chamber 504 can be a “dry bag,” or vessel for storing contents. In one example, after the top inner liner portion 500a, the inner layer mid portion 500b, and the inner layer bottom portion 500c are secured or joined together, a tape, such as a TPU tape can be place over the seams joining the sections of the chamber 504. The inner liner 500 can, thus, either maintain liquid in the chamber 504 of the insulating device 10 or prevent liquid contents from entering into the chamber 504 of the insulating device 10. In one example, as will be described in further detail below, the inner liner 500 can be suspended in the insulating device 10 by only the closure 301.


The insulating layer 502 can be located between the inner liner 500 and the outer shell 501, and can be formed as a foam insulator to assist in maintaining the internal temperature of the receptacle 504. In one example, the insulating layer 502 can be a free floating layer that is not attached directly to the outer shell 501 or the inner liner 500. The insulating layer 502 can be formed of a first portion 502a and a second portion or base portion 502b. The first portion 502a and the second portion 502b can be formed of an insulating foam material as will be described in further detail below.


The first portion 502a can have a rectangular shape that maintains its form when folded into a cylinder and placed in between the inner liner 500 and the outer shell 501 and when encased from above by the outer shell 501. The insulating layer 502 maintains its shape which results in the basic oval-cylindrical shape of the insulating device 10. Therefore, similar to the outer shell 501, the top of the insulating layer 502 has a first perimeter circumference, and the bottom of the insulating layer 502 has a second perimeter circumference. The first perimeter circumference of the insulating layer 502 can be equal to the second perimeter circumference of the insulating layer 502.


The base portion 502b can be included to provide additional insulation along the insulating device 10 at base 215. The base portion 502b can be formed as an oval shape to close off a lower opening 506 formed by the cylindrical shape of the insulating layer 502.


Additionally, the bottom portion of the insulating device 10 can include an additional base-support layer 505, which adds to the insulation and the structural integrity of the insulating device 10. The base support layer 505 may also provide additional protection around the bottom of the insulating device 10. In one example, the base support layer 505 can be formed from EVA foam. The base support layer 505 may include a certain design such as a logo or name that can be molded or embossed directly into the material. The base support ridge 400, which provides structural integrity and support to the insulating device 10 can also be molded or embossed directly into the base support layer 505. In one example, the base support layer 505 and the base portion 502b can be detached for ease of assembly.


The outer shell 501 can be formed of a top outer layer portion or first shell portion 501a, an outer layer or second outer shell portion 501b, and a bottom or third shell portion 501c. The outer shell 501 provides a covering for the insulating device 10. In one example, the insulating layer 502 can be suspended freely within the outer shell 501. However, it is contemplated that any of the layers could be secured or formed as a one-piece integral structure. The outer shell 501 can be configured to support one or more optional handles or straps (e.g. 210, 212, 218). In this regard, the outer shell 501 can also include multiple reinforcement areas or patches 220 that are configured to assist in structurally supporting the optional handles or straps (e.g. 210, 212, 218). The handles or straps (e.g. 210, 212, 218) and other attachments can be stitched using threads 222, however these threads 222 do not, in one example, extend through the outer shell 501 into the insulating layer 502. Rather, the threads are sewn to the patches 220, and the patches 220 can be RF welded to the outer shell 501 or by any other method disclosed herein.


As shown in FIG. 5A, the first outer shell portion 501a may be attached to the second shell portion 501b by stitching 510. However, the first outer shell portion 501a can be attached to the second shell portion 501b using any known method, e.g., polymer welding, or other adhesive around the entire perimeter of the second shell portion 501b.


Additionally, in one example, the base-support layer 505 formed from EVA foam can be secured to bottom or third shell portion 501c by lamination. The second shell portion 501b can be secured to the third shell portion 501c and the base-support layer 505 by polymer welding (e.g. RF welding), stitching, or adhesives.


The insulating device 10 can include two carry handles 210 that are connected to the frontside 216 of the insulating device 10 and the backside 217 of the insulating device 10. In one particular example, a shoulder strap 218 can be attached via plastic or metal clip to the ring 214 attached to side handles 212 to facilitate carrying insulating device 10 over the shoulder. The insulating device 10 may also include side handles 212 on each end of the cooler. The side handles 212 provide the user with another option for grasping and carrying the insulating device.


Carry handles 210 may also form a slot for receiving rings 214 near the bottom of the attachment point of the carry handles to the insulating device 10. The rings 214 can be secured to the carry handles 210 and the attachment points 213 by stitching, adhesive, or polymer welding and can be used to help secure or tie down the insulating device 10 to another structure such as a vehicle, vessel, camping equipment, and the like or various objects such as keys, water bottle bottles, additional straps, bottle openers, tools, other personal items, and the like.


Additionally, as shown in FIG. 2, webbing formed as loops 224 can be sewn onto the straps forming the handles 210 on the back of the insulating device 10. The loops 224 can be used to attach items (e.g., carabineers, dry bags) to the insulating device 10. The side handles 212 can also provide the user with another option for securing the insulating device 10 to a structure.


In one example, the carry handles 210, side handles 212, shoulder strap 218 and attachment points 213 can be constructed of nylon webbing. Other materials may include polypropylene, neoprene, polyester, Dyneema, Kevlar, cotton fabric, leather, plastics, rubber, or rope. The carry handles 210 and side handles 212 can be attached to the outer shell by stitching, adhesive, or polymer welding.


The shoulder strap 218 can be attached to the insulating device 10 at attachment points 213. The attachment points 213 can be straps that also form a slot for receiving rings 214. The rings 214 can provide for the attachment of the shoulder strap 218.


In one example, the rings 214 can be Acetal D-rings. Rings 214 in can be plastic, metal, ceramic, glass, alloy, polypropylene, neoprene, polyester, Dyneema, and Kevlar, cotton fabric, leather, plastics, rubber, or rope. Rings 214 can include other shapes, sizes, and configurations other than a “D” shape. Examples include round, square, rectangular, triangular, or rings with multiple attachment points. Additionally, pockets or other storage spaces can be attached to the outside of the insulating device 10 in addition to the carry handles 210 and side handles 212.


In one example, the closure 301 can be substantially waterproof or a barrier to prevent liquid contents from either entering or exiting the insulating device. Additionally, the closure 301 can be impervious to liquid such that insulating device 10 liquid penetration is prevented at any orientation of the insulating device 10. Also maintaining the closure 301 in flat plane can assist in providing a water tight seal.



FIGS. 3A-3C depicts top views of the insulating device 10, and depicts the top outer layer or the first outer shell portion 501a and the closure 301. The top outer layer 501a depicted in FIG. 3A can be secured to the closure 301. In one example, the closure 301 can be a waterproof zipper assembly and can be watertight up to 7 psi above atmospheric pressure during testing with compressed air. However, in other examples, the water tightness of the closure 301 can be from 5 psi to 9 psi above atmospheric pressure and in other examples, the water tightness of the closure 301 can be from 2 psi to 14 psi above atmospheric pressure. The waterproof zipper assembly can include a slider body 303 and pull-tab 302. FIG. 3B shows a magnified view of the closure 301 that includes bottom stop 304 and teeth or a chain 305. In one particular example, the waterproof zipper assembly can be constructed with plastic or other non-metallic teeth 305 to prevent injury when retrieving food or beverages from the inner chamber 504.


As shown in FIG. 3C, the closure 301 is open or unzipped and an aperture 512 formed in the outer shell 501 and the inner liner 500 is open and reveals the inner liner 500 and the inner chamber 504. It is contemplated that the closure or seal 301 can include various sealing devices in addition to the depicted waterproof zipper assembly in FIGS. 3A-3C. For example, Velcro, snaps, buckles, zippers, excess material that is folded multiple times to form a seal such as a roll-down seal, seals, metal or plastic clamps and combinations thereof could be used to seal the inner liner 500 and the outer shell 501.



FIG. 8 depicts another exemplary insulating device 1010, which has similar features and functions as the example discussed above in relation to FIGS. 1A-5B in which like reference numerals refer to the same or similar elements. However, in this example, a loop patch 1015 can be provided on the front of the bag. The loop patch 1015 can be configured to receive many types of items or a corresponding group of hooks, which can be placed onto the surface anywhere on various items, such as fishing lures, keys, bottle openers, card holders, tools, other personal items, and the like. The loop patch 1015 can include a logo, company name, personalization, or other customization. The loop patch 1015 can be formed of by needle loops and can have a high cycle life of over 10,000 closures. In addition, the loop patch can be washable and UV resistant to prevent discoloration. The loop patch can be selected based on a desired sheer and peel strength depending on the types of materials that are to be secured to the insulating device 1010.


In the example shown in FIG. 8, additionally, a strip 1013 can be provided along the bottom of the bag, which can provide additional strength and reinforcement to the outer shell 1501, and may enhance the aesthesis of the insulating device 1010.


Example methods of forming the insulating device 10 will now be described. A general overview of an exemplary assembly process of the insulating device 10 is depicted schematically in FIG. 6. The various steps, however, need not necessarily be performed in the order described. As shown in step 602 first the portions used to form the inner liner 500, the outer shell 501, and the insulating layer 502 can be formed or cut to size. In step 604, a top cap assembly 300 can be assembled to the closure 301. In step 606, the inner liner 500 can be formed, and in step 608, the top cap assembly 300 can be welded to the inner liner 500. In step 610, the outer shell 501 can be formed. In step 612, the insulation layer 502 can be assembled, and in step 616, the insulation layer 502 can be placed into the inner liner. Finally, in step 618, the top cap assembly 300 can be secured to the outer shell 501.


Referring to step 602, as shown in FIGS. 7A and 7B, inner liner top portions or first inner liner portions 500a and outer layer top portion 501a that form the top cap assembly 300 can be formed or cut to size. FIG. 7C shows a second portion or base portion 502b of the insulating layer 502 being cut or formed to size from stock foam. In this example, the base portion 502b is cut from the stock foam 530, by cutting tool 700. In one example, the cutting tool 700 can be formed in the shape of the base portion 502b.


Referring now to step 604 and FIG. 7D, the top outer layer 501a and the top inner liner 500a can be secured to the closure 301 to form the top cap assembly 300, and the top outer layer 501a and the top inner liner 500a can be secured to the closure 301 in a flat, horizontal plane. Referring to FIGS. 5A-5B the top outer layer 501a can be attached by polymer welding or adhesive to closure 301. In particular as shown schematically in FIG. 5B, the closure 301 can be provided with a first flange 301a and a second flange 301b, which can form waterproof zipper tape 306. The top outer layer 501a can be attached directly to the top surfaces of the first flange 301a and the second flange 301b of the closure 301. In one example, the first flange 301a and the second flange 301b, can be RF welded to the underside of the top outer layer 501a. In another example, as shown in FIG. 7E, the top inner liner portion 500a can be provided with tabs 515. Tabs 515 can assist in the assembly process to keep the outer strips of the top inner liner portion 500a in place during assembly and can be removed after the top cap assembly 300 is formed.


In one example, the top inner liner portion 500a can be attached to the structure of the insulating device 10 as shown schematically in FIG. 5B. In particular, the top inner liner portion 500a can be attached to the bottom of the closure 301. For example, as shown in FIG. 5B, and a first end 540a and a second end 540b of the top inner liner portion 500a can be attached to undersides of the first flange 301a and the second flange 301b. The top inner liner portion 500a and the top outer layer 501a can be attached to the closure 301 by polymer welding or adhesive. Polymer welding includes both external and internal methods. External or thermal methods can include hot gas welding, hot wedge welding, hot plate welding, infrared welding and laser welding. Internal methods may include mechanical and electromagnetical welds. Mechanical methods may include spine welding, stir welding, vibration welding, and ultrasonic welding. Electromagnetical methods may include resistance, implant, electrofusion welding, induction welding, dielectric welding, RF (Radio Frequency) welding, and microwave welding. The welding can be conducted in a flat or horizontal plane to maximize the effectiveness of the polymer welding to the construction materials. As a result, a rugged watertight seam can be created that prevents water or fluids from escaping from or into the inner chamber 504.


In a particular example, the polymer welding technique to connect the top inner liner portion 500a to the bottom of the closure 301 can include RF welding. The RF welding technique provides a waterproof seam that prevents water or any other fluid from penetrating the seam at pressure up to 7 psi above atmospheric pressure. The insulating device 10, therefore, can be inverted or submerged in water and leakage is prevented both into and out of the internal chamber 504 formed by inner liner 500. In one example, the insulating device 10 can be submerged under water to a depth of about 16 feet before water leakage occurs. However, it is contemplated that this depth could range from about 11 feet to 21 feet or 5 feet to 32 feet before any leakage occurs.


Next referring to step 606 and FIG. 7F, the inner layer mid-portion 500b can be formed by RF welding. As shown in FIG. 7F, the inner layer mid-portion 500b can be formed of a rectangular sheet of material. The inner layer mid-portion 500b can also be secured to the inner layer bottom portion 500c in a subsequent step not shown.


Referring to step 608 and FIGS. 7G and 7H, the inner layer mid portion 500b and the inner layer bottom portion 500c can be secured to the top cap assembly 300 using an RF welding operation.


Referring to step 610, the second shell portion 501b and the bottom outer shell 501c, which supports the base support layer 505, can be RF welded to construct the outer shell 501 for the insulating device 10. In one example, as shown schematically in FIG. 5A, the top outer layer 501a can be sewed to the perimeter of the second shell portion 501b to form the outer shell 501 of the insulating device. A fabric binding can be used to cover the stitched seam edges of the second shell portion 501b and the top outer layer 501a. This assists in closing or joining the outer shell 501 around the insulating layer 502.


Referring to step 612 and FIG. 71, the insulating layer 502 can be constructed. In one example the first portion 502a of the insulating layer 502 can be formed into a rectangular shape and can be secured at the smaller sides of the rectangular shape using double sided tape to form the cylindrical shape. The second portion or base portion 502b can be formed into an oval shape that can have a smaller circumference than the circumference of the cylindrical shape of the first portion 502a. The second portion 502b can be secured to the first portion 502a also using a double-sided tape to form the insulating layer 502. In one example, double sided tape can be placed either around the inner perimeter of the first portion 502a cylinder or around the outer perimeter of the base portion 502b, and the base portion 502b can be adhered to the first portion 502a. Other methods of securing the base portion 502b to the first portion 502a to form the insulating layer 502 are contemplated, such adhesives or polymer welding.


Referring to step 614, the assembled insulating layer 502 can be placed into the outer shell 501. In step 616, the formed inner liner 500 and top cap assembly 300 can be placed into the insulating layer 502.


Finally in step 618 the top cap assembly 300 can be sewed to the outer shell 501 to form seams 520 as depicted schematically in FIG. 5A. In this way, neither the inner liner 500 nor the outer shell 501 need to be bound to the insulating layer 502. Also the inner liner 500 is only connected to the closure 301 and the closure 301 holds the inner liner and the outer shell 501 together, which results in a simpler manufacturing process. After sewing the top cap assembly 300 to the outer shell 501, a fabric binding is added to cover the raw edges adjacent the seams 520. Thus, the top seams 520 can be the only primary seams on the insulating device 10 that are created by stitching.


In one particular example, the inner liner 500 and the outer shell 501 can be constructed from double laminated TPU nylon fabric. Nylon fabric can be used as a base material for the inner liner 500 and the outer shell 501 and can be coated with a TPU laminate on each side of the fabric. The TPU nylon fabric used in one particular example is 0.6 millimeters thick, is waterproof, and has an antimicrobial additive that meets all Food and Drug Administration requirements. Alternative materials used to manufacture the inner shell or chamber 504 and outer shell 501 include PVC, TPU coated nylon, coated fabrics, and other weldable and waterproof fabrics.


A closed cell foam can be used to form the insulating layer 502 that is situated in between the inner liner 500 and the outer shell 501. In one example, the insulating layer 502 is 1.0 inches thick. In one example, the insulating layer 502 can be formed of NBR/PVC blend or any other suitable blend. The thermal conductivity of an example insulating layer 502 can be in the range of 0.16-0.32 BTU.in/(hr·sqft·° F.), and the density of the insulating layer 502 can be in the range of 0.9 to 5 lbs/ft3. In one example, the thermal conductivity of the insulating layer 502 can be in the range of 0.25 BTU.in/(hr·sqft·° F.), and the density of the insulating layer 502 can be 3.5 lbs/ft3.


The foam base can be manufactured from an NBR/PVC blend or any other suitable blend. In addition to the base portion 502b of the insulating layer 502, the insulating device 10 may also include an outer base support layer 505 constructed of foam, plastic, metal or other material. In one example, the base portion 502b can be detached from the base support layer. In one example, the base portion 502b is 1.5 inches thick. Additionally as shown in FIG. 5A, the EVA foam base support layer 505 can be 0.2 inches thick. Although the base support layer 505 is laminated to the base outer layer 501c, in an alternative example, the base support layer 505 can be attached to the bottom of the base portion 502b by co-molding, polymer welding, adhesive, or any known methods.


A heat gain test was conducted on the exemplary insulating device 10. The purpose of a heat gain test is to determine how long the insulating device can keep temperature below 50° F. at an ambient of 106° F.±4 with the amount of ice based on its internal capacity.


The procedure is as follows:

  • 1. Turn on the oven and set to 106° F.±4. Allow the oven to stabilize for at least one hour.
  • 2. Turn on the chart recorder. The recorder shall have three J-thermocouples connected to it to chart the following temperatures: (1) Test unit, (2) Oven, and (3) Room ambient.
  • 3. Stabilize the test unit by filling it to half its capacity with ice water, and allowing it to sit for 5 minutes at room temperature (72° F.±2).
  • 4. After 5 minutes, pour out the contents, and immediately connect the J-thermocouple end to the inside bottom center of the unit. The thermocouple wire end must be flush to the inside bottom surface and secured with an adhesive masking tape.
  • 5. Pour the correct amount of ice ensuring the thermocouple wire is not moved. Amount of ice is based on 4 lbs. per cubic feet of the internal capacity of the unit.
  • 6. Close the lid and position the test unit inside the oven.
  • 7. Close the oven making sure the thermocouple wires are functioning.
  • 8. Mark the start of the chart recorder.


Apparatus: 1. Oven. 2. Ice. 3. Chart Recorder. 4. J-Thermocouples (3). Results: 1. Cold Retention Time: Elapsed time from <32° F. to 50° F. in decimal hours. 2. Heat Gain Rate (° F./Hr): (50° F.−32° F.)÷Elapsed Time=18° F.÷Elapsed Time


In one test of the example insulating device, the heat gain rate equaled 1.4 degF./hr assuming 26.5 quarts capacity and used 3.542 lbs of ice for the test.


The ability of the insulating device 10 to withstand interior leaks can also be tested to see how well the insulating device maintains the contents stored in the storage compartment or receptacle 504. In one example test, the insulating device 10 can be filled with a liquid, such as water, and then can be inverted for a predetermined time period to test for any moisture leaks. In this example, the insulating device 10 is filled with a liquid until approximately half of a volume of the receptacle 504 is filled, e.g. 3 gallons of water, and the closure 301 is then closed fully to ensure that the slider body 303 is completely sealed into the horseshoe-shaped portion 308. The entire insulating device 10 is then inverted and held inverted for a time period of 30 minutes. The insulating device 10 is then reviewed for any leaks.


The insulating device 10 can be configured to withstand being held inverted for 30 minutes without any water escaping or leaving the receptacle 504. In alternative examples, the insulating device can be configured to withstand being held inverted for 15 minutes to 120 minutes without any water escaping or leaving the receptacle 504. To perform this test, it may be helpful to lubricate the closure to ensure that the closure is adequately sealed. For example, as shown in FIG. 9, a horseshoe-shaped portion 308 of the closure 301 is provided with lubricant 309.


The strength and durability of the fabric forming the outer shell 501, inner liner 500 and the insulating layer 502 of the insulating device 10 may also be tested. In one example, the test can be devised as a puncture test. In particular, this test can be designed as an ASTM D751-06 Sec. 22-25 screwdriver puncture test. In one example, the insulating device 10 can withstand 35 lbs to 100 lbs of puncture force.


The handle strength and durability of the insulating device 10 can also be tested. One such example test is depicted in FIG. 10. As depicted in FIG. 10, the closure 310 can be fully closed, one of the carry handles 210 can hooked to an overhead crane 600, and the opposite carry handle 210 is hooked to a platform 650, which can hold weight. In one example, the platform 650 can be configured to hold 200 lbs. of weight. During the test, the crane 600 is slowly raised, which suspends the insulating device 10 in a position where the bottom plane of the insulating device 10 is perpendicular with the floor. In one example, the insulating device 10 can be configured to hold 200 lbs. of weight for a minimum of 3 minutes without showing any signs of failure. In alternative examples, the insulating device can be configured to hold 100 lbs. to 300 lbs. of weight for 1 to 10 minutes without showing signs of failure.


An exemplary insulating device may include an outer shell, an inner liner, an insulating layer floating freely in between the outer shell and the inner liner, and a waterproof closure. The top of the shell has first perimeter circumference, and the bottom of the shell has a second perimeter circumference. The first perimeter circumference can be equal to the second perimeter circumference. The closure can be a zipper assembly comprising a plurality of zipper teeth, and the zipper teeth can be formed of plastic or metal. The outer shell can be made of a double laminated TPU nylon fabric. The inner liner can be made of a double laminated TPU nylon fabric. The insulating layer can be formed of a closed cell foam. The insulating layer can be made of a NBR and a PVC blend, and at least a portion of the insulating layer can be constructed with an EVA foam layer. The outer shell further can include at least one of a strap or handle. The outer shell further can include at least one ring for securing the insulating device.


An exemplary insulating device can include an outer shell, an inner liner, a closure adapted to seal at least one of the outer shell or the inner liner, and an insulating layer between the outer shell and the inner liner. The closure can have a first flange and a second flange, and the outer liner can be secured to top surfaces of the first flange and the second flange and the inner liner can be secured to bottom surfaces of the first flange and the second flange. The outer liner and the inner liner can be connected to the closure by a polymer weld. The outer shell can have a first circumference and a second circumference, the first circumference and the second circumference both having an oval shape. The closure can be adapted to be a barrier against fluid. The closure can be a zipper apparatus that is watertight up to 7 psi above atmospheric pressure.


An exemplary method of assembling a insulating device may include forming an inner liner having an inner vessel, forming an outer shell, forming an insulating layer between the inner liner and the outer shell, and securing a closure configured to be a barrier against fluid penetration in and out of the inner vessel wherein the closure is secured in a flat plane and is secured to the outer shell and the inner shell. The outer shell and inner shell may only be connected to the closure and not to the insulating layer between the outer shell and inner liner.


A waterproof polymer weld can be formed between the closure and the inner shell and the closure and the outer shell when the closure, the outer shell, and the inner liner are lying in a horizontal plane. The outer shell and the inner layer can be formed of a TPU nylon material. The closure can have a first flange and a second flange. The outer liner can be secured to top surfaces of the first flange and the second flange and the inner liner can be secured to bottom surfaces of the first flange and the second flange.


The method can also include forming the insulating layer from a rectangular shape, and rolling the rectangular shape into a cylindrical shape. The top of the insulating layer has a first perimeter circumference and the bottom of the insulating layer has a second perimeter circumference. The first perimeter circumference can be equal to the second perimeter circumference.


Another example insulating device can include an outer shell, an inner liner forming a storage compartment, a foam layer floating freely in between the outer and inner liner, the foam layer providing insulation, an opening extending through the outer layer and the inner layer, and a closure adapted to substantially seal the opening. The closure can be substantially waterproof so as to resist liquid from exiting the opening.


The insulating device can also include an upper wall and a base, the upper wall defining an upper wall circumference, an upper wall length and an upper wall width, and the base defining a base circumference, a base length and a base width. The upper wall circumference can be equal to the base circumference and the ratio of the upper wall length to the upper wall width can be greater than the ratio of the base length to the base width. In one example, a heat gain rate of the insulating device can be approximately 1.0-1.5 degF./hr.


Another example method of forming an insulating device may include forming an inner liner first portion and an outer shell first portion, securing the inner liner first portion and the outer shell first portion to a sealable closure to form a cap assembly, forming an inner liner second portion and securing the inner liner second portion to the inner liner first portion to form an inner liner, forming an outer shell second portion, rolling a rectangular foam portion to form a first cylindrical foam portion and securing a foam base portion to the first cylindrical portion to form a foam assembly, inserting the foam assembly into the outer shell second portion, inserting the inner liner into the foam assembly, and stitching the outer shell first portion to the outer shell second portion. The inner liner first portion and the outer shell first portion can be welded to the closure. The closure can be provided with at least one flange and the flange can be secured to a bottom surface of the outer shell first portion and a top surface of the inner liner first portion. The foam can float between the outer shell second portion and the inner liner second portion.


An example portable insulating device may include an outer liner, an inner liner forming a storage compartment, a foam layer in between the outer and inner liner. The foam layer can be adapted to provide insulation. The example portable insulating device may also include an opening extending through one of the outer layer and the inner layer and a closing means for substantially sealing the opening. The closure can be substantially waterproof.


In one example, a portable cooler may include an aperture on the top of the cooler that is opened and closed by a zipper apparatus which allows access to a chamber within the cooler. The aperture prevents any fluid leakage out of the cooler if the cooler is overturned or in any configuration other than upright. The zipper assembly also prevents any fluid from permeating into the cooler chamber if the cooler is exposed to precipitation, other fluid, or submersed under water.


An example method of assembling a zipper apparatus and aperture configured to be impervious to water or other liquids and fluids can include attachment of a waterproof zipper via material welding to both an outer shell and an inner liner. This method may result in a chamber impervious to water and other liquids when the zipper apparatus on the aperture is sealed.


In one example, an insulating device may include an outer shell, an inner liner forming a storage compartment, a foam layer floating formed in between the outer and inner liner, the foam layer providing insulation, an opening extending through the outer layer and the inner layer, a closure adapted to substantially seal the opening, the closure being substantially waterproof so as to resist liquid from exiting the opening when the insulating device is in any orientation. In one example, the top portion of the outer shell can have a first perimeter circumference in a first configuration. The outer shell may include a bottom portion, the bottom portion of the outer shell can have a second perimeter circumference in a second configuration that is different from the first configuration, and the first perimeter circumference can be equal to the second perimeter circumference. The first configuration and the second configuration can be both oval shaped. In one example, the insulating device may include an upper wall and a base, the upper wall can define an upper wall circumference, an upper wall length and an upper wall width, and the base can define a base circumference, a base length and a base width. The upper wall circumference can be equal to the base circumference and the ratio of the upper wall length to the upper wall width can be greater than the ratio of the base length to the base width. The cold retention time of the insulating device can be approximately 11 to 20 hours. However, in one example the cold retention time can be 11 to 15 hours. In another example the cold retention time can be approximately 12.24 hours. The heat gain rate of the insulating device can be approximately 1 to 1.5 degF./hr, and, in one particular example, the heat gain rate can be approximately 1.4 degF./hr. The storage compartment can be configured to maintain a liquid therein while inverted for greater than 15 minutes. In one particular example, the storage compartment can be configured to maintain the liquid for a period of greater than 30 minutes therein when inverted and a half of a volume of the storage compartment is filled with the liquid.


In one example, the insulating layer can be floating freely in between the outer shell and the inner liner. The insulating layer can be formed of closed cell foam, and the insulating layer can be made of a NBR and a PVC blend. In one example least a portion of the insulating layer can be constructed with an EVA foam layer. The closure can be a zipper assembly comprising a plurality of zipper teeth, and the zipper teeth can be formed of plastic.


In one example, the outer shell and the inner liner can be made of a double laminated TPU nylon fabric. The outer shell further can include at least one of a strap or handle. The outer shell can include at least one ring for securing the insulating device. The insulating layer can be configured to maintain an internal temperature of the insulating device below 50 degrees Fahrenheit for 65 to 85 hours. The closure can be formed with a first flange and a second flange and the outer liner can be secured to top surfaces of the first flange and the second flange. The inner liner can be secured to bottom surfaces of the first flange and the second flange. The outer liner and the inner liner can be connected to the closure by a polymer weld. In one example, the closure can be watertight up to 2 to 14 psi above atmospheric pressure. A loop patch may also be provided on the insulating device.


In another example, an insulating device may include an outer shell, an inner liner forming a storage compartment, a foam layer floating in between the outer and inner liner, which provides insulation, an opening extending through the outer layer and the inner layer, a closure adapted to substantially seal the opening. The closure can be substantially waterproof so as to prevent liquid from exiting the opening when the insulating device is inverted for a period of greater than 15 minutes. The heat gain rate of the insulating device can be approximately 1.0 to 1.5 degF./hr. The insulting device can include at least one handle. The at least one handle can be configured to support 100 lbs. to 300 lbs. of weight for 1 to 10 minutes without showing signs of failure. In one example, the insulating device can be configured to withstand 35 lbs. to 100 lbs. of puncture force.


An example method of forming an insulating device can include forming an inner liner first portion and an outer shell first portion, securing the inner liner first portion and the outer shell first portion to a sealable closure to form a cap assembly, forming an inner liner second portion and securing the inner liner second portion to the inner liner first portion to form an inner liner, forming an outer shell second portion, rolling a rectangular foam portion to form a first cylindrical foam portion and securing a foam base portion to the first cylindrical foam portion to form a foam assembly, inserting the foam assembly into the outer shell second portion, inserting the inner liner into the foam assembly, and securing the outer shell first portion to the outer shell second portion to form the outer shell. The method may also include securing a closure configured to be a barrier against fluid penetration in and out of the inner vessel and forming a waterproof polymer weld between the closure and the inner shell and the closure and the outer shell when the closure, the outer shell, and the inner liner are lying in a flat plane.


In an example, the inner liner first portion and the outer shell first portion can be secured to the closure. The closure can be provided with at least one flange, and the flange can be secured to a bottom surface of the outer shell first portion and a top surface of the inner liner first portion. The foam can freely float between the outer shell second portion and the inner liner second portion. The outer shell and inner shell are only connected to the closure and not to the insulating layer between the outer shell and inner liner. The outer shell can be formed of a TPU nylon material, and the inner liner can be formed from a TPU nylon material. The closure can include a first flange and a second flange. The outer liner can be secured to top surfaces of the first flange and the second flange, and the inner liner can be secured to bottom surfaces of the first flange and the second flange. The top of the insulating layer can have a first perimeter circumference. The bottom of the insulating layer can have a second perimeter circumference. The first perimeter circumference can be equal to the second perimeter circumference.


The present invention is disclosed above and in the accompanying drawings with reference to a variety of examples. The purpose served by the disclosure, however, is to provide examples of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the examples described above without departing from the scope of the present invention.

Claims
  • 1. A method of forming an insulating device comprising an outer shell having a bottom base support layer, an inner liner, an insulating layer in between the outer shell and the inner liner, the insulating layer comprising sides and a bottom abutting each other, a closure adapted to substantially seal an opening, the closure being substantially waterproof so as to resist liquid from exiting the opening when the insulating device is in any orientation, the method comprising: forming the inner liner having an inner vessel,forming the outer shell having the bottom base support layer,forming the insulating layer;placing the insulating layer within the outer shell such that the bottom of the insulating layer is unattached to the bottom base support layer, placing the inner liner within the insulating layer; and securing the closure to the outer shell and the inner liner.
  • 2. The method of claim 1 wherein the outer shell and inner liner are only connected to the closure and not to the insulating layer between the outer shell and inner liner.
  • 3. The method of claim 1 further comprising forming waterproof polymer welds between the closure and the inner liner and the closure and the outer shell.
  • 4. The method of claim 1 wherein the outer shell is formed of a TPU nylon material.
  • 5. The method of claim 1 wherein the insulating layer is a foam layer between the outer shell and the inner liner.
  • 6. The method of claim 1 further comprising forming the insulating layer to be floating freely in between the outer shell and the inner liner.
  • 7. The method of claim 1 wherein the closure is a zipper assembly comprising a plurality of zipper teeth, wherein the zipper teeth are formed of plastic or metal.
  • 8. The method of claim 1 further comprising forming the outer shell and the inner liner from double laminated TPU nylon fabric.
  • 9. The method of claim 1 further comprising forming the insulating layer from closed cell foam.
  • 10. The method of claim 1 further comprising forming the insulating layer from a NBR and a PVC blend.
  • 11. The method of claim 1 wherein at least a portion of the insulating layer is constructed with an EVA foam layer.
  • 12. The method of claim 1 further comprising attaching at least one of a strap or handle to the outer shell.
  • 13. The method of claim 1 wherein the closure has a first flange and a second flange wherein the outer shell is secured to top surfaces of the first flange and the second flange and the inner liner is secured to bottom surfaces of the first flange and the second flange.
  • 14. The method of claim 1 further comprising connecting the outer shell and the inner liner to the closure by a polymer weld.
  • 15. The method of claim 1 wherein the sides and the bottom of the insulating layer are secured to each other.
Parent Case Info

This application is a continuation application of U.S. application Ser. No. 14/831,641, filed Aug. 20, 2015 , now U.S. Pat. No. 9,796,517, which is a divisional of U.S. application Ser. No. 14/479,607, filed on Sep. 8, 2014 (now U.S. Pat. No. 9,139,352, issued Sep. 22, 2015, which claims priority to U.S. Application No. 61/937,310 filed on Feb. 7, 2014, which is incorporated fully herein by reference.

US Referenced Citations (548)
Number Name Date Kind
210994 Carnagy Dec 1878 A
1587655 Kidwell Jun 1926 A
1949677 Crawford Mar 1934 A
2119621 Ferrone Jun 1938 A
2253598 Africa Aug 1941 A
2289254 Eagles Jul 1942 A
2522381 Kramer Sep 1950 A
2575191 Seipp Nov 1951 A
2575893 Seaman Nov 1951 A
2633223 Zeamer Mar 1953 A
2651485 Schutz Sep 1953 A
2661785 Daust Dec 1953 A
2685385 Kuss Aug 1954 A
2808093 Gilman Oct 1957 A
2954891 Imber Oct 1960 A
2960136 Ziff Nov 1960 A
3066846 Domigan Dec 1962 A
3454197 Thompson Jul 1969 A
3801425 Cook Apr 1974 A
3814288 Westrich Jun 1974 A
3905511 Groendal Sep 1975 A
4125212 Courchesne Nov 1978 A
4127155 Hydorn Nov 1978 A
4143695 Hoehn Mar 1979 A
4194627 Christensen Mar 1980 A
4196817 Moser Apr 1980 A
4197890 Simko Apr 1980 A
4210186 Belenson Jul 1980 A
4211091 Campbell Jul 1980 A
4211267 Skovgaard Jul 1980 A
4248366 Christiansen Feb 1981 A
D265948 Stark Aug 1982 S
4344303 Kelly, Jr. Aug 1982 A
4372453 Branscum Feb 1983 A
4375828 Biddison Mar 1983 A
D268879 Outcalt May 1983 S
4399668 Williamson Aug 1983 A
4468933 Christopher Sep 1984 A
4513895 Leslie Apr 1985 A
4521910 Keppel et al. Jun 1985 A
4537313 Workman Aug 1985 A
4541540 Gretz et al. Sep 1985 A
D281122 Bomes et al. Oct 1985 S
D281546 Bradshaw Dec 1985 S
D281646 Bomes et al. Dec 1985 S
D282602 Allen Feb 1986 S
4571338 Okonogi et al. Feb 1986 A
4595101 Rivera Jun 1986 A
4596370 Adkins Jun 1986 A
4598746 Rabinowitz Jul 1986 A
4637063 Sullivan et al. Jan 1987 A
D289128 Bradshaw Apr 1987 S
4673117 Calton Jun 1987 A
4679242 Brockhaus Jul 1987 A
4708254 Byrns Nov 1987 A
4746028 Bagg May 1988 A
4759077 Leslie Jul 1988 A
4765476 Lee Aug 1988 A
4796937 Andrea Jan 1989 A
4802344 Livingston et al. Feb 1989 A
4802602 Evans et al. Feb 1989 A
4805776 Namgyal et al. Feb 1989 A
4812054 Kirkendall Mar 1989 A
4826060 Hollingsworth May 1989 A
4858444 Scott Aug 1989 A
4867214 Fuller Sep 1989 A
4871069 Guimont Oct 1989 A
4886183 Fleming Dec 1989 A
4941603 Creamer et al. Jul 1990 A
4984906 Little Jan 1991 A
4986089 Raab Jan 1991 A
4989418 Hewlett Feb 1991 A
5004091 Natho et al. Apr 1991 A
5005679 Hjelle Apr 1991 A
5042664 Shyr et al. Aug 1991 A
5048734 Long Sep 1991 A
5062557 Mahvi et al. Nov 1991 A
5190376 Book Mar 1993 A
5216900 Jones Jun 1993 A
5221016 Karpal Jun 1993 A
5237838 Merritt-Munson Aug 1993 A
5244136 Collaso Sep 1993 A
D339979 Wehrley Oct 1993 S
D340387 Melk Oct 1993 S
D340621 Melk Oct 1993 S
D340840 Melk Nov 1993 S
5269368 Schneider et al. Dec 1993 A
D343992 Melk Feb 1994 S
5297870 Weldon Mar 1994 A
5313807 Owen May 1994 A
5325991 Williams Jul 1994 A
5354131 Mogil Oct 1994 A
5355684 Guice Oct 1994 A
5398848 Padamsee Mar 1995 A
5400610 Macedo Mar 1995 A
5403095 Melk Apr 1995 A
5421172 Jones Jun 1995 A
5447764 Langford Sep 1995 A
5472279 Lin Dec 1995 A
5490396 Morris Feb 1996 A
D370599 Christopher et al. Jun 1996 S
D371052 Melk Jun 1996 S
5529217 Siegel Jun 1996 A
D373515 Melk Sep 1996 S
5562228 Ericson Oct 1996 A
5564568 Rankin, Sr. Oct 1996 A
5569401 Gilliland et al. Oct 1996 A
5595320 Aghassipour Jan 1997 A
D382771 Mogil Aug 1997 S
D383360 Melk Sep 1997 S
5680944 Rueter Oct 1997 A
5680958 Mann et al. Oct 1997 A
D386310 Smith Nov 1997 S
5687874 Omori et al. Nov 1997 A
D387249 Mogil Dec 1997 S
5706969 Yamada et al. Jan 1998 A
D394553 Lin May 1998 S
D395555 Ursitti Jun 1998 S
5758513 Smith Jun 1998 A
5779089 West Jul 1998 A
D397273 Collie Aug 1998 S
5816709 Demus Oct 1998 A
D401063 Yamamoto et al. Nov 1998 S
5842571 Rausch Dec 1998 A
5845514 Clarke et al. Dec 1998 A
5848734 Melk Dec 1998 A
5857778 Elis Jan 1999 A
5909821 Guridi Jun 1999 A
5913448 Mann et al. Jun 1999 A
5915580 Melk Jun 1999 A
5931583 Collie Aug 1999 A
D414379 Haberkorn Sep 1999 S
5988468 Murdoch et al. Nov 1999 A
5988879 Bredderman et al. Nov 1999 A
6019245 Foster et al. Feb 2000 A
6027249 Bielinski Feb 2000 A
6029847 Mahoney, Jr. et al. Feb 2000 A
6048099 Muffett et al. Apr 2000 A
D424417 Axelsson May 2000 S
6059140 Hicks May 2000 A
6065873 Fowler May 2000 A
6068402 Freese et al. May 2000 A
6073796 Mogil Jun 2000 A
6082589 Ash et al. Jul 2000 A
6082896 Pulli Jul 2000 A
6089038 Tattam Jul 2000 A
6092266 Lee Jul 2000 A
6092661 Mogil Jul 2000 A
6116045 Hodosh et al. Sep 2000 A
6128915 Wagner Oct 2000 A
6139188 Marzano Oct 2000 A
6145715 Slonim Nov 2000 A
6149305 Fier Nov 2000 A
6193034 Fournier Feb 2001 B1
6209343 Owen Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6234677 Mogil May 2001 B1
6237776 Mogil May 2001 B1
6247328 Mogil Jun 2001 B1
6253570 Lustig Jul 2001 B1
6276579 DeLoach Aug 2001 B1
D447632 Gisser Sep 2001 S
D447667 Schneider et al. Sep 2001 S
6286709 Hudson Sep 2001 B1
6296134 Cardinale Oct 2001 B1
6296165 Mears Oct 2001 B1
6298993 Kalozdi Oct 2001 B1
6336577 Harris et al. Jan 2002 B1
6353215 Revels et al. Mar 2002 B1
D455934 Culp et al. Apr 2002 S
6363739 Hodosh et al. Apr 2002 B1
6409066 Schneider et al. Jun 2002 B1
6422032 Greene Jul 2002 B1
6439389 Mogil Aug 2002 B1
D464235 Jeong Oct 2002 S
D465134 Joss Nov 2002 S
6481239 Hodosh et al. Nov 2002 B2
D466291 Ng Dec 2002 S
6495194 Sato et al. Dec 2002 B2
6505479 Defelice et al. Jan 2003 B2
6511695 Paquin et al. Jan 2003 B1
6513661 Mogil Feb 2003 B1
D472431 Spence, Jr. Apr 2003 S
6554155 Beggins Apr 2003 B1
D474649 Spence, Jr. May 2003 S
6582124 Mogil Jun 2003 B2
D476481 Gilbert Jul 2003 S
6595687 Godshaw et al. Jul 2003 B2
D478782 Li Aug 2003 S
6604649 Campi Aug 2003 B1
6605311 Villagran et al. Aug 2003 B2
6619447 Garcia, III et al. Sep 2003 B1
6629430 Mills et al. Oct 2003 B2
D482241 Tyler Nov 2003 S
6652933 Hall Nov 2003 B2
6655543 Beuke Dec 2003 B2
D485131 Lanman et al. Jan 2004 S
D485732 Lanman et al. Jan 2004 S
D486038 Lanman et al. Feb 2004 S
6688470 Dege et al. Feb 2004 B2
6729758 Carter May 2004 B1
D492160 Lanman et al. Jun 2004 S
D497518 Bellofatto, Jr. et al. Oct 2004 S
6799693 Meza Oct 2004 B2
D498924 Karl Nov 2004 S
D501600 Guyon Feb 2005 S
D502599 Cabana et al. Mar 2005 S
D503279 Smith Mar 2005 S
6874356 Komfeldt et al. Apr 2005 B2
D506645 Bellofatto, Jr. et al. Jun 2005 S
D512274 Cabey Dec 2005 S
D515362 Chan Feb 2006 S
D516099 Maruyama Feb 2006 S
D517801 Woo Mar 2006 S
D520306 Peterson May 2006 S
D523243 Nashmy Jun 2006 S
D527226 Maldonado Aug 2006 S
D530089 Silverman Oct 2006 S
7153025 Jackson et al. Dec 2006 B1
D534352 Delafontaine Jan 2007 S
D534771 Zorn Jan 2007 S
D535820 Kamiya Jan 2007 S
7162890 Mogil et al. Jan 2007 B2
D539033 Cassegrain Mar 2007 S
7201285 Beggins Apr 2007 B2
7207716 Buchanan et al. Apr 2007 B2
7219814 Lown et al. May 2007 B2
7240513 Conforti Jul 2007 B1
D548459 Harvey Aug 2007 S
D550448 Boje et al. Sep 2007 S
7264134 Tulp Sep 2007 B2
D557667 Kawamura et al. Dec 2007 S
7302810 McCrory Dec 2007 B2
D560102 Sumter Jan 2008 S
7313927 Barker Jan 2008 B2
7344028 Hanson Mar 2008 B2
7353952 Swartz et al. Apr 2008 B2
D570603 Wu et al. Jun 2008 S
D573422 Tagliati et al. Jul 2008 S
D574667 Grabijas, III et al. Aug 2008 S
D578401 Perry et al. Oct 2008 S
D582151 Gonzalez Dec 2008 S
7481065 Krieger Jan 2009 B2
D598194 Turvey et al. Aug 2009 S
7597478 Pruchnicki et al. Oct 2009 B2
D603606 Wang Nov 2009 S
7634919 Bernhard, Jr. et al. Dec 2009 B2
D607697 Whitlock et al. Jan 2010 S
D608096 Noble Jan 2010 S
D608159 Whitlock et al. Jan 2010 S
D610795 Dejadon Mar 2010 S
D611706 Angles et al. Mar 2010 S
7669436 Mogil et al. Mar 2010 B2
7682080 Mogil Mar 2010 B2
D617560 Wu Jun 2010 S
7730739 Fuchs Jun 2010 B2
D618966 Koehler et al. Jul 2010 S
D619423 Koehler et al. Jul 2010 S
D619854 Koehler et al. Jul 2010 S
D619855 Koehler et al. Jul 2010 S
7757878 Mogil et al. Jul 2010 B2
D620707 Mogil Aug 2010 S
D620708 Sanz Aug 2010 S
7775388 Murrer, III Aug 2010 B2
7784759 Farrell Aug 2010 B2
7791003 Lockhart et al. Sep 2010 B2
7811620 Merrill et al. Oct 2010 B2
7815069 Bellofatto et al. Oct 2010 B1
D626329 Chapelier Nov 2010 S
D627199 Pruchnicki Nov 2010 S
7841207 Mogil et al. Nov 2010 B2
D629612 Weldon Dec 2010 S
7874177 Azamy Jan 2011 B2
7900816 Kastanek et al. Mar 2011 B2
D638220 Chu et al. May 2011 S
D642870 Whitlock et al. Aug 2011 S
7988006 Mogil et al. Aug 2011 B2
D645662 Perez Sep 2011 S
8016090 McCoy et al. Sep 2011 B2
8043004 Mogil Oct 2011 B2
D648532 Sosnovsky Nov 2011 S
8061159 Mogil et al. Nov 2011 B2
D650169 Klifa Dec 2011 S
8096442 Ramundi Jan 2012 B2
8191747 Pruchnicki Jun 2012 B2
D664261 Kravitz et al. Jul 2012 S
8209995 Kieling et al. Jul 2012 B2
D666896 Pinholster, Jr. et al. Sep 2012 S
D667043 Couch, III Sep 2012 S
8281950 Potts et al. Oct 2012 B2
8302749 Melmon et al. Nov 2012 B2
D673363 Crandall Jan 2013 S
D674664 Collie Jan 2013 S
8424713 Bolland Apr 2013 B2
D682635 Boroski May 2013 S
8453899 Calkin Jun 2013 B1
D686412 Guichot Jul 2013 S
8474640 Armstrong Jul 2013 B2
8516848 White et al. Aug 2013 B2
8544678 Hughes Oct 2013 B1
8573002 Ledoux et al. Nov 2013 B2
D695568 Hayes Dec 2013 S
8622235 Suchecki Jan 2014 B2
D699940 Robert Feb 2014 S
D699941 Robert Feb 2014 S
D703946 Tweedie May 2014 S
8720739 Bollis May 2014 B2
8777045 Mitchell et al. Jul 2014 B2
D710085 Szewczyk Aug 2014 S
D711096 Hanna Aug 2014 S
D712555 Berg Sep 2014 S
8827109 Sheehan Sep 2014 B1
8844756 Beyburg Sep 2014 B2
D715544 Levine Oct 2014 S
8857654 Mogil et al. Oct 2014 B2
D717041 Pulliam Nov 2014 S
D718931 Brundl Dec 2014 S
D719303 Anderson Dec 2014 S
8899071 Mogil et al. Dec 2014 B2
D725908 Zwetzig Apr 2015 S
D728942 Byham May 2015 S
D732348 Seiders et al. Jun 2015 S
D732349 Seiders et al. Jun 2015 S
D732350 Seiders et al. Jun 2015 S
D732899 Seiders et al. Jun 2015 S
D734643 Boroski Jul 2015 S
D734992 Boroski Jul 2015 S
9084463 Merrill Jul 2015 B2
D738108 Adler et al. Sep 2015 S
D739654 Brouard Sep 2015 S
9139352 Seiders et al. Sep 2015 B2
9146051 Kamin et al. Sep 2015 B2
D747104 Ford Jan 2016 S
9226558 Armstrong Jan 2016 B2
D749653 Carnes Feb 2016 S
D750140 Cross Feb 2016 S
9254022 Meldeau et al. Feb 2016 B2
9254023 Su et al. Feb 2016 B2
9265318 Williams et al. Feb 2016 B1
D752347 Seiders et al. Mar 2016 S
9271553 Ponx Mar 2016 B2
9272475 Ranade et al. Mar 2016 B2
9290313 De Lesseux et al. Mar 2016 B2
D752860 Barilaro et al. Apr 2016 S
D756109 Hayashi May 2016 S
D756638 Frisoni May 2016 S
9366467 Kiedaisch et al. Jun 2016 B2
9375061 Mosee Jun 2016 B2
D760494 Harvey-Pankey Jul 2016 S
D761561 Cheng Jul 2016 S
D763570 Potts Aug 2016 S
D764791 Patel Aug 2016 S
D764873 Collie Aug 2016 S
9408445 Mogil et al. Aug 2016 B2
D765395 Sanz Sep 2016 S
D768987 Blumenfeld Oct 2016 S
D770761 Deioma et al. Nov 2016 S
D770763 Joo et al. Nov 2016 S
D771372 Kelly et al. Nov 2016 S
D772562 Petre Nov 2016 S
D778045 Ruddis Feb 2017 S
D782820 Thompson Apr 2017 S
D784010 Dumas Apr 2017 S
D785325 Samrelius et al. May 2017 S
D786559 Seiders et al. May 2017 S
D786560 Seiders et al. May 2017 S
D786561 Seiders et al. May 2017 S
D786562 Seiders et al. May 2017 S
D787187 Seiders et al. May 2017 S
D789080 Caffagni Jun 2017 S
D792167 Bradley Jul 2017 S
D792486 Li et al. Jul 2017 S
D793089 Jackson Aug 2017 S
D796185 Masten Sep 2017 S
D797454 Seiders et al. Sep 2017 S
D797455 Seiders et al. Sep 2017 S
D798670 Seiders et al. Oct 2017 S
D799276 Seiders et al. Oct 2017 S
D799277 Seiders et al. Oct 2017 S
D799905 Seiders et al. Oct 2017 S
D800443 Burton et al. Oct 2017 S
D800444 Burton et al. Oct 2017 S
D801123 Seiders et al. Oct 2017 S
D802028 Li Nov 2017 S
D802029 Li Nov 2017 S
D802373 Seiders et al. Nov 2017 S
D802630 Li et al. Nov 2017 S
D805851 Sullivan et al. Dec 2017 S
D808655 Seiders et al. Jan 2018 S
D808730 Sullivan et al. Jan 2018 S
D809869 Seiders et al. Feb 2018 S
D811082 Lehan Feb 2018 S
D811746 Seiders et al. Mar 2018 S
D813539 Van Assche Mar 2018 S
D814879 Larson et al. Apr 2018 S
D817106 Larson et al. May 2018 S
D817107 Larson et al. May 2018 S
D819966 Yu Jun 2018 S
D819967 Carter et al. Jun 2018 S
D821825 Sullivan et al. Jul 2018 S
D822987 Seiders et al. Jul 2018 S
D822997 Seiders et al. Jul 2018 S
D823601 Seiders et al. Jul 2018 S
D823602 Seiders et al. Jul 2018 S
D824671 Pennington Aug 2018 S
D824731 Sullivan et al. Aug 2018 S
D827299 Vickery Sep 2018 S
D829244 Sullivan et al. Sep 2018 S
D830132 Sullivan et al. Oct 2018 S
D830133 Sullivan et al. Oct 2018 S
D830134 Sullivan et al. Oct 2018 S
D832653 Waskow et al. Nov 2018 S
D834817 Hoppe et al. Dec 2018 S
D834895 Triska et al. Dec 2018 S
D835473 Jacobsen Dec 2018 S
D835949 Triska et al. Dec 2018 S
D836996 Jacobsen Jan 2019 S
D836997 Jacobsen Jan 2019 S
D836998 Jacobsen Jan 2019 S
20020197369 Modler Dec 2002 A1
20030070447 Tanaka Apr 2003 A1
20030080133 Butler May 2003 A1
20030106895 Kalal Jun 2003 A1
20030136702 Redzisz et al. Jul 2003 A1
20030175394 Modler Sep 2003 A1
20040004111 Cardinale Jan 2004 A1
20040028296 Meli Feb 2004 A1
20040035143 Mogil Feb 2004 A1
20040074936 McDonald Apr 2004 A1
20040094589 Fricano May 2004 A1
20040136621 Mogil Jul 2004 A1
20040144783 Anderson et al. Jul 2004 A1
20040149600 Wolter et al. Aug 2004 A1
20040164084 Cooper Aug 2004 A1
20040237266 Wang Dec 2004 A1
20050016895 Glenn Jan 2005 A1
20050034947 Nykoluk Feb 2005 A1
20050045520 Johnson Mar 2005 A1
20050045521 Johnson et al. Mar 2005 A1
20050056669 Lavelle Mar 2005 A1
20050072181 Mogil et al. Apr 2005 A1
20050133399 Fidrych Jun 2005 A1
20050183446 Fuchs Aug 2005 A1
20050196510 Walters Sep 2005 A1
20050262871 Bailey-Weston Dec 2005 A1
20050263528 Maldonado et al. Dec 2005 A1
20050279124 Maldonado Dec 2005 A1
20060007266 Silverbrook Jan 2006 A1
20060102497 Wulf May 2006 A1
20060151533 Simunovic et al. Jul 2006 A1
20060201979 Achilles Sep 2006 A1
20060239593 Fidrych Oct 2006 A1
20060240159 Cash et al. Oct 2006 A1
20060248902 Hunnell Nov 2006 A1
20070012593 Kitchens Jan 2007 A1
20070148305 Sherwood et al. Jun 2007 A1
20070148307 Sherwood et al. Jun 2007 A1
20070164063 Concepcion Jul 2007 A1
20070217187 Blakely et al. Sep 2007 A1
20070221693 Moore Sep 2007 A1
20070237432 Mogil Oct 2007 A1
20070261977 Sakai Nov 2007 A1
20070274613 Pruchnicki et al. Nov 2007 A1
20070290816 Bedard Dec 2007 A1
20080038424 Krusemann Feb 2008 A1
20080073364 Simmons Mar 2008 A1
20080105282 Fernholz et al. May 2008 A1
20080128421 Ulbrand et al. Jun 2008 A1
20080160149 Nasrallah et al. Jul 2008 A1
20080164265 Conforti Jul 2008 A1
20080178865 Retterer Jul 2008 A1
20080245096 Hanson et al. Oct 2008 A1
20080260303 De Lesseux Oct 2008 A1
20080264925 Lockhart Oct 2008 A1
20080305235 Gao et al. Dec 2008 A1
20090052809 Sampson Feb 2009 A1
20090080808 Hagen Mar 2009 A1
20090095757 Ramundi Apr 2009 A1
20090280229 Constantine et al. Nov 2009 A1
20090311378 Wilaschin et al. Dec 2009 A1
20090317514 Sizer Dec 2009 A1
20100047423 Kruesemann et al. Feb 2010 A1
20100059199 Court Mar 2010 A1
20100075006 Semenza Mar 2010 A1
20100108694 Sedlbauer et al. May 2010 A1
20100136203 Sakata et al. Jun 2010 A1
20100143567 Ye et al. Jun 2010 A1
20100224660 Gleason Sep 2010 A1
20100284631 Lee Nov 2010 A1
20110003975 Arase et al. Jan 2011 A1
20110005739 Finney et al. Jan 2011 A1
20110030415 Breyburg et al. Feb 2011 A1
20110097442 Harju et al. Apr 2011 A1
20110108562 Lyons May 2011 A1
20110167863 Herrbold Jul 2011 A1
20110182532 Baltus Jul 2011 A1
20110191933 Gregory et al. Aug 2011 A1
20110284601 Pullin Nov 2011 A1
20110311166 Pascua Dec 2011 A1
20120106130 Beaudette May 2012 A1
20120137637 Gillis Jun 2012 A1
20120180184 Crye Jul 2012 A1
20120181211 Charlebois Jul 2012 A1
20120187138 Vasquez et al. Jul 2012 A1
20120294550 Hassman et al. Nov 2012 A1
20120311828 Nir Dec 2012 A1
20130014355 Lee Jan 2013 A1
20130043285 Cordray Feb 2013 A1
20130174600 Sarcinella Jul 2013 A1
20130216158 Meldeau et al. Aug 2013 A1
20130264350 Handlon et al. Oct 2013 A1
20130294712 Seuk Nov 2013 A1
20130341338 Mitchell et al. Dec 2013 A1
20140023295 Wagner Jan 2014 A1
20140034543 Grubstein Feb 2014 A1
20140151172 Diaz Jun 2014 A1
20140226920 Passavia Aug 2014 A1
20140248003 Mogil et al. Sep 2014 A1
20140254956 Buell, III Sep 2014 A1
20140270590 Ostroy Sep 2014 A1
20140366336 Chung Dec 2014 A1
20150008242 Kpabar, Jr. Jan 2015 A1
20150114024 Grepper Apr 2015 A1
20150136796 Muehlhauser May 2015 A1
20150175338 Culp et al. Jun 2015 A1
20150225164 Seiders et al. Aug 2015 A1
20150335202 Wisner et al. Nov 2015 A1
20150353263 Seiders et al. Dec 2015 A1
20160066817 Hannes Mar 2016 A1
20160100661 Redzisz et al. Apr 2016 A1
20160101924 Mitchell et al. Apr 2016 A1
20160107816 Larpenteur et al. Apr 2016 A1
20160236849 Seiders et al. Aug 2016 A1
20160255943 Houston et al. Sep 2016 A1
20160257479 Seiders et al. Sep 2016 A1
20160338462 Hayashi Nov 2016 A1
20160338908 Rice et al. Nov 2016 A1
20170036844 Seiders et al. Feb 2017 A1
20170071304 Wang Mar 2017 A1
20170071305 Wang Mar 2017 A1
20170099920 Bailey Apr 2017 A1
20170210542 Seiders et al. Jul 2017 A1
20180016084 Xia et al. Jan 2018 A1
20180162626 Munie et al. Jun 2018 A1
20180242701 Seiders et al. Aug 2018 A1
20180263346 Stephens Sep 2018 A1
20180279733 Young et al. Oct 2018 A1
20180317620 Larson et al. Nov 2018 A1
Foreign Referenced Citations (70)
Number Date Country
1015808 Sep 2005 BE
2243820 Jan 2000 CA
2300014 Aug 2001 CA
2327764 Jun 2002 CA
2433251 Dec 2004 CA
2483802 Apr 2006 CA
2498796 Sep 2006 CA
2499291 Sep 2006 CA
2503473 Oct 2006 CA
2548064 Nov 2007 CA
2549327 Nov 2007 CA
2633223 Dec 2009 CA
2782668 Dec 2013 CA
2125339 Dec 1992 CN
2188899 Feb 1995 CN
201062136 May 2008 CN
102717977 Oct 2012 CN
202619972 Dec 2012 CN
202959175 Jun 2013 CN
103385657 Nov 2013 CN
302623771 Nov 2013 CN
302623775 Nov 2013 CN
302769710 Mar 2014 CN
302956550 Oct 2014 CN
303100086 Feb 2015 CN
303342902 Aug 2015 CN
3539626 May 1987 DE
20002689 Aug 2000 DE
202011050174 Jul 2011 DE
202013101115 Mar 2013 DE
0037545 Oct 1981 EP
0082131 Jun 1983 EP
85534 Aug 1983 EP
0158634 Oct 1985 EP
0174159 Mar 1986 EP
0238932 Sep 1987 EP
1269009 Aug 1961 FR
2440886 Jun 1980 FR
1600133 Oct 1981 GB
2249717 May 1992 GB
2335972 Oct 1999 GB
3004135 Sep 2002 GB
3006367 Oct 2002 GB
11051532 Feb 1999 JP
3275477 Apr 2002 JP
D1160335 Dec 2002 JP
2003026258 Jan 2003 JP
D1213384 Aug 2004 JP
D1242111 Jun 2005 JP
2010023926 Feb 2010 JP
D1445624 Jul 2012 JP
20020027739 Apr 2002 KR
20040092730 Nov 2004 KR
300778570.0000 Jan 2015 KR
300808669.0000 Aug 2015 KR
300835242.0000 Jan 2016 KR
300853718.0000 May 2016 KR
9524146 Sep 1995 WO
9812954 Apr 1998 WO
02058500 Aug 2002 WO
2006007266 Jan 2006 WO
2006058538 Jun 2006 WO
2007016092 Feb 2007 WO
2010106296 Sep 2010 WO
2010120199 Oct 2010 WO
2012003543 Jan 2012 WO
2014033450 Mar 2014 WO
2014066026 May 2014 WO
2016066817 May 2016 WO
2017136754 Aug 2017 WO
Non-Patent Literature Citations (32)
Entry
Good Housekeeping, “Lands' End Zip Top Cooler Tote #433786”, Reviewed on Apr. 2014, Accessed Nov. 18, 2017. (http://www.goodhousekeeping.com/travel-products/food-cooler-reviews/a33270/lands-end-zip-top-cooler-tote-433786/).
Home Shopping Network, “Built New York Large Welded Cooler Bag”, Accessed Nov. 18, 2017. (https://www.hsn.com/products/built-new-york-large-welded-cooler-bag/8561 033).
Nov. 24, 2017—U.S. Final Office Action—U.S. Appl. No. 15/154,626.
Vimeo, “Cleaning Your YETI Hopper” uploaded by user YETI Coolers on Nov. 4, 2014, Accessed Sep. 27, 2017.(https://vimeo.com/11 0890075).
Stopper Dry Bag, http://www.seatosummit.com/products/display/181, published date unknown, but prior to the filing date of the present application, Sea to Summit, United States.
Icemule Classic Cooler—Large (20L), http://www.icemulecooler.com/icemule-classic-cooler-large-20I/, published date unknown, but prior to the filing date of the present application, ICEMULE, United States.
The-gadgeteer.com: Tom Bihn Camera I-O Bag Review. Published by Janet Cloninger on Jul. 9, 2012. Retrieved from the Internet at <http://the-gadgeteer.com/2012/07/09/tom-bihn-camera-i-o-bag-review/>, Jan. 8, 2016. 23 pages.
Devonbuy.com: Thule Gauntlet 13″ MacBook Pro Attaché. Published on Jul. 28, 2014. Retrieved from the internet at <http://www.devonbuy.com/thule-gauntlet-13-macbook-pro-attache/>, Feb. 24, 2016. 9 pages.
United States District Court for the Western District of Texas, Austin Division, “Defendants' Answer and Counterclaims to YETI's Complaint,” YETI Coolers, LLC, vs. RTIC Soft Sided Coolers, LLC, RTIC Coolers, LLC, RTIC Web Services, LLC, and Corporate Support and Fulfillment, LLC, Case 1:16-cv-00909-RP, Document 11, Filed Aug. 18, 2016, 44 pages.
United States District Court Western District of Texas, Austin Division, “Complaint,” YETI Coolers, LLC, v. RTIC Soft Side Coolers, RTIC Coolers, LLC, RTIC Web Services, LLC, and Corporate Support and Fulfillment, LLC, Case 1:16-cv-00909, Document 1, Filed Jul. 27, 2016, 66 pages.
United States District Court Western District of Texas, Austin Division, “Complaint for Damages and Injunctive Relief,” YETI Coolers, LLC v. Jennifer Leverne Bootz Evans d/b/a Bling and Burlap Buy In's and Blanks, Case 1:15-cv-00995, Document 1, Filed Nov. 2, 2015, 128 pages.
United States District Court Western District of Texas, Austin Division, “Order,” YETI Coolers, LLC v. Jennifer Leverne Bootz Evans d/b/a Bling and Burlap Buy In's and Blanks, Case 1:15-cv-00995-RP, Document 18, Filed Apr. 18, 2016, 1 page.
United States District Court Western District of Texas, Austin Division, “Defendant's Reply in Support of Their Rule 12 (B)(6) Motion to Dismiss for Failure to State a Claim” YETI Coolers, LLC v. RTIC Soft Sided Coolers, LLC, RTIC Coolers, LLC, RTIC Web Services, LLC, and Corporate Support and Fulfillment, LLC, Case 1:16-cv-00909-RP, Document 15, Filed Sep. 8, 2016, 13 pages.
United States District Court Western District of Texas, Austin Division, “YETI's Answer to RTIC''s Counterclaims,” YETI Coolers, LLC v. RTIC Soft Sided Coolers, LLC, RTIC Coolers, LLC, RTIC Web Services, LLC, and Corporate Support and Fulfillment, LLC, Case 1:16-cv-00909-RP, Document 14, Filed Sep. 2, 2016, 16 pages.
United States District Court Western District of Texas, Austin Division, “YETI's Opposition to RTIC's Motion to Dismiss,” YETI Coolers, LLC v. RTIC Soft Sided Coolers, LLC, RTIC Coolers, LLC, RTIC Web Services, LLC, and corporate Support and Fulfillment, LLC, Case 1:16-cv-00909-RP, Document 13, Filed Sep. 1, 2016, 17 pages.
United States District Court for the Western District of Texas, Austin Division, “Defendants' Rule 12(B)(6) Motion to Dismiss for Failure to State a Claim,” YETI Coolers, LLC, vs. RTIC Soft Sided Coolers, LLC, RTIC Coolers, LLC, RTIC Web Services, LLC, and Corporate Support and Fulfillment, LLC, Case 1:16-cv-00909-RP, Document 10, Filed Aug. 18, 2016, 12 pages.
United States District Court for the Western District of Texas, Austin Division, “Joint Rule 26(f) Report and Discovery Plan,” YETI Coolers, LLC, vs. RTIC Soft Sided Coolers, LLC, RTIC Coolers, LLC, RTIC Web Services, LLC, and corporate Support and Fulfillment, LLC, Case 1:16-cv-00909-RP, Document 19, Filed Oct. 11, 2016, 9 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,139,352, filed on Dec. 13, 2016, 1616 pages.
YouTube-com: Patagonia Black Hole Duffel 6OL. Published Aug. 26, 2013. Retrieved from the internet at <https://www.youtube.com/watch?v=W-PWEmZmVv8>, Dec. 19, 2016. 1 page.
TheGadgeteer.com: Tom Bihn Camera I-O Bag Review. Published Jul. 9, 2012. Retrieved from the internet at <http:// the-gadgeteer.com/2012/07/09/tom-bihn-camera-i-o-bag-review/>, Jan. 11, 2016. 7 pages.
YouTube-com: Patagonia Black Hole Duffel 60L. Published Aug. 26, 2013. Retrieved from the internet at <https://www.youtube.com/watch?v=W-PWEmZmVv8>, Dec. 19, 2016. 1 page.
Youtube, “YETI Hopper Cooler at Icast 2014”, Uploaded by user TackleDirect on Jul. 17, 2014, Accessed Jan. 31, 2017. (https://www.youtube.com/watch?v=A2rKRdyZcZ4).
Ebags, Picnic Pack Picnic Pack Large Insultated Cooler Tote, First reviewed on Jul. 20, 2016. Accessed Feb. 7, 2017. (http://www.ebags.com/product/picnic-pack/picnic-pack-large-insulated-cooler-tote/313704?productid=10428840).
United States Patent and Trademark Office Before the Patent Trial and Appeal Board, Decisions Joint Motions to Terminate Inter Partes Review, Entered Mar. 22, 2017—(4 pgs).
Jan. 31, 2017—(WO) International Search Report and Written Opinion—App. PCT/US2016/060135.
Mar. 31, 2017—(WO) International Search Report and Written Opinion—App PCT/US2017/016552.
May 30, 2017—(WO) ISR—App. No. PCT/US17/32351.
May 30, 2017—(WO) Written Opinion—App. No. PCT/US17/32351.
United States District Court Western District of Texas Austin Division, “Complaint,” YETI Coolers, LLC v. Glacier Coolers, LLC, and Tecomate Holdings, LLC, Case 1:17-cv-00586, Document 1, filed Jun. 15, 2017, 161 pages.
Aug. 29, 2018 (WO)—International Search Report and Written Opinion—App. No. PCT/US18/36608.
Mar. 21, 2019—(WO) International Search Report and Written Opinion—App. No. PCT/US2018/066040.
Feb. 4, 2019—(AU) Examination Report—App. No. 2017263566.
Related Publications (1)
Number Date Country
20180044094 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
61937310 Feb 2014 US
Divisions (1)
Number Date Country
Parent 14479607 Sep 2014 US
Child 14831641 US
Continuations (1)
Number Date Country
Parent 14831641 Aug 2015 US
Child 15790926 US