Insulating device

Information

  • Patent Grant
  • 11565872
  • Patent Number
    11,565,872
  • Date Filed
    Tuesday, December 28, 2021
    2 years ago
  • Date Issued
    Tuesday, January 31, 2023
    a year ago
  • CPC
  • Field of Search
    • US
    • 220 592010
    • 220 592160
    • 220 592200
    • 220 592210
    • 220 59224-59225
    • 220 739000
    • 220 495030
    • 220 660000
    • 220 212000
    • 220 230000
    • 220 023830
    • 220 004010
    • 062 4571-4572
    • 062 457700
    • 062 457900
    • 062 440000
    • 383 064000
    • 383 109-110
    • 383 119000
    • 383 211000
    • 383 024000
    • 383 004000
    • 383 097000
    • 383 017000
    • 383 025000
    • 383 043000
    • 383 059000
    • 383 061100
    • D03 289
    • D03 285
    • D03 287
    • D03 279
    • D03 301
    • CPC
    • B65D81/18
    • B65D81/38
    • B65D81/3818
    • B65D81/3823
    • B65D81/389
    • B65D81/3897
    • B65D81/2023
    • B65D81/203
    • B65D81/2038
    • B65D33/24
    • B65D85/07
    • B65D85/10564
    • B65D2313/04
    • A45C11/20
    • A45C13/008
    • A45C13/02
    • A45C13/10
    • A45C13/103
    • A45C13/1069
    • A45C13/26
    • A45C13/30
    • A45C3/00
    • A45C3/001
    • A45C7/0077
    • A45C2200/20
    • A45C2013/026
    • F25D3/08
    • F25D5/02
    • F25D31/002
    • F25D2303/081
    • F25D2303/0821-0822
    • F25D2303/0843
    • F25D2331/801
    • F25D2331/804
    • F25D2400/12
    • F25D2323/062
    • A45F3/04
    • A45F3/06
  • International Classifications
    • B65D81/38
    • A45C11/20
    • A45C13/10
    • Disclaimer
      This patent is subject to a terminal disclaimer.
Abstract
An insulating device can include a body assembly and a lid assembly where an insulating layer is connected to both the body assembly and the lid assembly. An aperture with a closure is formed between the body assembly and lid assembly to form a storage compartment. An insulating tab may be formed from a portion of the insulating layer and an inner liner of the body assembly to help insulate the closure region. In addition, a first magnetic element may be secured within the insulating tab that may engage a second magnetic element secured within the lid assembly.
Description
FIELD OF INVENTION

The present disclosure relates generally to non-rigid, portable, insulated devices or containers useful for keeping food and beverages cool or warm, and, more particularly, a soft-sided insulated lunchbox.


BACKGROUND

Insulated devices or lunchboxes are designed to keep food and beverages at lower temperatures. The containers may be composed of flexible materials such as fabric or foams. Insulated lunchboxes may be designed to promote portability. The lunchboxes may include straps and/or handles and may in certain instances be made of lighter weight materials to facilitate mobility. The lunchboxes may include a closure that can open and close a lid to a body of the lunchbox either allow or prevent access to the storage compartment and its interior contents.


BRIEF SUMMARY

This Summary provides an introduction to some general concepts relating to this disclosure in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the disclosure.


Aspects of the disclosure herein may relate an insulating device that includes a body assembly, where the body assembly includes a bottom layer, a first sidewall attached to the bottom layer, an inner liner, and an insulating layer, where at least a portion of the insulating layer is positioned between the first sidewall and the inner liner, and a lid assembly rotatably connected to the body assembly, where the lid assembly includes an upper layer, a lid insulating layer, and a lid liner. A storage compartment may be formed by the body assembly and the lid assembly, where the insulating device has an open configuration providing access to the storage compartment and a closed configuration preventing access to the storage compartment. A closure may be positioned between the body assembly and the lid assembly, where the closure is adapted to selectively connect the body assembly and the lid assembly, and an insulated tab may be formed from a portion of the inner liner and a portion of the insulating layer, where the insulated tab is within the storage compartment and inward of the closure and having a distal end positioned above a midpoint of the closure. The lid assembly may include perimeter edges that extend upward away from the body assembly, where the perimeter edges have an edge height defined as a vertical height from a top surface of the perimeter edges to a top surface of the upper layer, where the edge height is at least 2 times greater than a thickness of the lid insulating layer. In addition, the perimeter edges may have an edge height defined as a vertical height from a top surface of the perimeter edges, where the edge height may be within a range of 10 percent and 20 percent of a total height and 20 percent of the insulating device. The closure may be attached to the first sidewall with a connection element, where the connection element extends through the closure, the first sidewall, the inner liner, and the insulating layer when viewed in a cross-section formed by a vertical plane extending perpendicular to a bottom surface of the insulating device.


Other aspects of this disclosure may relate to an insulating device having an insulated tab behind the closure, where the insulated tab is formed from a portion of the inner liner, and the inner liner forms an outward facing layer of the insulated tab and an inward facing layer of the insulated tab. The inner liner may extend around the insulating layer from the inward facing layer to the outward facing layer, where the insulated tab is connected to the closure at a base end. The insulated tab is may be connected to the closure at the base end via a connection element that extends through the inward facing layer, the outward facing layer, the closure, the first sidewall, and the insulating layer when viewed in a cross-section formed by a vertical plane extending perpendicular to a bottom surface of the insulating device. The insulated tab may extend along a length of the closure to insulate the storage compartment along the length of the closure. As another option, the insulated tab may include a first magnetic element that engages a second magnetic element on the lid assembly when the insulating device is in the closed configuration. The first magnetic element may be positioned between the inner liner and the insulating layer, and the second magnetic element may be positioned between the lid liner and the lid insulating layer.


Still other aspects of this disclosure may relate to an insulating device that includes a body assembly, where the body assembly includes a bottom layer, a sidewall attached to the bottom layer, an inner liner, and an insulating layer, where at least a portion of the insulating layer is positioned between the bottom layer and the inner liner, a lid assembly rotatably connected to the body assembly, where the lid assembly includes an upper layer, a lid insulating layer, and a lid liner. A storage compartment may be formed by the body assembly and the lid assembly, where the insulating device has an open configuration providing access to the storage compartment and a closed configuration. A closure adapted to selectively connect the body assembly and the lid assembly, and a tab, at least partially formed from a portion of the inner liner, where the tab is within the storage compartment and located inward of the closure. The tab may have a distal end positioned above a midpoint of the closure, where the tab may include a first magnetic element that engages a second magnetic element on the lid assembly when the insulating device is in the closed configuration. In some embodiments, the tab may contact the lid liner on the lid assembly when the insulating device is in the closed configuration. The upper layer of the lid assembly may include perimeter edges that extend upward away from the body assembly, where the perimeter edges have an edge height defined as a vertical height from a top surface of the perimeter edges. The edge height may be at least 2 times greater than a thickness of the lid insulating layer. The upper layer may be formed from a foam rubber material. In addition, the lid assembly and the body assembly may be connected by a hinge on one side of the insulating device, wherein the hinge is formed by a second sidewall that extends from the bottom layer of the body assembly to the upper layer of the lid liner of the lid assembly. The tab may also include a portion of the insulating layer enclosed within the inner liner.


Yet other aspects of this disclosure may relate to an insulating device comprising a body assembly, where the body assembly includes a bottom layer, a first sidewall attached to the bottom layer, an inner liner, and an insulating layer, where at least a portion of the insulating layer is positioned between the bottom layer and the inner liner. The insulating device may also include a lid assembly rotatably connected to the body assembly, where the lid assembly includes an upper layer, a lid insulating layer, and a lid liner. The upper layer of the lid assembly may include perimeter edges that extend upward away from the body assembly, where the perimeter edges have an edge height defined as a vertical height from a top surface of the upper layer to a top of the perimeter edges, wherein the edge height is greater than a thickness of the lid insulating layer. A storage compartment may formed by the body assembly and the lid assembly, where the insulating device has an open configuration providing access to the storage compartment and a closed configuration. The insulating device may also include a closure selectively adapted to connect the body assembly and the lid assembly, where the closure is attached to the first sidewall with a connection element, where the connection element extends through the first sidewall, closure, the inner liner, and the insulating layer. An insulated tab may be formed from a portion of the inner liner and a portion of the insulating layer, where the insulated tab is arranged inward of the closure and has a distal end extending above a midpoint of the closure. The insulated tab may include a first magnetic element that engages a second magnetic element on the lid assembly when the insulating device is in the closed configuration. The insulated tab may be formed from the inner liner, where the inner liner forms an outward facing layer of the insulated tab and an inward facing surface of the insulated tab. The insulated tab may extend along an entire length of the closure to insulate the storage compartment along the entire length of the closure.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing Summary, as well as the following Detailed Description, will be better understood when considered in conjunction with the accompanying drawings in which like reference numerals refer to the same or similar elements in all of the various views in which that reference number appears.



FIG. 1 illustrates a right front perspective view of an example insulating device in a closed configuration in accordance with an aspect of the disclosure;



FIG. 2 illustrates a right front perspective view of the example insulating device of FIG. 1 in an open configuration;



FIG. 3 illustrates a front view of the example insulating device of FIG. 1;



FIG. 4 illustrates a top view of the example insulating device of FIG. 1;



FIG. 5 illustrates a rear view of the example insulating device of FIG. 1;



FIG. 6 illustrates a bottom view of the example insulating device of FIG. 1;



FIG. 7 illustrates a right side view of the example insulating device of FIG. 1;



FIG. 8 illustrates a left side view of the example insulating device of FIG. 1;



FIG. 9 illustrates a right side cross-sectional view as shown in FIG. 4; and



FIG. 10 illustrates a right side cross-sectional view as shown in FIG. 4.





DETAILED DESCRIPTION

In the following description of the various examples and components of this disclosure, reference is made to the accompanying drawings, which form a part hereof, and in which are shown by way of illustration various example structures and environments in which aspects of the disclosure may be practiced. It is to be understood that other structures and environments may be utilized and that structural and functional modifications may be made from the specifically described structures and methods without departing from the scope of the present disclosure.


Also, while the terms “front side,” “rear side,” “top,” “bottom,” “side,” “inward,” and “outward” and the like may be used in this specification to describe various example features and elements, these terms are used herein as a matter of convenience, e.g., based on the example orientations shown in the figures and/or the orientations in typical use. Nothing in this specification should be construed as requiring a specific three dimensional or spatial orientation of structures in order to fall within the scope of the claims. In addition, the reader is advised that the drawings may not be to scale.



FIGS. 1-10 depict an exemplary insulating device 100 that can be configured to keep desired contents stored cool or warm for a desired period of time. In particular, illustrated embodiment of the insulating device 100 may be a soft-sided insulated lunchbox that may be used to keep the contents secure and at an appropriate storage temperature for at least several hours. The insulating device 100 may comprise a body assembly 120, a lid assembly 140 rotatably coupled to the body assembly 120, a storage compartment 160 formed by the body assembly 120 and the lid assembly 140, and a closure 180 adapted to selectively connect the body assembly 120 and the lid assembly 140. A plurality of handles 190 may be included on the insulating device 10 for carrying, holding, or securing the insulating device 100.


The insulating device 100 may be configured to keep desired contents stored in the storage compartment 160 cool or warm for several hours. In some embodiments, the insulating device 100 may also be designed to maintain water inside the storage compartment 160 and may be configured to be water “resistant” from the outside in. In these examples, the insulating device 100 may be “water tight” such that water cannot leak into storage compartment 160 from the outside or leak out from the storage compartment 160 when the closure 180 is in the closed position.


As shown in FIGS. 1-10, the insulating device 100 may be in the shape of a cuboid or rectangular prism and have a front side 102, a rear side 104, a right side 106, a left side 108, a top side 110, and a bottom side 112. For example, the body assembly 120 may comprise bottom layer 122, first sidewall 124A, second sidewall 124B, third sidewall 124C, and sidewall 124D, along with corner members 126 connecting the adjacent sidewalls 124A, 124B, 124C, 124D to form the exterior shape of the bottom portion of the cuboid. The lid assembly 140 may comprise an upper layer 142 and an upper sidewall 144 to form the exterior shape of the upper portion of the cuboid. Other shapes are also contemplated for the insulating device 100, for example, cylindrical, spherical, conical, pyramidal, frusto-conical, frusto-spherical, frusto-pyramidal, etc. The length of the insulating device 100 may be greater than the width and the height, and the width may be greater than the height. For example, the height of the insulating device 100 may, in one embodiment, be in the range of 80 mm to 150 mm, where in one particular example may be approximately 115 mm. The length of the insulating device 100 may be in the range of 200 mm to 310 mm, where in one particular example may be approximately 260 mm. Also, the width of the insulating device 100 may, in one example, be in the range of 150 mm to 270 mm and in one specific example, the width may be approximately 210 mm. However, it is contemplated that the insulating device 100 may comprise any height, length, width and volume dimensions, without departing from the scope of these disclosures.


The storage compartment 160 of the insulating device 100 may be accessed through the opening 162 formed at the top of the body assembly 120. An inner liner 128 of the body assembly 120 may form an interior surface of the storage compartment while a lid liner 146 may form the interior surface of the lid assembly 140. As will be discussed in more detail later, a lid insulating layer 148 may be positioned between the upper layer 142 and the lid liner 146, and an insulating layer 130 may be positioned between the sidewalls 124A, 124B, 124C, 124D and the inner liner 128 and/or also positioned between the bottom layer 122 and the inner liner 128.


The body assembly 120 may also include a plurality of handles 190. The handles 190 may be positioned on multiple sides of the body assembly 120. For instance, in the exemplary embodiment, the handles 190 may include a front handle 192 arranged on the front side 102, a right side handle 194 on the right side 106, and a left side handle 196 on the left side. The handles 190 may be attached using connection elements 198 such as stitching using threads, however these threads attaching the handles 190 may not, in some examples, extend into the insulating layer 130 or inner liner 128. The multiple handles 190 (192, 194, 196) provide a user with options for grasping for grasping and carrying the insulating device. In addition, a web loop 202 may be arranged on either end or both ends of the front handle 192 for attaching various items, (e.g., carabineers, storage cases, etc.). In some embodiments, the handles 190 and web loops 202 may be arranged anywhere on the body assembly 120 or the lid assembly 140. The handles 190 and web loops 202 may be constructed of nylon webbing. As alternate options, the handles 190 and web loops 202 may be formed from polypropylene, neoprene, polyester, Dyneema, Kevlar, cotton fabric, leather, plastics, rubber, or rope. The handles 190 and web loops 202 may be attached to the body assembly 120 by stitching, adhesive, or polymer welding. In some embodiments, the handles 190 and web loops 202 may be stitched to patches using threads, where the patches are then attached to the insulating device 100.


The insulating device 100 may also include pockets, tie downs, and D-rings anywhere on the external surface of the outer shell. The pockets can be sized for receiving keys, phones, wallets, etc. and may be formed waterproof. The pockets may also include a waterproof zipper to prevent the contents therein from getting wet.


As shown in the cross-sectional views of FIGS. 9 and 10, the body assembly 120 may comprise an inner liner 128 that encloses an insulating layer 130. For clarity, the handles 190 are removed from the cross-sectional views of FIGS. 9 and 10. In one example, as shown in FIG. 9, the inner liner 128 may be formed from one or more sidewall inner liners 128A and a bottom inner liner 128B. The one or more sidewall inner liners 128A may be secured together and to the bottom inner liner 128B with a lap joint using a polymer welding technique. Polymer welding may include both external and internal methods. External or thermal methods can include hot gas welding, hot wedge welding, hot plate welding, infrared welding and laser welding. Internal methods may include mechanical and electromagnetical welds. Mechanical methods may include spine welding, stir welding, vibration welding, and ultrasonic welding. Electromagnetical methods may include resistance, implant, electrofusion welding, induction welding, dielectric welding, RF (Radio Frequency) welding, and microwave welding. The welding can be conducted in a flat or horizontal plane to maximize the effectiveness of the polymer welding to the construction materials. Optionally, the liners 128A, 128B may be secured or joined together using a tape, such as a TPU tape can be placed over the seams to form the storage compartment 160.


The insulating layer 130 may be located between the inner liner 128 and the outer sidewalls 124A, 124B, 124C, 124D, and may be formed as an insulator to assist in maintaining the internal temperature of the storage compartment 160. In one example, the insulating layer 130 can be a free-floating layer that is not attached directly to the outer sidewalls or bottom layer 122. The insulating layer 130 may be formed as one or more sidewall insulating portions 130A and a bottom insulating portion 130B. The one or more sidewall insulating portions 130A and the bottom insulating portion 130B may be formed from an insulating foam material as will be described in further detail below. The one or more sidewall insulating portions 130A may be a closed cell foam and may have a thickness within a range of 2 mm and 6 mm, or approximately 4 mm. The bottom insulating layer 130B may be a closed cell foam and may have a thickness within a range between 4 mm and 8 mm, or approximately 6 mm. In one example, the insulating layer 130 may be formed of vinyl nitrate (NBR/PVC blend) or any other suitable blend.


In addition, an insulated tab 132 may be formed from a portion of the inner liner 128A and a portion of the sidewall insulating portions 130A to improve the overall insulating performance of the insulating device 100. As shown in FIGS. 2, 9, and 10, insulated tab 132 may be arranged inward or behind the closure 180 to provide a thermal retention member behind the closure 180. Insulated tab 132 may extend upward from a base end 133 at a connection region 139 where a lower end of the closure 180 is attached to one or more of the sidewalls 124A, 124B, 124C, 124D to a distal end 135 that may be positioned at or above a midpoint of the closure 180 in a vertical direction. The midpoint of the closure 180 being defined as the location where the closure 180 divides between a portion attached to the body assembly 120 and a portion attached to the lid assembly 140. In some instances, the distal end 135 of the insulated tab 132 may contact the lid liner 146 of the lid assembly 140 when the insulating device 100 is in the closed configuration. In some embodiments, the lid liner 146 and the insulated tab 132 may include complementary surfaces that form an interlocking feature to secure the insulated tab 132 to the lid liner 146 to improve the insulating performance of the insulating device 100. The interlocking feature may include a groove in the liner 146 that receives a top surface of the insulated tab 132. The insulated tab 132 may also extend continuously along a majority or along the entire length of the closure 180 to help insulate the storage compartment 160 along the length of the closure 180. In other words, the insulated tab 132 may extend continuously around the sides 106, 108, the front side 102, and a portion of the rear side 104 where insulated tab 132 may have ends that are adjacent to or connect to the hinge 138.


The insulated tab 132 may be formed from a portion the inner liner 128A and the sidewall insulating portion 130A, where the inner liner 128A may form an outward facing layer 136 and an inward facing layer 137 of the insulated tab 132. The inner liner 128 may extend around a portion of the sidewall insulating portion 130A from the outward facing layer 136 to the inward facing layer 137 and connect to the closure 180 at a base end 133. As shown in FIGS. 9 and 10, the insulated tab 132 may be connected to the closure 180 along connection region 139 at the base end 133 via connection elements 198 that extend through the outward facing layer 136, the inward facing layer 137, the closure 180, one or more of the sidewalls 124A, 124B, 124C, 124D, and the sidewall insulating portion 130A when viewed in a cross-section formed by a vertical plane extending perpendicular to a bottom surface of the insulating device 100. In some embodiments, the insulated tab 132 may extend from the lid liner 146 where the base end is connected or formed from the lid liner 146 and has a distal end that may be positioned at or below a midpoint of the closure 180 in a vertical direction.


Alternatively, the insulated tab 132 may be formed as a separate component having a liner and a separate insulating layer that can be attached to the lid assembly 140 or attached to the body assembly 120. For instance, the separately formed insulated tab 132 may have a base end connected to the inner sidewall liner 128A and a distal end that may be positioned at or above a midpoint of the closure 180 in a vertical direction. As another option, the separately formed insulated tab 132 may have a base end connected to the lid liner 146 and a distal end that may be positioned at or below a midpoint of the closure 180 in a vertical direction. Still as another option, the separately formed insulated tab 132 may be attached to the closure 180 (such as attached backing or fabric 182) such that a first end of the insulated tab 132 may be attached on one side of the midpoint of the closure 180 and the insulated tab extends across the midpoint to the opposite side of the closure 180. Similar to the integrally formed insulated tab 132 described above, in the embodiments having a separately formed insulated tab 132, the tab 132 may also extend along a majority or along the entire length of the closure 180. The tab 132 may be attached at the ends to the hinge 138 and extend around the sides 106, 108, the front side 102, and a portion of the rear side 104, where insulated tab 132 may have ends that are adjacent to or connect to the hinge 138.


As discussed above, the body assembly 120 may comprise bottom layer 122, first sidewall 124A, second sidewall 124B, third sidewall 124C, and sidewall 124D, along with corner members 126 connecting the adjacent sidewalls 124 to form the exterior shape of the bottom portion of the cuboid. The sidewalls 124 and corner members 126 may be formed from multiple pieces and may be joined together with lap joints and secured together with connection elements 198 such as stitching, or attached using any known method, e.g., polymer welding, stitching, or other adhesive. The sidewalls 124 and corner members 126 may provide the exterior covering for the insulating device 100. As discussed above, the insulating layer 130 can be suspended freely within the body assembly 120. Alternatively, the insulating layer(s) 130 could also be secured or formed as a one-piece integral structure.


The bottom layer 122 may increase the insulation and the structural integrity of the insulating device 100. The bottom layer 122 may also provide additional protection around the bottom of the insulating device 100. The bottom layer 122 may have perimeter edges 123 that extend upward towards the lid assembly 140. In one example, the bottom layer 122 may be formed from EVA foam. The bottom layer 122 may also include a design such as a logo or name that can be molded or embossed directly into the material. The bottom layer 122 may be attached to the sidewalls 124A, 124B, 124C, 124D and corner members 126 by connection elements 198, such as stitching or other known methods.


The lid assembly 140 may include an upper layer 142, an upper sidewall 144, and a lid liner 146. The lid assembly 140 may be generally rectangular in shape and include perimeter edges 150 that extend upward away from the body assembly 120. These upward extending perimeter edges 150 may have a height that provides a user with a member that is easily gripped by a hand of the user to assist when opening and closing the closure 180. The perimeter edges 150 may have an edge height defined as a vertical height from a top surface 152 of the upper layer 142 to a top of the perimeter edges 150, where the edge height may be greater than a thickness of the lid insulating layer 148. In some embodiments, the edge height may be at least 2 times greater than the thickness of the lid insulating layer 148. The edge height may be approximately 18 mm, or within a range of 15 mm and 21 mm, or within a range of 12 mm and 24 mm. In other embodiments, the edge height may have an edge height of approximately 15 percent of a total height of the insulating device 100, or within a range of 13 percent and 17 percent of the total height of the insulating device 100, or within a range of 10 percent and 20 percent of the total height of the insulating device 100. The perimeter edges 150 may have a constant height of may have a variable height where a region of the perimeter edges is taller than an adjacent region. In some embodiments, the perimeter edges 150 may have an engaging or receiving member that could receive or secure accessories such as a bottle opener, or utensils. In addition, the upper layer 142 of the lid assembly 140 may have a pocket formed on the top surface, where the perimeter edges 150 may form a portion of the sides of the pocket where the pocket may be connected directly to the perimeter edges 150.


The upper sidewall 144 may be attached to the perimeter edges 150 around by a connection element like stitching. Optionally, the upper sidewall 144 may be attached to the perimeter edges 150 with an RF weld joint or other types of securing methods could be used such as other forms of welding, stitching, adhesives, rivets, etc. An edge member 154 may extend along an entire length of the perimeter edges 150 of the lid assembly 140 where the edge member 154 may be also attached to the upper layer 142 and upper sidewall 144 by connection elements 198, such as stitching or other means known to own skilled in the art.


The upper sidewalls 144 may be formed from multiple pieces and may be joined together with lap joints and secured together with connection elements 198 such as stitching, or attached using any known method, e.g., polymer welding, stitching, or other adhesive. The edge member 154 may be formed from a single nylon webbing piece or be formed from a plurality of webbing pieces. The insulating layer 148 may be suspended freely within the lid assembly 140 positioned between the upper layer 142 and the lid liner 146. Alternatively, the insulating layer(s) 148 could also be secured or formed as a one-piece integral structure. As another option, the lid liner 146 may be formed as a separate component and attached along the interior edges of the lid assembly 140. In addition, the lid liner 146 may further include a pocket or other retaining member, where the pocket may be configured to hold utensils, a portable ice pack, or other items.


The upper layer 142 may increase the insulation and the structural integrity of the insulating device 100. The upper layer 142 may also provide additional protection around the top of the insulating device 100. In one embodiment, the upper layer 142 may be formed from a foam rubber, such as ethylene-vinyl acetate (EVA) foam or similar material. The upper layer 142 may also include a design such as a logo or name that can be molded or embossed directly into the material.


The lid insulating layer 148 may be formed of a single layer of foam, which corresponds to the overall shape of the lid assembly 140. The foam may, in one example, be an insulating foam, as discussed herein, which may be the same foam as is used in the body assembly 120, and be unattached to and floating between the lid liner 146 and the upper sidewall 144.


In some embodiments, the liners 128, 146 may be constructed from double laminated TPU nylon fabric. The sidewalls 124A, 124B, 124C, 124D and upper sidewall 144 may be formed from a polyester fabric that is laminated with an ether TPU on Poly 600D Fabric Single Side Laminated Ether TPU on at least one side of the fabric. The laminated fabric forming the liners and sidewalls may be waterproof and have an antimicrobial additive or coating that meets all Food and Drug Administration requirements. In addition, the fabrics used to construct the insulating device may all have antimicrobial materials incorporated to create a mildew-free environment that is food contact surface safe. In one specific example, the nylon can be 840d nylon with TPU. Alternative materials used to manufacture the inner liner 128, lid liner 146, sidewalls 124A, 124B, 124C, 124D, and upper sidewall 144 may be PVC, TPU coated nylon, coated fabrics, and other weldable and waterproof fabrics.


Additionally, as shown the cross-sectional views of FIGS. 9 and 10, the lid assembly 140 may be connected to the body assembly 120 on one side of the insulating device 100, which forms a living hinge 138. In the exemplary embodiment, the living hinge 138 may be formed by the sidewall 124D on a rear side 104 of the insulating device 100. The sidewall 124D may have a greater height than the other sidewalls 124. The sidewall 124D may connect to the bottom layer 122 of the body assembly 120 and extend upward and connect to the upper layer 142 of the lid assembly. The living hinge 138 may also be reinforced by an inner piece of fabric material. In some embodiments, a portion of the inner liner 128D may reinforce the living hinge 138, such that the inner liner 128D may extend upward from the storage compartment 160 and attach to the upper layer 142 between the upper layer 142 and the sidewall 124D. By using the living hinge 138, the storage compartment 160 may and its contents may be accessed by opening the closure 180 and rotating or folding back the lid assembly 140 along the living hinge 138.


As discussed above, the closure 180 may be selectively connected to the body assembly 120 and the lid assembly 140. The closure 180 may be attached to the sidewalls 124A, 124B, 124C, 124D using connection elements 198, where the connection elements 198 may be stitching with threads. In particular, the closure 180 may be attached to at least one of the sidewalls 124A, 124B, 124C, 124D with connection elements 198, where the connection elements 198 extend through one or more of the sidewalls 124A, 124B, 124C, 124D, the closure 180, the inner liner 128, and the insulating layer 130 when viewed in a cross-section formed by a vertical plane extending perpendicular to a bottom surface of the insulating device as shown in FIGS. 9 and 10. Similarly, along the corners of the insulating device 100, the closure 180 may be attached to at least one of the corner members 126 with connection elements 198, where the connection elements 198 extend through a corner member 126, the closure 180, the inner liner 128, and the insulating layer 130. The closure 180 may be opened to allow access to the storage compartment 160 or closed to prevent access to the storage compartment 160. The closure 180 may be a zipper assembly as shown in FIGS. 1-10, but may be other sealing devices. For example, the closure 180 may be a hook and loop type fastener (i.e. Velcro), snaps, buckles, excess material that is folded multiple times to form a seal such as a roll-down seal, seals, metal or plastic clamps and combinations thereof could be used as a closure mechanism.


The closure 180 may extend around the entire perimeter or a majority of the perimeter of the insulating device 100, such as at least three sides of the insulating device 100. In this particular example, the contents of the insulating device 100 may be easily accessed by the user after the closure 180 is opened and the lid assembly 140 is rotated away from the body assembly 120 along hinge 138 as shown in FIG. 2.


The closure 180 may be mounted on a backing or fabric 182, which is included as a portion of the closure 180 as described herein. In the case of the closure being a zipper, this can be referred to as zipper tape 182. The zipper tape 182 may be attached between each sidewall 124A, 124B, 124C, 124D and the inner liner 128 on the body assembly 120 and may be attached between the upper sidewall 144 and the lid liner 146 on the lid assembly 140. In addition, as described above, where the connection element 198 extends through the closure 180 may be interpreted as the connection element extending through the fabric or zipper tape 182.


As discussed above, the storage compartment may include an insulated tab 132 that extends along the length of the closure 180, where the insulated tab 132 also extends upward beyond the midpoint of the closure 180. In some embodiments, the insulated tab 132 may include a magnetic element 134 secured within the insulated tab 132. The magnetic element 134 may be positioned along an upper region of the tab 132 such that the magnetic element 134 may engage a magnetic element 156 that is secured within the lid assembly 140. The attractive forces of the magnetic elements 134 and 156 may cause the lid liner 146 to contact the portion of the inner liner 128 forming the exterior surface of the insulated tab 132 when the insulating device is in its closed configuration. In addition, the magnetic forces may help keep the insulated tab 132 elevated an in its proper position when the insulating device 100 is in its closed configuration, thereby helping to further minimize any temperature increase or decrease within the storage compartment. Magnetic element 134 may be secured within the insulated tab 132 between the inner liner 128 and the sidewall insulating portion 130A. Similarly, magnetic element 156 may be positioned between the lid liner 146 and the lid insulating layer 148. In some embodiments, the magnetic elements 134, 156 may be secured under the respective liners 128, 146 such that they are not visible when the insulating device 100 is in its open configuration, while in other embodiments, the magnetic elements 134, 156 may be positioned in pockets or bosses (not shown) in the insulated tab 132 and lid liner 146 that protrude above the surface of the insulated tab 132 and lid liner 146. The magnetic elements 134, 156 may be secured in place using an adhesive, welding, or other technique known to one skilled in the art.


The magnetic elements 134, 156 may have their center points substantially aligned with each other to maximize their attractive force to one another. Additionally, in some embodiments the insulating device may comprise one pair of magnetic elements positioned along a center plane of the front side 102 of the insulating device 100. In other embodiments, the insulating device may include multiple pairs of magnetic elements positioned along the length of the insulated tab 132 and in corresponding positions on the lid assembly 140.


The magnetic elements 134, 156 may have any shape and size, and in some instances each magnetic element 134, 156 may be the same size, while in other embodiments, the magnetic elements may have different sizes. For example, in the exemplary embodiment, the magnetic elements 134, 156 may have a rectangular shape with a length of approximately 25 mm, a width of approximately 5 mm and a thickness of approximately 2 mm. The magnetic elements 134, 156 may be one or more of permanent magnets, metal strips, or ferromagnetic materials.


The present invention is disclosed above and in the accompanying drawings with reference to a variety of examples. The purpose served by the disclosure, however, is to provide examples of the various features and concepts related to the invention, not to limit the scope of the invention. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the examples described above without departing from the scope of the present invention.

Claims
  • 1. A soft-sided lunchbox comprising: a body assembly, wherein the body assembly includes a bottom layer, a first sidewall attached to the bottom layer, and an inner liner;a lid assembly rotatably connected to the body assembly;a storage compartment formed by the body assembly and the lid assembly, wherein the soft-sided lunchbox has an open configuration providing access to the storage compartment and a closed configuration preventing access to the storage compartment;a closure positioned between the body assembly and the lid assembly, wherein the closure is adapted to selectively connect the body assembly and the lid assembly; anda tab formed from a portion of the inner liner, wherein the tab is within the storage compartment and inward of the closure and having a distal end positioned above a midpoint of the closure; andwherein the tab includes a first magnetic element that engages a second magnetic element on the lid assembly when the soft-sided lunchbox is in the closed configuration.
  • 2. The soft-sided lunchbox of claim 1, wherein the lid assembly includes perimeter edges that extend upward away from the body assembly.
  • 3. The soft-sided lunchbox of claim 2, wherein the perimeter edges have an edge height defined as a vertical height from a top surface of the perimeter edges to a top surface of an upper layer of the lid assembly, wherein the edge height is within a range of 15 mm and 21 mm.
  • 4. The soft-sided lunchbox of claim 3, wherein the edge height is within 13 percent and 17 percent of a total height of the soft-sided lunchbox.
  • 5. The soft-sided lunchbox of claim 1, wherein the tab is formed from a portion of the inner liner, wherein the inner liner forms an outward facing layer of the tab and an inward facing layer of the tab.
  • 6. The soft-sided lunchbox of claim 5, wherein the inner liner extends around a sidewall insulating portion from the inward facing layer to the outward facing layer, wherein the tab is connected to the closure at a base end.
  • 7. The soft-sided lunchbox of claim 6, wherein the tab is connected to the closure at the base end via a connection element that extends through the inward facing layer, the outward facing layer, the closure, the first sidewall, and the sidewall insulating portion when viewed in a cross-section formed by a vertical plane extending perpendicular to a bottom surface of the soft-sided lunchbox.
  • 8. The soft-sided lunchbox of claim 1, wherein the tab is an insulated tab that extends along a length of the closure to insulate the storage compartment along the length of the closure.
  • 9. The soft-sided lunchbox of claim 1, wherein the closure is a zipper.
  • 10. An insulated soft-sided lunchbox comprising: a body assembly, wherein the body assembly includes a bottom layer, a first sidewall attached to the bottom layer, an inner liner, and a sidewall insulating portion, wherein at least a portion of the sidewall insulating portion is positioned between the first sidewall and the inner liner;a lid assembly rotatably connected to the body assembly; wherein the lid assembly includes an upper layer and a lid liner;a storage compartment formed by the body assembly and the lid assembly, wherein the insulated soft-sided lunchbox has an open configuration providing access to the storage compartment and a closed configuration preventing access to the storage compartment;a zipper assembly adapted to selectively connect the body assembly and the lid assembly; andan insulated tab formed from a portion of the inner liner and a portion of the sidewall insulating portion, wherein the insulated tab is arranged inward of the zipper assembly and has a distal end extending above a midpoint of the zipper assembly, wherein the insulated tab includes a first magnetic element that engages a second magnetic element on the lid assembly when the insulated soft-sided lunchbox is in the closed configuration.
  • 11. The insulated soft-sided lunchbox of claim 10, wherein the insulated tab is formed from the inner liner, wherein the inner liner forms an outward facing layer of the insulated tab and an inward facing surface of the insulated tab.
  • 12. The insulated soft-sided lunchbox of claim 10, wherein the insulated tab extends along an entire length of the zipper assembly to insulate the storage compartment along the entire length of the zipper assembly.
  • 13. The insulated soft-sided lunchbox of claim 10, wherein the zipper assembly extends along at least three sides of the insulated soft-sided lunchbox.
  • 14. The insulated soft-sided lunchbox of claim 10, wherein the insulated tab contacts the lid liner on the lid assembly when the insulated soft-sided lunchbox is in the closed configuration.
  • 15. A soft-sided lunchbox comprising: a body assembly, wherein the body assembly includes a bottom layer, a first sidewall attached to the bottom layer, an inner liner, and a sidewall insulating portion, wherein at least a portion of the sidewall insulating portion is positioned between the first sidewall and the inner liner;a lid assembly rotatably connected to the body assembly; wherein the lid assembly includes an upper layer, a lid insulating layer, and a lid liner;a storage compartment formed by the body assembly and the lid assembly, wherein soft-sided lunchbox has an open configuration providing access to the storage compartment and a closed configuration preventing access to the storage compartment;a closure adapted to selectively connect the body assembly and the lid assembly; andan insulated tab that is located within the storage compartment and inward of the closure, and wherein the insulated tab contacts the lid liner on the lid assembly when the soft-sided lunchbox is in the closed configuration.
  • 16. The soft-sided lunchbox of claim 15, wherein the lid liner includes a groove that receives a top surface of the insulated tab.
  • 17. The soft-sided lunchbox of claim 15, wherein the insulated tab includes a first magnetic element that engages a second magnetic element on the lid assembly when the soft-sided lunchbox is in the closed configuration.
  • 18. The soft-sided lunchbox of claim 17, wherein the first magnetic element and the second magnetic element are positioned along a center plane of the soft-sided lunchbox.
  • 19. The soft-sided lunchbox of claim 15, wherein the insulated tab extends along a majority of a length of the closure.
  • 20. The soft-sided lunchbox of claim 15, wherein the soft-sided lunchbox has a shape of a rectangular prism.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/685,124, filed Nov. 15, 2019, titled Insulating Device, which is herein incorporated by reference in its entirety.

US Referenced Citations (896)
Number Name Date Kind
210994 Carnagy Dec 1878 A
430944 Hammerl Jun 1890 A
1512549 Labadie et al. Oct 1924 A
1587655 Kidwell Jun 1926 A
1895278 Crawford Jan 1933 A
1949677 Crawford Mar 1934 A
2119621 Ferrone Jun 1938 A
2253598 Africa Aug 1941 A
2289254 Eagles Jul 1942 A
2429538 Wood Oct 1947 A
2522381 Kramer Sep 1950 A
2556066 Cline Jun 1951 A
2570300 Acton Oct 1951 A
2575191 Seipp Nov 1951 A
2575893 Seaman Nov 1951 A
2623566 Florence Dec 1952 A
2633223 Zeamer Mar 1953 A
2651485 Schutz Sep 1953 A
2661785 Daust Dec 1953 A
2685385 Kuss Aug 1954 A
2808093 Gilman Oct 1957 A
2883041 Pfeifer et al. Apr 1959 A
2954891 Imber Oct 1960 A
2960136 Ziff Nov 1960 A
3031121 Chase Apr 1962 A
3035733 Knapp May 1962 A
3066846 Domigan Dec 1962 A
3121452 Hyman Feb 1964 A
3157303 Siegel Nov 1964 A
3203517 Stein Aug 1965 A
3454197 Thompson Jul 1969 A
3455359 Schweizer Jul 1969 A
3743522 Nagasawa et al. Jul 1973 A
3801425 Cook Apr 1974 A
3814288 Westrich Jun 1974 A
3834044 McAusland et al. Sep 1974 A
3905511 Groendal Sep 1975 A
4024731 Branscum May 1977 A
4117874 Berenguer Oct 1978 A
4125212 Courchesne Nov 1978 A
4127155 Hydom Nov 1978 A
4143695 Hoehn Mar 1979 A
4180111 Davis Dec 1979 A
4194627 Christensen Mar 1980 A
4196817 Moser Apr 1980 A
4197890 Simko Apr 1980 A
4210186 Belenson Jul 1980 A
4211091 Campbell Jul 1980 A
4211267 Skovgaard Jul 1980 A
4248366 Christiansen Feb 1981 A
D265948 Stark Aug 1982 S
4344303 Kelly, Jr. Aug 1982 A
4372453 Branscum Feb 1983 A
4375828 Biddison Mar 1983 A
4378866 Pelavin Apr 1983 A
D268879 Outcalt May 1983 S
4399668 Williamson Aug 1983 A
4468933 Christopher Sep 1984 A
4484682 Crow Nov 1984 A
4513895 Leslie Apr 1985 A
4515421 Steffes May 1985 A
4521910 Keppel et al. Jun 1985 A
4524493 Inamura Jun 1985 A
4537313 Workman Aug 1985 A
4541540 Gretz et al. Sep 1985 A
D281122 Bomes et al. Oct 1985 S
D281546 Bradshaw Dec 1985 S
D281646 Bomes et al. Dec 1985 S
D282602 Allen Feb 1986 S
4571338 Okonogi et al. Feb 1986 A
4592091 Italic May 1986 A
4595101 Rivera Jun 1986 A
4596370 Adkins Jun 1986 A
D284620 Calton Jul 1986 S
4598746 Rabinowitz Jul 1986 A
4610286 Cyr Sep 1986 A
4637063 Sullivan et al. Jan 1987 A
D289128 Bradshaw Apr 1987 S
4673117 Calton Jun 1987 A
4679242 Brockhaus Jul 1987 A
4708254 Byrns Nov 1987 A
4746028 Bagg May 1988 A
4759077 Leslie Jul 1988 A
4765476 Lee Aug 1988 A
4796785 Merritt Jan 1989 A
4796937 Andrea Jan 1989 A
4802344 Livingston et al. Feb 1989 A
4802602 Evans et al. Feb 1989 A
4805776 Namgyal et al. Feb 1989 A
4812054 Kirkendall Mar 1989 A
4815999 Ayon et al. Mar 1989 A
4817769 Saliba Apr 1989 A
4825514 Akeno May 1989 A
4826060 Hollingsworth May 1989 A
4829603 Schnoor et al. May 1989 A
4841603 Ragni Jun 1989 A
4858444 Scott Aug 1989 A
4867214 Fuller Sep 1989 A
4871069 Guimont Oct 1989 A
4886183 Fleming Dec 1989 A
4941603 Creamer et al. Jul 1990 A
4961522 Weber Oct 1990 A
4966279 Pearcy Oct 1990 A
4984906 Little Jan 1991 A
4986089 Raab Jan 1991 A
4989418 Hewlett Feb 1991 A
5004091 Natho et al. Apr 1991 A
5005679 Hjelle Apr 1991 A
5042664 Shyr et al. Aug 1991 A
5048734 Long Sep 1991 A
5062557 Mahvi et al. Nov 1991 A
5095718 Ormond et al. Mar 1992 A
D328550 Mogil et al. Aug 1992 S
5143188 Robinet Sep 1992 A
5190376 Book Mar 1993 A
5216900 Jones Jun 1993 A
5221016 Karpal Jun 1993 A
5237838 Merritt-Munson Aug 1993 A
5244136 Collaso Sep 1993 A
D339979 Wehrley Oct 1993 S
D340387 Melk Oct 1993 S
D340621 Melk Oct 1993 S
5253395 Yano Oct 1993 A
D340840 Melk Nov 1993 S
5269368 Schneider et al. Dec 1993 A
D343992 Melk Feb 1994 S
5295365 Redford Mar 1994 A
5297870 Weldon Mar 1994 A
5313807 Owen May 1994 A
D347971 Krugman Jun 1994 S
5325991 Williams Jul 1994 A
D349428 Krugman Aug 1994 S
D351533 Lynam, Jr. Oct 1994 S
5354131 Mogil Oct 1994 A
5355684 Guice Oct 1994 A
5398848 Padamsee Mar 1995 A
5400610 Macedo Mar 1995 A
5403095 Melk Apr 1995 A
5421172 Jones Jun 1995 A
5447764 Langford Sep 1995 A
5472279 Lin Dec 1995 A
5490396 Morris Feb 1996 A
5509279 Brown et al. Apr 1996 A
5509734 Ausnit Apr 1996 A
D370599 Christopher et al. Jun 1996 S
D371051 Melk Jun 1996 S
D371052 Melk Jun 1996 S
5529217 Siegel Jun 1996 A
D373515 Melk Sep 1996 S
5553759 McMaster et al. Sep 1996 A
D374979 Roberson et al. Oct 1996 S
5562228 Ericson Oct 1996 A
5564568 Rankin, Sr. Oct 1996 A
5569401 Gilliland et al. Oct 1996 A
5595320 Aghassipour Jan 1997 A
5620069 Hurwitz Apr 1997 A
D382771 Mogil Aug 1997 S
D382772 Mogil Aug 1997 S
D383360 Melk Sep 1997 S
5680944 Rueter Oct 1997 A
5680958 Mann et al. Oct 1997 A
D386310 Smith Nov 1997 S
5687874 Omori et al. Nov 1997 A
D387249 Mogil Dec 1997 S
D387626 Melk Dec 1997 S
5706969 Yamada et al. Jan 1998 A
5732867 Perkins et al. Mar 1998 A
D394553 Lin May 1998 S
D395555 Ursitti Jun 1998 S
5758513 Smith Jun 1998 A
5779089 West Jul 1998 A
D397273 Collie Aug 1998 S
5816709 Demus Oct 1998 A
D401063 Yamamoto et al. Nov 1998 S
5842571 Rausch Dec 1998 A
5845514 Clarke et al. Dec 1998 A
5848734 Melk Dec 1998 A
5857778 Ells Jan 1999 A
D409375 Santoro et al. May 1999 S
D409376 Golenz et al. May 1999 S
5904230 Peterson May 1999 A
5909821 Guridi Jun 1999 A
5913448 Mann et al. Jun 1999 A
5915580 Melk Jun 1999 A
5931583 Collie Aug 1999 A
D414379 Haberkorn Sep 1999 S
5954253 Swetish Sep 1999 A
5955948 Howell Sep 1999 A
5964384 Young Oct 1999 A
5988468 Murdoch et al. Nov 1999 A
5988879 Bredderman et al. Nov 1999 A
6019245 Foster et al. Feb 2000 A
6027249 Bielinski Feb 2000 A
6029847 Mahoney, Jr. et al. Feb 2000 A
6048099 Muffett et al. Apr 2000 A
D424417 Axelsson May 2000 S
6059140 Hicks May 2000 A
6065873 Fowler May 2000 A
6068402 Freese et al. May 2000 A
6070718 Drabwell Jun 2000 A
6073796 Mogil Jun 2000 A
6082589 Ash et al. Jul 2000 A
6082896 Pulli Jul 2000 A
6089038 Tattam Jul 2000 A
6092266 Lee Jul 2000 A
6092661 Mogil Jul 2000 A
6105214 Press Aug 2000 A
6113268 Thompson Sep 2000 A
6116045 Hodosh et al. Sep 2000 A
6128915 Wagner Oct 2000 A
6129254 Yu Oct 2000 A
6139188 Marzano Oct 2000 A
6145715 Slonim Nov 2000 A
6149305 Fier Nov 2000 A
D437110 Ivarson et al. Feb 2001 S
6193034 Fournier Feb 2001 B1
6209343 Owen Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6234677 Mogil May 2001 B1
6237776 Mogil May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6247328 Mogil Jun 2001 B1
6253570 Lustig Jul 2001 B1
6276579 DeLoach Aug 2001 B1
D447632 Gisser Sep 2001 S
D447667 Schneider et al. Sep 2001 S
6286709 Hudson Sep 2001 B1
6296134 Cardinale Oct 2001 B1
6296165 Mears Oct 2001 B1
6298993 Kalozdi Oct 2001 B1
6336342 Zeddies Jan 2002 B1
6336577 Harris et al. Jan 2002 B1
6347706 D'Ambrosio Feb 2002 B1
6353215 Revels et al. Mar 2002 B1
D455934 Culp et al. Apr 2002 S
6363739 Hodosh et al. Apr 2002 B1
D457307 Pukall et al. May 2002 S
6409066 Schneider et al. Jun 2002 B1
6422032 Greene Jul 2002 B1
6439389 Mogil Aug 2002 B1
D464235 Jeong Oct 2002 S
D465134 Joss Nov 2002 S
6481239 Hodosh et al. Nov 2002 B2
D466291 Ng Dec 2002 S
6495194 Sato et al. Dec 2002 B2
6505479 Defelice et al. Jan 2003 B2
6511695 Paquin et al. Jan 2003 B1
6513661 Mogil Feb 2003 B1
D472431 Spence, Jr. Apr 2003 S
6554155 Beggins Apr 2003 B1
D474649 Spence, Jr. May 2003 S
6582124 Mogil Jun 2003 B2
D476481 Gilbert Jul 2003 S
6595687 Godshaw et al. Jul 2003 B2
D478782 Li Aug 2003 S
6604649 Campi Aug 2003 B1
6605311 Villagran et al. Aug 2003 B2
6619447 Garcia, III et al. Sep 2003 B1
6626342 Gleason Sep 2003 B1
6629430 Mills et al. Oct 2003 B2
D482241 Tyler Nov 2003 S
6640856 Tucker Nov 2003 B1
6652933 Hall Nov 2003 B2
6655543 Beuke Dec 2003 B2
D485131 Lanman et al. Jan 2004 S
D485732 Lanman et al. Jan 2004 S
D486038 Lanman et al. Feb 2004 S
6688470 Dege et al. Feb 2004 B2
6729758 Carter May 2004 B1
D491354 Chapelier Jun 2004 S
D492160 Lanman et al. Jun 2004 S
D497518 Bellofatto, Jr. et al. Oct 2004 S
6799693 Meza Oct 2004 B2
D498924 Karl Nov 2004 S
D501600 Guyon Feb 2005 S
D502599 Cabana et al. Mar 2005 S
D503279 Smith Mar 2005 S
6874356 Komfeldt et al. Apr 2005 B2
D506645 Bellofatto, Jr. et al. Jun 2005 S
6925834 Fuchs Aug 2005 B2
D512274 Cabey Dec 2005 S
D515362 Chan Feb 2006 S
D516099 Maruyama Feb 2006 S
D516870 Martinez et al. Mar 2006 S
D517801 Woo Mar 2006 S
D520306 Peterson May 2006 S
D522811 Martinez et al. Jun 2006 S
D523243 Nashmy Jun 2006 S
D527226 Maldonado Aug 2006 S
D530089 Silverman Oct 2006 S
7153025 Jackson et al. Dec 2006 B1
D534352 Delafontaine Jan 2007 S
D534771 Zorn Jan 2007 S
D535099 Johansson et al. Jan 2007 S
D535820 Kamiya Jan 2007 S
7160028 Linday Jan 2007 B1
7162890 Mogil et al. Jan 2007 B2
7172101 Find Feb 2007 B2
D539033 Cassegrain Mar 2007 S
D540037 Newson Apr 2007 S
7201285 Beggins Apr 2007 B2
7207716 Buchanan et al. Apr 2007 B2
7219814 Lown et al. May 2007 B2
7240513 Conforti Jul 2007 B1
D547941 Lucena Aug 2007 S
D548459 Harvey Aug 2007 S
D550448 Boje et al. Sep 2007 S
7264134 Tulp Sep 2007 B2
D557667 Kawamura et al. Dec 2007 S
7302810 McCrory Dec 2007 B2
D560102 Sumter Jan 2008 S
7313927 Barker Jan 2008 B2
7344028 Hanson Mar 2008 B2
D566484 George Apr 2008 S
7353952 Swartz et al. Apr 2008 B2
D570603 Wu et al. Jun 2008 S
D573422 Tagliati et al. Jul 2008 S
D574667 Grabijas, III et al. Aug 2008 S
D578401 Perry et al. Oct 2008 S
D582151 Gonzalez Dec 2008 S
D583152 Keeney Dec 2008 S
7481065 Krieger Jan 2009 B2
D587010 Deck Feb 2009 S
7527430 Suskind May 2009 B2
D598194 Turvey et al. Aug 2009 S
D599550 Turvey et al. Sep 2009 S
7581886 Nitti Sep 2009 B2
7597478 Pruchnicki et al. Oct 2009 B2
D603606 Wang Nov 2009 S
7634919 Bernhard, Jr. et al. Dec 2009 B2
D607697 Whitlock et al. Jan 2010 S
D608095 Turvey et al. Jan 2010 S
D608096 Noble Jan 2010 S
D608159 Whitlock et al. Jan 2010 S
D610795 Dejadon Mar 2010 S
D611706 Angles et al. Mar 2010 S
D612605 Turvey et al. Mar 2010 S
7669436 Mogil et al. Mar 2010 B2
7677406 Maxson Mar 2010 B2
7682080 Mogil Mar 2010 B2
D617560 Wu Jun 2010 S
7730739 Fuchs Jun 2010 B2
D618966 Koehler et al. Jul 2010 S
D619423 Koehler et al. Jul 2010 S
D619854 Koehler et al. Jul 2010 S
D619855 Koehler et al. Jul 2010 S
7757878 Mogil et al. Jul 2010 B2
7762294 Wang Jul 2010 B2
D620707 Mogil Aug 2010 S
D620708 Sanz Aug 2010 S
D621609 Hasty Aug 2010 S
7775388 Murrer, III Aug 2010 B2
7784759 Farrell Aug 2010 B2
7791003 Lockhart et al. Sep 2010 B2
7811620 Merrill et al. Oct 2010 B2
7815069 Bellofatto et al. Oct 2010 B1
D626329 Chapelier Nov 2010 S
D627199 Pruchnicki Nov 2010 S
7841207 Mogil et al. Nov 2010 B2
D629612 Weldon Dec 2010 S
D630844 Wang et al. Jan 2011 S
7874177 Azamy Jan 2011 B2
7886936 Helline Feb 2011 B2
7900816 Kastanek et al. Mar 2011 B2
D638220 Chu et al. May 2011 S
D642870 Whitlock et al. Aug 2011 S
7988006 Mogil et al. Aug 2011 B2
D645662 Perez Sep 2011 S
8016090 McCoy et al. Sep 2011 B2
8043004 Mogil Oct 2011 B2
D648532 Sosnovsky Nov 2011 S
8061159 Mogil et al. Nov 2011 B2
D650169 Klifa Dec 2011 S
8079451 Rothschild et al. Dec 2011 B2
8096442 Ramundi Jan 2012 B2
D659998 Austin May 2012 S
8176749 LaMere et al. May 2012 B2
D662316 Nitkin Jun 2012 S
8191747 Pruchnicki Jun 2012 B2
D664261 Kravitz et al. Jul 2012 S
8209995 Kieling et al. Jul 2012 B2
D666896 Pinholster, Jr. et al. Sep 2012 S
D667043 Couch, III Sep 2012 S
8281950 Potts et al. Oct 2012 B2
8292119 Kenneally Oct 2012 B2
8302749 Melmon et al. Nov 2012 B2
8327659 Winkler et al. Dec 2012 B2
D673363 Crandall Jan 2013 S
D673772 Munson et al. Jan 2013 S
D674246 Scott et al. Jan 2013 S
D674664 Collie Jan 2013 S
8424319 Whewell, Jr. Apr 2013 B2
8424713 Bolland Apr 2013 B2
8430284 Broadbent et al. Apr 2013 B2
D682635 Boroski May 2013 S
D684767 Gerbi Jun 2013 S
8453899 Calkin Jun 2013 B1
D686412 Guichot Jul 2013 S
8474640 Armstrong Jul 2013 B2
8516848 White et al. Aug 2013 B2
D690100 Alfaks Sep 2013 S
8544678 Hughes Oct 2013 B1
8573002 Ledoux et al. Nov 2013 B2
D695568 Hayes Dec 2013 S
8622235 Suchecki Jan 2014 B2
D699940 Robert Feb 2014 S
D699941 Robert Feb 2014 S
8646970 Mogil Feb 2014 B2
D701041 Burnett Mar 2014 S
D703946 Tweedie May 2014 S
8720681 Hancock May 2014 B1
8720739 Bollis May 2014 B2
8777045 Mitchell et al. Jul 2014 B2
D710085 Szewczyk Aug 2014 S
D711096 Hanna Aug 2014 S
D711100 Dingizian Aug 2014 S
D712555 Berg Sep 2014 S
8827109 Sheehan Sep 2014 B1
8844756 Beyburg Sep 2014 B2
D715544 Levine Oct 2014 S
8857654 Mogil et al. Oct 2014 B2
D717041 Pulliam Nov 2014 S
D718053 McFreen Nov 2014 S
8875964 Vanderberg Nov 2014 B1
8893940 Green et al. Nov 2014 B2
D718931 Brundl Dec 2014 S
D719303 Anderson Dec 2014 S
8899071 Mogil et al. Dec 2014 B2
D723804 Coleman Mar 2015 S
D725908 Zwetzig Apr 2015 S
D728942 Byham May 2015 S
D732295 Aafjes Jun 2015 S
D732348 Seiders et al. Jun 2015 S
D732349 Seiders et al. Jun 2015 S
D732350 Seiders et al. Jun 2015 S
D732899 Seiders et al. Jun 2015 S
D734643 Boroski Jul 2015 S
D734992 Boroski Jul 2015 S
9084463 Merrill Jul 2015 B2
D738108 Adler et al. Sep 2015 S
D739654 Brouard Sep 2015 S
9138033 Kojima et al. Sep 2015 B2
9139352 Seiders et al. Sep 2015 B2
9146051 Kamin et al. Sep 2015 B2
D743699 Wieden Nov 2015 S
D744786 Bagwell Dec 2015 S
D747104 Ford Jan 2016 S
9226558 Armstrong Jan 2016 B2
D749653 Carnes Feb 2016 S
D750140 Cross Feb 2016 S
9254022 Meldeau et al. Feb 2016 B2
9254023 Su et al. Feb 2016 B2
9265318 Williams et al. Feb 2016 B1
D752347 Seiders et al. Mar 2016 S
9271553 Ponx Mar 2016 B2
9272475 Ranade et al. Mar 2016 B2
9290313 De Lesseux et al. Mar 2016 B2
D752860 Barilaro et al. Apr 2016 S
9307814 Pulliam Apr 2016 B2
9314069 Takazawa Apr 2016 B2
D756109 Hayashi May 2016 S
D756638 Frisoni May 2016 S
9366467 Kiedaisch et al. Jun 2016 B2
9375061 Mosee Jun 2016 B2
D760494 Harvey-Pankey Jul 2016 S
D761561 Cheng Jul 2016 S
D762378 Domotor et al. Aug 2016 S
D762384 Boroski Aug 2016 S
D763570 Potts Aug 2016 S
D764791 Patel Aug 2016 S
D764873 Collie Aug 2016 S
9408445 Mogil et al. Aug 2016 B2
D765395 Sanz Sep 2016 S
D765967 Boroski Sep 2016 S
D766571 Boroski Sep 2016 S
D768981 Kliot Oct 2016 S
D768987 Blumenfeld Oct 2016 S
D769616 Keene Oct 2016 S
D770761 Deioma et al. Nov 2016 S
D770763 Joo et al. Nov 2016 S
D771372 Kelly et al. Nov 2016 S
D772562 Petre Nov 2016 S
D773813 Jakubowski Dec 2016 S
9545134 Tan Jan 2017 B1
D778045 Ruddis Feb 2017 S
D778609 Gardner et al. Feb 2017 S
D782820 Thompson Apr 2017 S
D783272 Burton et al. Apr 2017 S
D784010 Dumas Apr 2017 S
9630750 Gardner et al. Apr 2017 B2
D785325 Samrelius et al. May 2017 S
D785930 Sassi May 2017 S
D786559 Seiders et al. May 2017 S
D786560 Seiders et al. May 2017 S
D786561 Seiders et al. May 2017 S
D786562 Seiders et al. May 2017 S
D787187 Seiders et al. May 2017 S
D789080 Caffagni Jun 2017 S
D789081 Sassi Jun 2017 S
D789082 Barilaro et al. Jun 2017 S
D792167 Bradley Jul 2017 S
D792486 Li et al. Jul 2017 S
D793089 Jackson Aug 2017 S
D796185 Masten Sep 2017 S
D797454 Seiders et al. Sep 2017 S
D797455 Seiders et al. Sep 2017 S
D798670 Seiders et al. Oct 2017 S
D799276 Seiders et al. Oct 2017 S
D799277 Seiders et al. Oct 2017 S
D799823 Schartle Oct 2017 S
D799905 Seiders et al. Oct 2017 S
D800443 Burton et al. Oct 2017 S
D800444 Burton et al. Oct 2017 S
D801123 Seiders et al. Oct 2017 S
9796517 Seiders et al. Oct 2017 B2
D802028 Li Nov 2017 S
D802029 Li Nov 2017 S
D802373 Seiders et al. Nov 2017 S
D802630 Li et al. Nov 2017 S
9809376 Mitchell et al. Nov 2017 B2
D805851 Sullivan et al. Dec 2017 S
9840178 Baker Dec 2017 B2
D808157 Viger et al. Jan 2018 S
D808173 Seiders et al. Jan 2018 S
D808175 Seiders et al. Jan 2018 S
D808655 Seiders et al. Jan 2018 S
D808730 Sullivan et al. Jan 2018 S
D809869 Seiders et al. Feb 2018 S
D811082 Lehan Feb 2018 S
9901153 Nash Feb 2018 B2
D811746 Seiders et al. Mar 2018 S
D813539 Van Assche Mar 2018 S
D814879 Larson et al. Apr 2018 S
D815496 Larson et al. Apr 2018 S
9943150 Morrow Apr 2018 B2
D817106 Larson et al. May 2018 S
D817107 Larson et al. May 2018 S
D817722 Bradley May 2018 S
D818707 Vevers et al. May 2018 S
D819966 Yu Jun 2018 S
D819967 Carter et al. Jun 2018 S
D821094 Dragicevic Jun 2018 S
D821825 Sullivan et al. Jul 2018 S
D822987 Seiders et al. Jul 2018 S
D822997 Seiders et al. Jul 2018 S
D822998 Seiders et al. Jul 2018 S
D822999 Seiders et al. Jul 2018 S
D823601 Seiders et al. Jul 2018 S
D823602 Seiders et al. Jul 2018 S
10010146 Moore Jul 2018 B2
10010162 Woods et al. Jul 2018 B1
10029842 Seiders et al. Jul 2018 B2
D824660 Ross Aug 2018 S
D824666 Carter et al. Aug 2018 S
D824671 Pennington Aug 2018 S
D824731 Sullivan et al. Aug 2018 S
D827299 Vickery Sep 2018 S
D828112 Furneaux et al. Sep 2018 S
D828728 Jacobsen Sep 2018 S
D829244 Sullivan et al. Sep 2018 S
D830048 McQueeny Oct 2018 S
D830132 Sullivan et al. Oct 2018 S
D830133 Sullivan et al. Oct 2018 S
D830134 Sullivan et al. Oct 2018 S
D832653 Waskow et al. Nov 2018 S
10138048 Mitchell et al. Nov 2018 B2
D834815 Barlier Dec 2018 S
D834817 Hoppe et al. Dec 2018 S
D834895 Friska et al. Dec 2018 S
D835473 Jacobsen Dec 2018 S
D835949 Friska et al. Dec 2018 S
D835950 Jacobsen Dec 2018 S
10143282 Seiders et al. Dec 2018 B2
10154714 Wang Dec 2018 B2
D836996 Jacobsen Jan 2019 S
D836997 Jacobsen Jan 2019 S
D836998 Jacobsen Jan 2019 S
D836999 Jacobsen Jan 2019 S
D837000 Jacobsen Jan 2019 S
D837001 Jacobsen Jan 2019 S
D838978 Lee Jan 2019 S
D839682 Jacobsen Feb 2019 S
D840194 Furneaux et al. Feb 2019 S
D840689 Seiders et al. Feb 2019 S
D840761 Seiders et al. Feb 2019 S
D840762 Seiders et al. Feb 2019 S
D840763 Seiders et al. Feb 2019 S
D840764 Seiders et al. Feb 2019 S
D841325 Buynar Feb 2019 S
D842048 Wells Mar 2019 S
10226110 Hayashi Mar 2019 B2
D844321 Li Apr 2019 S
D844975 Munie et al. Apr 2019 S
D844976 Munie et al. Apr 2019 S
D844977 Munie et al. Apr 2019 S
D844978 Munie et al. Apr 2019 S
D844979 Munie et al. Apr 2019 S
D844992 Seiders et al. Apr 2019 S
D845625 Barlier Apr 2019 S
D846275 Barlier Apr 2019 S
10244841 Hayashi Apr 2019 B2
D847500 Lagerfeld May 2019 S
D847501 Carter et al. May 2019 S
D848219 Munie et al. May 2019 S
D848220 Munie et al. May 2019 S
D848221 Munie et al. May 2019 S
D848222 Munie et al. May 2019 S
D848223 Munie et al. May 2019 S
D848798 Munie et al. May 2019 S
D849398 Tan May 2019 S
D849406 Dehmoubed et al. May 2019 S
D849486 Munie et al. May 2019 S
10279980 James, Jr. May 2019 B2
D850107 Dehmoubed et al. Jun 2019 S
D851404 Seiders et al. Jun 2019 S
D851937 Fuller Jun 2019 S
10314377 Stephens Jun 2019 B2
10322867 Furneaux et al. Jun 2019 B2
D853201 Collie Jul 2019 S
D853728 Seiders et al. Jul 2019 S
D855982 McGinn Aug 2019 S
10384855 Seiders et al. Aug 2019 B2
D859812 Seiders et al. Sep 2019 S
D859813 Seiders et al. Sep 2019 S
D859814 Seiders et al. Sep 2019 S
D859815 Seiders et al. Sep 2019 S
D859934 Seiders et al. Sep 2019 S
D860634 Seiders et al. Sep 2019 S
10413030 Douglas et al. Sep 2019 B1
D861335 Barlier Oct 2019 S
D861338 Seiders et al. Oct 2019 S
D862065 Boys et al. Oct 2019 S
D862177 Seiders et al. Oct 2019 S
D862528 Sullivan et al. Oct 2019 S
D866186 Seiders et al. Nov 2019 S
D867823 Jacobsen Nov 2019 S
D868544 Lin et al. Dec 2019 S
D869146 Jacobsen Dec 2019 S
D871074 Seiders et al. Dec 2019 S
D871765 Seiders et al. Jan 2020 S
D872993 Gu Jan 2020 S
D873022 Seip et al. Jan 2020 S
D877514 Seiders et al. Mar 2020 S
D880254 Jacobsen Apr 2020 S
D880862 Seiders et al. Apr 2020 S
D881561 He Apr 2020 S
D882956 Seiders et al. May 2020 S
D886537 Jacobsen Jun 2020 S
D886538 Jacobsen Jun 2020 S
D886539 Jacobsen Jun 2020 S
D887699 Bullock et al. Jun 2020 S
10736391 Seiders et al. Aug 2020 B2
D894692 Herold Sep 2020 S
D896039 Seiders et al. Sep 2020 S
D896591 Seiders et al. Sep 2020 S
10781028 Munie et al. Sep 2020 B2
D897780 Seiders et al. Oct 2020 S
D899197 Seiders et al. Oct 2020 S
D899865 Shi Oct 2020 S
10806225 Sitnikova Oct 2020 B2
D902664 Munie et al. Nov 2020 S
10827808 Seiders et al. Nov 2020 B2
D903305 Sullivan et al. Dec 2020 S
D904011 Sullivan et al. Dec 2020 S
D904031 Chandler Dec 2020 S
D904758 Bullock et al. Dec 2020 S
D904830 Meda et al. Dec 2020 S
D906058 Sullivan et al. Dec 2020 S
D907968 Sullivan et al. Jan 2021 S
D907969 Sullivan et al. Jan 2021 S
D909063 Loudenslager et al. Feb 2021 S
D910382 Rane et al. Feb 2021 S
10981716 Seiders et al. Apr 2021 B2
D918570 Seiders et al. May 2021 S
D918571 Davis May 2021 S
D919298 Munie May 2021 S
D919375 Seiders et al. May 2021 S
D919376 Seiders et al. May 2021 S
D920677 Tertoolen Jun 2021 S
D920678 Seiders et al. Jun 2021 S
D923323 Seiders et al. Jun 2021 S
D927262 Munie et al. Aug 2021 S
D931614 Seiders et al. Sep 2021 S
D935175 Rogers et al. Nov 2021 S
20020012480 Konno Jan 2002 A1
20020197369 Modler Dec 2002 A1
20030070447 Tanaka Apr 2003 A1
20030080133 Butler May 2003 A1
20030106895 Kalal Jun 2003 A1
20030136702 Redzisz et al. Jul 2003 A1
20030149461 Johnson Aug 2003 A1
20030175394 Modler Sep 2003 A1
20040004111 Cardinale Jan 2004 A1
20040028296 Meli Feb 2004 A1
20040035143 Mogil Feb 2004 A1
20040074936 McDonald Apr 2004 A1
20040094589 Fricano May 2004 A1
20040136621 Mogil Jul 2004 A1
20040144783 Anderson et al. Jul 2004 A1
20040149600 Wolter et al. Aug 2004 A1
20040164084 Cooper Aug 2004 A1
20040237266 Wang Dec 2004 A1
20050011520 Rowe Jan 2005 A1
20050016895 Glenn Jan 2005 A1
20050028910 Duty Feb 2005 A1
20050034947 Nykoluk Feb 2005 A1
20050045520 Johnson Mar 2005 A1
20050045521 Johnson et al. Mar 2005 A1
20050056669 Lavelle Mar 2005 A1
20050072181 Mogil et al. Apr 2005 A1
20050133399 Fidrych Jun 2005 A1
20050155891 Chen Jul 2005 A1
20050183446 Fuchs Aug 2005 A1
20050196510 Walters Sep 2005 A1
20050205459 Mogil et al. Sep 2005 A1
20050262871 Bailey-Weston Dec 2005 A1
20050263528 Maldonado et al. Dec 2005 A1
20050279124 Maldonado Dec 2005 A1
20060007266 Silverbrook Jan 2006 A1
20060010660 Stenhall Jan 2006 A1
20060021376 Scroggs Feb 2006 A1
20060102497 Wulf May 2006 A1
20060151533 Simunovic et al. Jul 2006 A1
20060201979 Achilles Sep 2006 A1
20060239593 Fidrych Oct 2006 A1
20060240159 Cash et al. Oct 2006 A1
20060248902 Hunnell Nov 2006 A1
20060289586 Gregory Dec 2006 A1
20070006430 Issler Jan 2007 A1
20070012593 Kitchens et al. Jan 2007 A1
20070137960 Redzisz Jun 2007 A1
20070148305 Sherwood et al. Jun 2007 A1
20070148307 Sherwood et al. Jun 2007 A1
20070164063 Concepcion Jul 2007 A1
20070199966 Korchmar Aug 2007 A1
20070217187 Blakely et al. Sep 2007 A1
20070221693 Moore Sep 2007 A1
20070237432 Mogil Oct 2007 A1
20070261977 Sakai Nov 2007 A1
20070274613 Pruchnicki et al. Nov 2007 A1
20070278234 Mogil Dec 2007 A1
20070290816 Bedard Dec 2007 A1
20080038424 Krusemann Feb 2008 A1
20080073364 Simmons Mar 2008 A1
20080083629 Soucie Apr 2008 A1
20080105282 Fernholz et al. May 2008 A1
20080116697 D'Ambrosio May 2008 A1
20080128421 Ulbrand et al. Jun 2008 A1
20080142518 Maistrellis Jun 2008 A1
20080160149 Nasrallah et al. Jul 2008 A1
20080164265 Conforti Jul 2008 A1
20080178865 Retterer Jul 2008 A1
20080189918 Kusayama Aug 2008 A1
20080245096 Hanson et al. Oct 2008 A1
20080260303 De Lesseux et al. Oct 2008 A1
20080264925 Lockhart et al. Oct 2008 A1
20080305235 Gao et al. Dec 2008 A1
20090029109 Seth et al. Jan 2009 A1
20090052809 Sampson Feb 2009 A1
20090080808 Hagen Mar 2009 A1
20090095757 Ramundi Apr 2009 A1
20090242619 Blomberg Oct 2009 A1
20090280229 Constantine et al. Nov 2009 A1
20090301511 Vinci Dec 2009 A1
20090311378 Wilaschin et al. Dec 2009 A1
20090317514 Sizer Dec 2009 A1
20100005827 Winkler Jan 2010 A1
20100047423 Kruesemann et al. Feb 2010 A1
20100059199 Court Mar 2010 A1
20100071395 Ledoux et al. Mar 2010 A1
20100075006 Semenza Mar 2010 A1
20100102057 Long et al. Apr 2010 A1
20100108694 Sedlbauer et al. May 2010 A1
20100136203 Sakata et al. Jun 2010 A1
20100143567 Ye et al. Jun 2010 A1
20100224660 Gleason Sep 2010 A1
20100269311 Jacobsen Oct 2010 A1
20100284631 Lee Nov 2010 A1
20100284634 Hadley Nov 2010 A1
20110003975 Arase et al. Jan 2011 A1
20110005042 Thomas et al. Jan 2011 A1
20110005739 Finney et al. Jan 2011 A1
20110030415 Breyburg et al. Feb 2011 A1
20110036473 Chan et al. Feb 2011 A1
20110097442 Harju et al. Apr 2011 A1
20110108562 Lyons May 2011 A1
20110155611 Armstrong Jun 2011 A1
20110167863 Herrbold Jul 2011 A1
20110182532 Baltus Jul 2011 A1
20110191933 Gregory et al. Aug 2011 A1
20110284601 Pullin Nov 2011 A1
20110311166 Pascua Dec 2011 A1
20120106130 Beaudette May 2012 A1
20120137637 Gillis Jun 2012 A1
20120180184 Crye Jul 2012 A1
20120181211 Charlebois Jul 2012 A1
20120187138 Vasquez et al. Jul 2012 A1
20120261445 Demskey Oct 2012 A1
20120294550 Hassman et al. Nov 2012 A1
20120311828 Nir Dec 2012 A1
20120318808 McCormick Dec 2012 A1
20130014355 Lee Jan 2013 A1
20130043285 Cordray Feb 2013 A1
20130133795 Zhou et al. May 2013 A1
20130174600 Sarcinella Jul 2013 A1
20130200083 Cunningham Aug 2013 A1
20130216158 Meldeau et al. Aug 2013 A1
20130243354 Lytle Sep 2013 A1
20130264350 Handlon et al. Oct 2013 A1
20130283845 Baumann et al. Oct 2013 A1
20130294712 Seuk Nov 2013 A1
20130341338 Mitchell et al. Dec 2013 A1
20140023295 Wagner Jan 2014 A1
20140034543 Grubstein Feb 2014 A1
20140138378 Lequeux May 2014 A1
20140151172 Diaz Jun 2014 A1
20140226920 Passavia Aug 2014 A1
20140248003 Mogil et al. Sep 2014 A1
20140254956 Buell, III Sep 2014 A1
20140270590 Ostroy Sep 2014 A1
20140304954 La Rocca et al. Oct 2014 A1
20140345314 Cox et al. Nov 2014 A1
20140353347 Fischer Dec 2014 A1
20140359978 Wang Dec 2014 A1
20140366336 Chung Dec 2014 A1
20140369629 De La Fuente Lara Dec 2014 A1
20150008242 Kpabar, Jr. Jan 2015 A1
20150114024 Grepper Apr 2015 A1
20150114978 James, Jr. Apr 2015 A1
20150136796 Muehlhauser May 2015 A1
20150143672 Konaka et al. May 2015 A1
20150164153 Tsai Jun 2015 A1
20150175338 Culp et al. Jun 2015 A1
20150201722 Brouard Jul 2015 A1
20150225164 Seiders et al. Aug 2015 A1
20150296945 Douglas Oct 2015 A1
20150305402 Bourgoin Oct 2015 A1
20150335202 Wisner et al. Nov 2015 A1
20150353263 Seiders et al. Dec 2015 A1
20160058142 Buynar Mar 2016 A1
20160066817 Hannes Mar 2016 A1
20160095405 Wang Apr 2016 A1
20160100661 Redzisz et al. Apr 2016 A1
20160100673 Demskey Apr 2016 A1
20160101924 Mitchell et al. Apr 2016 A1
20160107801 Armstrong Apr 2016 A1
20160107816 Larpenteur et al. Apr 2016 A1
20160198812 Tan Jul 2016 A1
20160198901 De Lesseux et al. Jul 2016 A1
20160221722 Burke et al. Aug 2016 A1
20160236849 Seiders et al. Aug 2016 A1
20160255943 Houston et al. Sep 2016 A1
20160257479 Seiders et al. Sep 2016 A1
20160338462 Hayashi Nov 2016 A1
20160338908 Rice et al. Nov 2016 A1
20160355319 Stephens Dec 2016 A1
20170036844 Seiders et al. Feb 2017 A1
20170066559 Kim et al. Mar 2017 A1
20170071304 Wang Mar 2017 A1
20170071305 Wang Mar 2017 A1
20170099920 Bailey Apr 2017 A1
20170119116 Bradley May 2017 A1
20170121059 Faris May 2017 A1
20170137205 Graf et al. May 2017 A1
20170208907 Chung Jul 2017 A1
20170210542 Seiders et al. Jul 2017 A1
20170225872 Collie Aug 2017 A1
20170265604 Martinson et al. Sep 2017 A1
20170280937 Mogil et al. Oct 2017 A1
20180016084 Xia et al. Jan 2018 A1
20180078008 Sturm Mar 2018 A1
20180087819 Triska et al. Mar 2018 A1
20180098607 Seiders et al. Apr 2018 A1
20180162626 Munie et al. Jun 2018 A1
20180220760 Lin Aug 2018 A1
20180229911 Luo Aug 2018 A1
20180235324 Gordon Aug 2018 A1
20180242701 Seiders et al. Aug 2018 A1
20180252458 Furneaux Sep 2018 A1
20180263346 Stephens Sep 2018 A1
20180279733 Young et al. Oct 2018 A1
20180317620 Larson et al. Nov 2018 A1
20180360172 Chou Dec 2018 A1
20180370710 Luo Dec 2018 A1
20190008256 Basham Jan 2019 A1
20190037976 Cheng Feb 2019 A1
20190071238 Seiders et al. Mar 2019 A1
20190077577 Brandes Mar 2019 A1
20190133281 Munie et al. May 2019 A1
20190142116 Cheng May 2019 A1
20190142117 Myerscough et al. May 2019 A1
20190170422 Dexter Jun 2019 A1
20200029658 Zhang Jan 2020 A1
20200037711 Kayahara et al. Feb 2020 A1
20200172320 Dong Jun 2020 A1
20210345740 Seiders et al. Nov 2021 A1
Foreign Referenced Citations (262)
Number Date Country
201614228 Aug 2016 AU
201614229 Aug 2016 AU
201614230 Aug 2016 AU
1015808 Sep 2005 BE
302019001991-0001 Oct 2019 BR
2243820 Jan 2000 CA
89737 Jun 2000 CA
2300014 Aug 2001 CA
2327764 Jun 2002 CA
2433251 Dec 2004 CA
2483802 Apr 2006 CA
2498796 Sep 2006 CA
2499291 Sep 2006 CA
2503473 Oct 2006 CA
2548064 Nov 2007 CA
2549327 Nov 2007 CA
2633223 Dec 2009 CA
2782668 Dec 2013 CA
163677 Jun 2016 CA
2125339 Dec 1992 CN
2188899 Feb 1995 CN
2207742 Sep 1995 CN
2296114 Nov 1998 CN
1832826 Sep 2006 CN
1883333 Dec 2006 CN
3650531 May 2007 CN
201062136 May 2008 CN
101284425 Oct 2008 CN
201351017 Nov 2009 CN
101733364 Jun 2010 CN
301447931 Jan 2011 CN
201948200 Aug 2011 CN
101500900 Sep 2011 CN
102232160 Nov 2011 CN
202143500 Feb 2012 CN
301956022 Jun 2012 CN
302004566 Jul 2012 CN
102717977 Oct 2012 CN
302137314 Oct 2012 CN
202619972 Dec 2012 CN
202635944 Jan 2013 CN
202760433 Mar 2013 CN
202807322 Mar 2013 CN
202959175 Jun 2013 CN
203096977 Jul 2013 CN
203096979 Jul 2013 CN
302500079 Jul 2013 CN
302554919 Sep 2013 CN
103385657 Nov 2013 CN
203283602 Nov 2013 CN
302623771 Nov 2013 CN
302623775 Nov 2013 CN
302738897 Feb 2014 CN
302744932 Feb 2014 CN
302746176 Feb 2014 CN
302769710 Mar 2014 CN
103763994 Apr 2014 CN
302868215 Jul 2014 CN
302877656 Jul 2014 CN
104085612 Oct 2014 CN
302956550 Oct 2014 CN
204091227 Jan 2015 CN
204120419 Jan 2015 CN
303100086 Feb 2015 CN
104709603 Jun 2015 CN
204444667 Jul 2015 CN
204548946 Aug 2015 CN
204585423 Aug 2015 CN
303342902 Aug 2015 CN
204763894 Nov 2015 CN
204802380 Nov 2015 CN
303459386 Nov 2015 CN
105231621 Jan 2016 CN
105520325 Apr 2016 CN
105819110 Aug 2016 CN
304154180 Jun 2017 CN
304181831 Jun 2017 CN
304207295 Jul 2017 CN
304259949 Aug 2017 CN
304342577 Nov 2017 CN
304373532 Nov 2017 CN
304527075 Mar 2018 CN
304785791 Aug 2018 CN
304906858 Nov 2018 CN
208259266 Dec 2018 CN
305025150 Feb 2019 CN
305033965 Feb 2019 CN
305272180 Jul 2019 CN
209807329 Dec 2019 CN
305527294 Jan 2020 CN
305770022 May 2020 CN
305873216 Jun 2020 CN
305881796 Jun 2020 CN
305916378 Jul 2020 CN
306245278 Dec 2020 CN
306245283 Dec 2020 CN
306264645 Jan 2021 CN
306365124 Mar 2021 CN
306365279 Mar 2021 CN
306765257 May 2021 CN
306616705 Jun 2021 CN
306624319 Jun 2021 CN
306657146 Jul 2021 CN
306674956 Jul 2021 CN
3539626 May 1987 DE
9309197 Nov 1993 DE
20002689 Aug 2000 DE
202011050174 Jul 2011 DE
202013101115 Mar 2013 DE
4020162036690001 Oct 2017 DE
402018000462-0021 Sep 2018 DE
000122668-0002 May 2004 EM
001067250-0003 Feb 2009 EM
001188460-0003 Feb 2010 EM
001188460-0004 Feb 2010 EM
001725466-0003 Jul 2010 EM
001909490-0001 Aug 2011 EM
001952722-0008 Nov 2011 EM
002073452-0001 Aug 2012 EM
002085308-0003 Aug 2012 EM
002163527-0017 Jan 2013 EM
002182642-0001 Feb 2013 EM
002225706-0001 May 2013 EM
002262436-0001 Jul 2013 EM
002264697-0002 Jul 2013 EM
002284729-0004 Aug 2013 EM
002322552-0001 Oct 2013 EM
002476853-0001 Jun 2014 EM
002476853-0002 Jun 2014 EM
002530519-0001 Sep 2014 EM
002605345-0004 Dec 2014 EM
002609404-0001 Jan 2015 EM
002676536-0001 Jun 2015 EM
002745190-0001 Sep 2015 EM
003117324-0009 May 2016 EM
003329929-0001 Aug 2016 EM
003409044-0008 Oct 2016 EM
003504331-0027 Dec 2016 EM
003733021-0001 Feb 2017 EM
004100048-0001 Sep 2017 EM
004100048-0002 Sep 2017 EM
003328608-0009 Feb 2019 EM
005954534-0001 Mar 2019 EM
005954534-0002 Mar 2019 EM
005954534-0003 Mar 2019 EM
005954534-0004 Mar 2019 EM
007558580-0001 May 2020 EM
008206833-0014 Oct 2020 EM
008206833-0015 Oct 2020 EM
008206833-0016 Oct 2020 EM
008149702-0001 Nov 2020 EM
008149702-0002 Nov 2020 EM
008149702-0003 Nov 2020 EM
006820619-0001 Dec 2020 EM
008306195-0001 Dec 2020 EM
008592307-0001 Jul 2021 EM
0037545 Oct 1981 EP
0082131 Jun 1983 EP
85534 Aug 1983 EP
0158634 Oct 1985 EP
0174159 Mar 1986 EP
0238932 Sep 1987 EP
1386557 Apr 2007 EP
2461711 Jun 2012 EP
3020303 May 2016 EP
003811264-0010 Mar 2017 EP
003841857-0002 Apr 2017 EP
004122430-0001 Aug 2017 EP
004162337-0001 Sep 2017 EP
004162337-0002 Sep 2017 EP
004162337-0003 Sep 2017 EP
004162337-0004 Sep 2017 EP
004162337-0005 Sep 2017 EP
004162337-0006 Sep 2017 EP
004424059-0002 Oct 2017 EP
004417749-0003 Nov 2017 EP
004494086-0016 Nov 2017 EP
004494086-0017 Nov 2017 EP
002719245-0001 Jan 2018 EP
005269248-0002 May 2018 EP
005303559-0001 Jul 2018 EP
005303559-0003 Jul 2018 EP
D0530973-34 Jan 2020 ES
1269009 Aug 1961 FR
2440886 Jun 1980 FR
20182961-001 Sep 2018 FR
191415563 Jun 1915 GB
968422 Sep 1964 GB
1600133 Oct 1981 GB
2225103 May 1990 GB
2249717 May 1992 GB
2023549 Sep 1992 GB
2282874 Apr 1995 GB
2335972 Oct 1999 GB
3004135 Sep 2002 GB
3006367 Oct 2002 GB
6028395 Feb 2018 GB
9008149702-0001 Aug 2020 GB
9008149702-0002 Aug 2020 GB
9008149702-0003 Aug 2020 GB
9008306195-0001 Dec 2020 GB
11051532 Feb 1999 JP
1123533 Oct 2001 JP
3275477 Apr 2002 JP
D1160335 Dec 2002 JP
2003026258 Jan 2003 JP
2004073820 Mar 2004 JP
2004238003 Aug 2004 JP
D1213384 Aug 2004 JP
D1242111 Jun 2005 JP
2010023926 Feb 2010 JP
D1445624 Jul 2012 JP
D1469606 May 2013 JP
2015107825 Jun 2015 JP
D1531414 Aug 2015 JP
D1543325 Aug 2015 JP
D1658594 Apr 2020 JP
200177739 May 2000 KR
20020027739 Apr 2002 KR
30-0311990 Nov 2002 KR
20040092730 Nov 2004 KR
30-0467684 Nov 2007 KR
101228371 Jan 2013 KR
101282512 Jul 2013 KR
300778570.0000 Jan 2015 KR
300808669.0000 Aug 2015 KR
300835242.0000 Jan 2016 KR
300853718.0000 May 2016 KR
300967041.0000 Aug 2018 KR
300968949.0000 Aug 2018 KR
300978269.0000 Oct 2018 KR
300982993.0000 Nov 2018 KR
300984157.0000 Dec 2018 KR
200488239 Jan 2019 KR
300990517.0000 Jan 2019 KR
300990523.0000 Jan 2019 KR
301004401.0000 Apr 2019 KR
301062695.0000 Jun 2020 KR
301084294.0000 Nov 2020 KR
301108516.0000 May 2021 KR
3020210000796 Jul 2021 KR
301123726.0000 Aug 2021 KR
93463 Jan 2003 SG
M572678 Jan 2019 TW
9524146 Sep 1995 WO
9812954 Apr 1998 WO
02058500 Aug 2002 WO
2006007266 Jan 2006 WO
2006058538 Jun 2006 WO
2007016092 Feb 2007 WO
2010106296 Sep 2010 WO
2010120199 Oct 2010 WO
2012003543 Jan 2012 WO
2014033450 Mar 2014 WO
2014066026 May 2014 WO
2016066817 May 2016 WO
2017091761 Jun 2017 WO
2017136754 Aug 2017 WO
17197230 Nov 2017 WO
2018152402 Aug 2018 WO
2018165426 Sep 2018 WO
2019135922 Jul 2019 WO
Non-Patent Literature Citations (64)
Entry
Jul. 8, 2022—(JP) Decision of Rejection—App. No. 2019566329.
Jul. 15, 2022—(CN) Decision on Rejection—App. No. 201880035443.0.
Jul. 22, 2022—(MX) First Office Action—App. No. MX/a/2018/013890.
Jul. 22, 2022—(CN) Third Office Action—App. No. 201880070523.X.
Apr. 13, 2022—(CN) Third Office Action—App. No. 201880035443.0.
Jan. 2, 20226—(EP) Office Action—App. No. 18830667.4.
amazon.com, “E-Manis Insulated Lunch Bag Adult Lunch Box Collapsible Multi-Layers Thermal Insulated Oxford Lunch Tote Cooler Bag for Men, women (grey),” visited May 7, 2019 at <https://www.amazon.com/MANIS-Insulated-Portable-Cooler-School/dp/B07BMT6948/ref=sr_1_23?keywords=soft+sided+cooler+lunch+box&qid=1557170800&s=home-garden&sr=1 -23>.
amazon.com, “Zuzuro Lunch Bag Insulated Cooler Lunch Box w/ 3 Compartment—Heavy-Duty Fabric, Strong SBS Zippers—Includes 3 Meal Prep Lunch box Containers + 2 Ice Packs. For Men Women Adults (Black),” visited May 7, 2019 at <https://www.amazon.com/Zuzuro-Lunch-Insulated-Cooler-Compartment/dp/B079DZ2L1F/ref=sr_1_14?keywords=lunch+box+lid+ice+pack&qid=1557245496&s=gateway&sr=8-14>.
amazon.com, “Srotek Lunch Bag Insulated Lunch Box Tote Bag Cooler Bag Water-resistant Cute Lunch Bag Wide-open Thermal Tote Kit for Women/Girls/Work/Picnic, Grey Flamingo,” visited May 7, 2019 at <https://www.amazon.com/dp/B07N57JSJS/ref=sspa_dk_detail_9?psc=1 &pd_rd_i=B07N57JSJS>.
amazon.com, “Mier Insulated Double Casserole Carrier Thermal Lunch Tote for Potluck Parties, Picnic, Beach-Fits 9″×13″ Casserole Dish, Expandable, Orange,” visited May 7, 2019 at <https://www.amazon.com/MIER-Insulated-Casserole-Carrier-Thermal/dp/B01N0PW1I9/>.
amazon.com, “Lifewit Insulated Casserole Dish Carrier Thermal Lasagna Lugger for Potluck Parties/Picnic/Beach, Lunch Bag to Keep Food Hot/Cold, 16.3 × 12.6 × 4.7”, Grey, visited May 7, 2019 at <https://www.amazon.com/dp/B07BFWJPV5/ref-sspa_dk_detail_6?psc=1&pd_rd_i=B07BFWJPV5&pd_rd_w=tr7Ke&pf rd_p=46cdcfa7-b302-4268-b799-8f7d8cb5008b&pd_rd_wg=jq3TO&pf_rd_r=W7MFCBJR9DR0HV3AKZZB&pd_rd_r=604844a0-70d3-11e9-ad99-d763d3fc76f8>.
Amazon.com, “Arctic Zone 2008IL515B42 Thermal Insulated Hot/Cold Food Carrier, Green,” visited May 7, 2019 at <https://www.amazon.com/dp/B077T7FZBX/ref=sspa_dk_detail_0?psc=1&pd_rd_i=B077T7FZBX>.
amazon.com, “Lille 22oz Stainless Steel Leakproof Lunch Box, Insulated Bento Boxes | Thermal Food Container with Insulated Lunch Bag for Work | 2nd Gen with Durable Handle and Lid | BPAfree | Adult, Women, Kid,” visited May 7, 2019 at <https://www.amazon.com/Lille-Stainless-Leakproof-Insulated-Container/dp/B07HDTMJ7M/>.
Stopper Dry Bag, http://www.seatosummit.com/products/display/181, published date unknown, but prior to the filing date of the present application, Sea To Summit, United States.
Icemule Classic Cooler—Large (20L), http://www.icemulecooler.com/icemule-classic-cooler-large-20I/, published date unknown, but prior to the filing date of the present application, ICEMULE, United States.
Devonbuy.com: Thule Gauntlet 13″ MacBook Pro Attaché. Published on Jul. 28, 2014. Retrieved from the internet at <http://www.devonbuy.com/thule-gauntlet-13-macbook-pro-attache/>, Feb. 24, 2016. 9 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,139,352, filed on Dec. 13, 2016, 1616 pages.
TheGadgeteer.com: Tom Bihn Camera I-O Bag Review. Published Jul. 9, 2012. Retrieved from the internet at <http://the-gadgeteer.com/2012/07/09/tom-bihn-camera-i-o-bag-review/>, Jan. 11, 2016. 7 pages.
YouTube-com: Patagonia Black Hole Duffel 60L. Published Aug. 26, 2013. Retrieved from the internet at <https://www.youtube.com/watch?v=W-PWEmZmVv8>, Dec. 19, 2016. 1 page.
Youtube, “Yeti Hopper Cooler at ICAST 2014”, Uploaded by user TackleDirect on Jul. 17, 2014, Accessed Jan. 31, 2017. (https://www.youtube.com/watch?v=A2rKRdyZcZ4).
Ebags, Picnic Pack Picnic Pack Large Insulated Cooler Tote, First reviewed on Jul. 20, 2016. Accessed Feb. 7, 2017. (http://www.ebags.com/product/picnic-pack/picnic-pack-large-insulated-cooler-tote/313704?productid=10428840).
Jan. 31, 2017—(WO) International Search Report and Written Opinion—App. PCT/US2016/060135.
Mar. 27, 2017—(WO) International Search Report and Written Opinion—App PCT/US2017/016552.
May 30, 2017—(WO) ISR—App. No. PCT/US17/32351.
May 30, 2017—(WO) Written Opinion—App. No. PCT/US17/32351.
Vimeo, “Cleaning Your YETI Hopper” uploaded by user YETI Coolers on Nov. 4, 2014, Accessed Sep. 27, 2017.(https://vimeo.com/11 0890075).
Good Housekeeping, “Lands' End Zip Top Cooler Tote #433786”, Reviewed on Apr. 2014, Accessed Nov. 18, 2017. (http://www.goodhousekeeping.com/travel-products/food-cooler-reviews/a33270/lands-end-zip-top-cooler-tote-433786/).
Home Shopping Network, “Built New York Large Welded Cooler Bag”, Accessed Nov. 18, 2017. (https://www.hsn.com/products/built-new-york-large-welded-cooler-bag/8561 033).
Aug. 29, 2018 (WO)—International Search Report and Written Opinion—App. No. PCT/US18/36608.
Mar. 21, 2019—(WO) International Search Report and Written Opinion—App. No. PCT/US2018/066040.
Feb. 4, 2019—(AU) Examination Report—App. No. 2017263566.
Jul. 3, 2019—(CN) First Office Action—App. No. 201780042659.5.
Oct. 2, 2019—(CN) Examiner's Report—App. No. 2017032351.
Jun. 3, 2019—(CN) First Office Action—App. No. 201680076714.8.
Dec. 13, 2019—(CN) First Office Action—App. No. 201780020473.
Translation of FR 1269009A, Jackson, Jr., Jun. 26, 1961, p. 1, Fig. 2 (Year: 1961).
Mar. 20, 2020—(CN) Office Action—App. No. 201680076714.8.
Jul. 14, 2020—(CA) Office Action—App. No. 3024101.
First Look: YETI Hopper Flip Soft Cooler Review | GearJunkie which was published on the website; https://gearjunkie.com/review-yeti-hopper-flip-12-soft-cooler on Jul. 12, 2016.
Yeti Flip Review—YouTube which was published on the website https://www.youtube.com/watch?v=97Vdb3lazdw on Sep. 8, 2016.
Jul. 2, 2020—(AU) First Office Action—App. No. 201712263.
Jul. 2, 2020—(AU) First Office Action—App. No. 201712262.
Jul. 2, 2020—(AU) First Office Action—App. No. 201712264.
Jul. 2, 2020—(AU) First Office Action—App. No. 201712265.
Jul. 31, 2020—(CN) Second Office Action (with English Translation)—App. No. 201780020473.X.
Aug. 17, 2020—(CN) Third Office Action (with English Translation)—App. No. 201680076714.8.
Oct. 19, 2020—(NZ) Patent Examination Report 1—App. No. 759046.
amazon.com, “Meal Prep Lunch Bag/Box For Men, Women+3 Large Food Containers (45oz)+2 Big Reusable Ice Packs+Shoulder Strap+Shaker With Storage. Insulated Lunchbox Cooler Tote. Adult Portion Control Set,” visited May 7, 2019 at <https://www.amazon.com/Meal-Containers-Reusable-Shoulder-Insulated/dp/B01MU2YS18/>.
amazon.com, “MIER Portable Thermal Insulated Cooler Bag Mini Lunch Bag for Kids, Black,” visited May 7, 2019, at <https://www.amazon.com/MIER-Portable-Thermal-Insulated-Cooler/dp/B01145L2JM/>.
Jan. 12, 2021—(CN) Fourth Office Action—App. No. 201680076714.8.
Feb. 3, 2021—(EP) Extended Search Report—App. No. 18813247.6.
Feb. 24, 2021—(WO) International Search Report & Written Opinion—PCT/US20/059783.
Apr. 7, 2021—(NZ) Examination Report 2—App. No. 759046.
Apr. 6, 2021—(CN) First Office Action—App. No. 201880035443.0.
Apr. 26, 2021—(CN) Rejection Decision—App. No. 201680076714.8.
Jan. 20, 2021—(CN) Third Office Action—App. No. 201780020473.X.
May 7, 2021—(CN) Rejection Decision—App. No. 201780020473.X.
amazon.com, “Lille Home 2nd Gen 22oz Stainless Steel Leakproof Lunch Box, Insulated Bento Box/Food Container with Insulated Lunch Bag | Durable Handles and Lid | Adults, Kids | Men, Women (Green),” visited May 8, 2019 at <https://www.amazon.com/dp/B07MBDD29C/>.
Jun. 28, 2021—(EP) Office Action—App. No. 18830667.4.
Sep. 3, 2021—(CN) First Office Action—App. No. 201880070523.X.
Jun. 16, 2021—(CN) Evaluation Report of Design Patent—App. No. ZL201630369163.7.
Nov. 16, 2021—(CN) Second Office Action—App. No. 201880035443.0.
Apr. 19, 2022—(CN) Second Office Action—App. No. 201880070523.X.
Jan. 21, 2022—(JP) Office Action—App. No. 2019-566329.
Related Publications (1)
Number Date Country
20220194684 A1 Jun 2022 US
Continuations (1)
Number Date Country
Parent 16685124 Nov 2019 US
Child 17563821 US