This disclosure relates generally to features for doors and/or door frames. More particularly, this disclosure provides one or more features for door and/or door frame insulation.
Door assemblies are generally used to provide access to an enclosed space. A door and frame assembly can include one or more doors and a frame. Generally, the frame is secured at an opening to the enclosed space and one or more doors are fittingly supported to the frame. The door can then be moved (e.g., slid, pivoted, etc.) relative to the frame when the enclosed space is to be accessed.
In some cases, the enclosed space to which a door and frame assembly provides access may be a temperature controlled enclosure (e.g., a refrigerator, freezer, etc.). In this type of application, the door and frame assembly needs to insulate the temperature controlled enclosure from an ambient environment. If the door and frame assembly is unable to provide adequate insulation for the temperature controlled enclosure, costs associated with maintaining the enclosure can be significant. Moreover, in many cases, certain standards for energy usage may need to be met.
In general, the disclosed embodiments of doors, door frames, and door and frame assemblies provide useful insulation, for instance when any or all of the same are used to provide access to a temperature controlled enclosure (e.g., refrigerator, freezer, etc.). In such instances, the disclosed embodiments of doors, door frames, and door and frame assemblies can provide efficiencies in maintaining the enclosure. Yet, at the same time, the disclosed embodiments of doors, door frames, and door and frame assemblies may be easy to manufacture and assemble while not substantially increasing a required footprint of the door, door frame, and/or door and frame assembly. As such, the disclosed embodiments may be able to achieve such efficiencies in maintaining the enclosure without significantly increasing the cost associated with implementing the disclosed embodiments.
In one exemplary embodiment, a door includes a glass unit and a rail assembly. The rail assembly receives the glass unit. The rail assembly includes a first rail body having a first sidewall and a first insulating member secured to the first sidewall. The first insulating member has a first wall and a second wall spaced from the first wall by a first support and a second support. The first wall, the second wall, the first support, and the second support define a first cavity of the first insulating member.
In further embodiments, this door can include one or more additional features. In one further embodiment, the first insulating member of this door can define additional cavities. Here, the first insulating member further includes a third support. The second wall is spaced from the first wall by the first support, the second support, and the third support. The first wall, the second wall, the second support, and the third support define a second cavity of the first insulating member. In another further door embodiment, the first wall of the first insulating member includes two legs extending out from a surface of the first wall and spaced along the surface from each other. The first sidewall defines one or more gaps that receive the two legs of the first wall. In an additional door embodiment, a secondary insulating component can be included and located between a second rail body of the rail assembly and the first insulating member such that the secondary insulating component is at a location interfacing with the received glass unit.
In another exemplary embodiment, a frame includes a mullion and a frame header and/or sill assembly extending perpendicular to the mullion. The frame header and/or sill assembly includes a first body having a first sidewall and a second body having a second sidewall. The second sidewall is spaced from the first sidewall by a first support and a second support. The first sidewall, the second sidewall, the first support, and the second support define a first cavity between the first body and the second body. In a further embodiment, the mullion includes a third body and a fourth body positioned within an interior area defined by the third body. The fourth body has a third sidewall, a fourth sidewall, and a fifth sidewall. A transition from the third sidewall to the fourth sidewall forms a convex portion at the surface of the fourth body facing the third body. A transition from the fifth sidewall to the fourth sidewall forms a convex portion at the surface of the fourth body facing the third body.
A further exemplary embodiment includes a door and frame assembly. The door and frame assembly has a door and a frame. The door has a glass unit and a door rail assembly receiving the glass unit. The door rail assembly includes a first rail body having a first sidewall and a first insulating member secured to the first sidewall. The first insulating member has a first wall and a second wall spaced from the first wall by a first support and a second support. The first wall, the second wall, the first support, and the second support define a first cavity of the first insulating member. The frame has a mullion and a frame header and/or sill assembly extending perpendicular to the mullion. The frame header and/or sill assembly includes a second body having a second sidewall and a third body having a third sidewall. The third sidewall is spaced from the second sidewall by a third support and a fourth support. The second sidewall, the third sidewall, the third support, and the fourth support define a second cavity between the second body and the third body.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
The following drawings are illustrative of particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are not necessarily to scale (unless so stated) and are intended for use in conjunction with the explanations in the following detailed description. Embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing exemplary embodiments of the present invention. Examples of constructions, materials, and/or dimensions are provided for selected elements. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
The illustrated embodiment of the door and frame assembly 10 includes a frame 15, a first door 20, and a second door 25. Although the present description uses the example of a two doors and single frame assembly 10, other door assembly embodiments can include various numbers of doors per frame, such as a single door 20 or 25. Both the frame 15 and doors 20, 25 may be dimensioned such that the frame 15 fittingly supports both doors 20, 25 within the frame 15. The one or more doors 20, 25 can be any one of a variety of different types of doors, such as swing doors, slide doors, or other appropriate doors. For instance, in the door and frame assembly 10 shown here the doors 20, 25 can be referred to as swing doors and are pivotally coupled to the frame 15. In another embodiment, the doors 20, 25 can be slide doors that are slidingly coupled to the frame 15.
The illustrated rail assembly 40 includes a first rail body 70 and a second rail body 75. In examples where a stile assembly has the same cross-section as the rail assembly 40, these can be referred to as a first stile body and a second stile body, respectively. In some embodiments, the rail bodies 70, 75 are made of differing materials (e.g., having different thermal conductivities, such as the first rail body 70 having a greater thermal conductivity than the second rail body 75). For instance, in one embodiment the first rail body 70 can be made of metallic material (e.g., aluminum and/or alloys thereof) while the second rail body 75 can be made of a polymer material (e.g., PVC). In the example shown, the second rail body 75 is attached to the first rail body 70. More particularly, opposing attachment members 80 of the second rail body 75 are fit with corresponding opposing receiving members 85 of the first rail body 70. As shown, each receiving member 85 forms a receiving slot within which the respective attachment member 80 can be received. This can allow the second rail body 75 to be snap fit onto the first rail body 70, and thereby secured in place at the first rail body 70 via an interference fit between the corresponding attachment members 80 and the receiving members 85. In other cases, the first rail body 70 and the second rail body 75 can be an integral rail body component.
The first rail body 70 in the embodiment illustrated in
The embodiment of the rail assembly 40, as shown, further includes an insulating member 90. The exemplary insulating member 90 shown in
The insulating member 90 can be secured to the first rail body 70, such as shown in
When the rail assembly 40 is used as part of the door 20, the glass unit 60 may be received and held at the rail assembly 40 generally at a location 117 between the first rail body 70 and the second rail body 75. The glass unit 60 can be received as the rail assembly 40 so as to interface with the insulating member 90. The insulating member 90 can provide insulation between the glass unit 60 and the rail assembly 40. For example, the presence of the first wall 95 and the second wall 105, and the cavities 115 therebetween, may provide a door with enhanced insulating functionality since it may provide an increased thermal break. As a result, costs associated with maintaining an enclosure may be reduced. In certain embodiments, the ribbed surface 107 of the second wall 105 can interface with the glass unit 60. In one instance of the ribbed surface 107 interfacing with the glass unit 60 the ribbed surface 107 may contact the glass unit 60, while in another instance of the ribbed surface 107 interfacing with the glass unit 60 an intermediate material (e.g., a sealant) may be between the ribbed surface 107 and the glass unit 60.
The second rail body 75 can include a rear attachment structure 120 for receiving a rear seal 125. The rear seal 125 can be received and secured at the second rail body 75 via the rear attachment structure 120. In such an embodiment, the rear side 35 of the rail assembly 40 can be formed, at least in part, by the rear seal 125. The second rail body 75 can include a gap 121 at which a securing element 122 of the rear seal 125 is received. As shown here, the securing element 122 includes two parallel sides each extending to a pointed end (e.g., a “V” shaped end) and this pointed end can be received at the gap 121 of the second rail body 75 so as to secure the rear seal 125 thereat.
In one application, the door 20 can be secured to the frame 15 such that the rear side 35 of the rail assembly 40 faces a temperature controlled enclosure, while the front side 30 of the rail assembly 40 faces an ambient environment. In this application, both the rear seal 125 and the insulating member 90 can act to increase the effectiveness of the door 20 to insulate the enclosure from the ambient environment.
As noted previously, the door 20 can, in some embodiments, include the rail assembly 45, stile assembly 50, and/or stile assembly 55 with cross-sections that are the same as, or similar to, that cross-section illustrated and described here with respect to the rail assembly 40 in
The embodiment of the rail assembly 40 illustrated in
One other difference shown in the embodiment of
In addition to, or as an alternative to, providing one or more doors with one or more insulating features, a frame can include one or more insulating features.
As will be explained in more detail, one or more (e.g., all) of the common frame profile assemblies 150, 155, 160, and 165 and the mullion assembly 170 can include one or more features for providing insulation between an enclosure, to which the frame 15 is secured, and an ambient environment. As one example, disclosed embodiments can provide insulation at the interface between the supported door and the frame 15, and thereby provide insulation between the enclosure and the ambient environment. As another example, disclosed embodiments can provide insulation at the frame 15 in addition to, or as an alternative to, insulation at the interface between the glass unit 60 and one or more of the rail assemblies 40, 45, 50, and 55.
The illustrated header assembly 150 includes a first body 180, a second body 185, and a contact plate 190. In some embodiments, the bodies 180, 185 are made of differing materials (e.g., of differing thermal conductivity). For instance, in one embodiment the first body 180 can be made of metallic material (e.g., aluminum and/or alloys thereof) while the second body 185 can be made of a polymer material (e.g., PVC). In the example shown, the second body 185 is attached to the first body 180. More particularly, attachment members 195 of the second body 185 are fit with corresponding receiving members 200 of the first body 180. As shown, each receiving member 200 forms a receiving surface or slot for the respective attachment member 195. This can allow the second body 185 to be snap fit onto the first body 180, and thereby secured in place at the first body 180 via an interference fit between the corresponding attachment members 195 and the receiving member 200. In other cases the first body 180 and the second body 185 can be an integral body component. As shown, the contact plate 190 is connected to the first body 180. The contact plate 190 can directly contact a door when the door is in a closed position at the frame 15.
The first body 180 in the embodiment illustrated in
The second body 185, in the embodiment illustrated in
The sidewall 220c of the second body 185 is spaced from the sidewall 205c of the first body 180 by a number of supports 225. In the example shown, each of the supports 225 is formed on the second body 185 and is connected to the sidewall 220c at a first end and extends to and contacts the sidewall 205c at a second opposite end. In other embodiments, the supports 225 can be formed on the first body 180 and connected to the sidewall 205c, in addition to or as an alternative to being formed on the sidewall 220c. In the illustrated example, the rail assembly 150 includes five supports 225, but in other embodiments there can be various numbers of supports 225 (e.g., two, three, four, six, etc.). The supports 225, sidewall 220c, and sidewall 205c define a number of cavities 230. The cavities 230, as shown here, are generally spaced from one another along an extent of the sidewalls 205c, 220c that is generally perpendicular to respective planes defined by the front and rear sides 30, 35. In the example here, the rail assembly 150 includes five cavities 230, but in other embodiments there can be various numbers of cavities 230 (e.g., one, two, three, four, six, etc.). In certain embodiments, a filler material can be located in one or more (e.g., all) of the cavities 230 and thus such filler material may extend along the extent of the sidewalls 205c, 220c between the corresponding supports 225.
When the header assembly 150 is used as part of the frame 15, the header assembly 150 can act to provide insulation between the enclosed space, to which the frame 15 is secured, and the ambient environment. For instance, the cavities 230 created by the supports 225 can result in an increased thermal break along the extent of the header assembly 150 between the front side 30 (e.g., ambient environment side) and the rear side 35 (e.g., enclosed space side). This can hold true as well where the cavities 230 contain filler material (e.g., foam tape, such as closed cell foam tape). As a result, costs associated with maintaining an enclosure may be reduced. Furthermore, the supports 225 can provide enhanced structural support to the assembly 150, and where includes across multiple of the assemblies 150, 155, 160, and 165 enhanced structural support to the frame 15.
The illustrated embodiment of the mullion assembly 170 includes a first body 250, a second body 255, and a contact plate 260. As shown, the first body 250 is generally received within an interior area defined by the second body 255. In some embodiments, the bodies 250, 255 are made of differing materials. For instance, in one embodiment the first body 250 can be made of metallic material (e.g., aluminum and/or alloys thereof) while the second body 255 can be made of a polymer material (e.g., PVC). In the example shown, the second body 255 is attached to the first body 250. More particularly, attachment members 265 of the second body 255 are fit with corresponding receiving members 270 of the first body 250. As shown, each receiving member 270 forms a receiving surface or slot for the respective attachment member 265. This can allow the second body 255 to be snap fit onto the first body 250, and thereby secured in place at the first body 250 via an interference fit between the corresponding attachment member 265 and the receiving member 270. In other cases the first body 250 and the second body 255 can be an integral body component. As shown, the contact plate 260 is received at the first body 250. The contact plate 260 can directly contact a door when the door is in a closed position at the front side 30 of the frame 15.
The first body 250 in the embodiment illustrated in
As seen in the illustrated embodiment, a transition from the sidewall 275a to the sidewall 275b forms a convex portion 295 at a surface of the first body 250 facing the second body 255. Similarly, a transition from the sidewall 275c to the sidewall 275b forms a convex portion 300 at a surface of the first body 250 facing the second body 255. The convex portions 295, 300 can generally conform to the surrounding geometry of the second body 255, and thereby serve to occupy a significant portion of the space between the first body 250 and the second body 255 at the transitions between the sidewalls 275a, 275c and the sidewall 275b. These convex portions 295, 300 may allow the mullion assembly 170 to provide insulation at the frame 15.
Embodiments of doors, frames, and door assemblies have been disclosed herein. One or more of these embodiments can be used with any one or more other disclosed embodiments, for instance, to provide a structure with useful insulating and/or structural features in a variety of applications.
Although the present invention has been described with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation and other embodiments of the invention are possible. A variety of related methods (e.g., methods of manufacturing, methods of installing, methods of using) are also within the scope of the present invention. One skilled in the art will appreciate that various changes, adaptations, and modifications may be made without departing from the spirit of the invention.
This application claims priority to U.S. Provisional Patent Application No. 62/456,811, filed Feb. 9, 2017, and the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62456811 | Feb 2017 | US |