Ordinary materials transfer energy by (1) non-solar heat gain by direct conduction, convection, and radiation; (2) solar heat gain in the form of radiation; and (3) airflow from both ventilation and infiltration through the material. Common insulating materials are designed to block conductive or convective heat transfer or reflect radiant heat. Common insulating materials include: bulky fiber materials, such as fiberglass, rock and slag wool, cellulose, and natural fiber; foams and other air trapping systems; and reflective insulation systems, such as reflective foils. Bulky fiber materials insulate by resisting conductive and—to a lesser degree—convective heat flow in a cavity. Air trapping systems, such as spray foams and rigid foam boards trap air or another gas to resist conductive heat flow. Reflective insulation systems reflect radiant heat away from living spaces, making them particularly useful in warm climates, but do not insulate against cold.
Currently, a common method of insulating is using fiberglass insulation. Fiberglass has high insulating capabilities, but requires space that could otherwise be saved by using a more efficient and thinner material, decreasing the square-footage that could be utilized for other things. Additionally, fiberglass' insulating capabilities can decrease by up to 40% in low temperatures and up to 30% in high humidity environments. Furthermore, small tears greatly compromise efficiency, and any resulting moisture can cause a loss of up to 50% of its insulation capabilities. The refrigerator, an appliance that greatly depends on insulation for its function, is generally fitted with polyurethane foam as its insulator. While polyurethane foams are effective insulators and have strong structural integrity, they are not durable and gradually disintegrate, especially in hot or humid conditions. Additionally, polyurethane releases toxic fumes when burned, making it extremely environmentally unfriendly and difficult to dispose of after its inevitable deterioration. Most ordinary, non-insulating materials need costly modifications or bulky additions to insulate well.
Therefore, it would be advantageous to provide a thermally-versatile insulating film for warm, cold, and humid climates that insulates against thermal energy transfer. Furthermore, it would be advantageous to provide a flexible film that can be applied to a variety of surfaces, both planar and non-planar. Additionally, it would be advantageous to provide thermally efficient films that transmit a maximum fraction of incident visible light intensity for transparent surfaces such as windows.
According to one embodiment of the invention, a film is provided. The film includes a first transparent substrate, a second transparent substrate, microstructures deposited between the first transparent substrate and the second transparent substrate to form a vacuum environment in between the first and second substrates. A gasket may be provided on one of the substrate layers. The gasket may be provided on outer edges of the first and/or second substrate layers and around the micro structural layer 104.
The film may also include a transparent conductive layer provided between the first substrate and the micro structural layer. In this embodiment, the gasket may also be provided on outer edges of the first transparent substrate, the second transparent substrate, and/or the transparent conductive layer. The gasket may be an adhesive.
The film may also include an infrared (IR) reflecting layer and/or an ultraviolet (UV) reflecting layer and/or he film may also include at least one polarizing layer or additional layers to enhance the performance of the film. In addition, the film may also include a polyamide layer arranged between the micro structural layer and the conductive layer. The first and/or second substrate may be substantially flexible to conform to a curved surface.
According to another embodiment of the invention, a method of preparing a film is provided. The method includes providing a first substrate and depositing a gasket on a surface of the first substrate adjacent to an outer edge of the first substrate. A microstructure layer is then positioned or deposited on the gasket and a second substrate is positioned on the microstructure layer, with an intermediate material or gasket to seal the microstructure layer to the second substrate. A vacuum is created in the microstructure layer and the layer is sealed to create an evacuated microstructure layer positioned between the first and second substrates.
These and other features, aspects and advantages of the present invention will become better understood from the following description, appended claims, and accompanying figures, where like numbers reference like elements. The figures described should not be interpreted as indicating relative proportions of the components therein, where:
According to the present invention, an insulating film is provided. The insulting film may be applied to a surface and provide a thermally insulating barrier to the transfer of heat into or out of vehicles or buildings. The insulating film may be applied to a variety of surfaces such as metal, drywall, polymers, glass, or other surfaces to provide thermal insulation. For example, the insulating film may be applied to refrigerator interiors that require thermal insulation and protection from heat loss. The insulating properties of the insulating film are derived from the materials and construction methods used in constructing the film, as discussed in further detail below. In other embodiments, the insulating film may have additional layers, such as reflective layers to provide both thermal insulation and reflective insulation.
The insulating film according to embodiments of the invention may be flexible, and may be applied on the surface of a variety of materials. The insulating film is also durable and thin enough to be applied to flexible, frequently-in-contact material. In some embodiments, the insulating film includes a shock absorbing layer and/or a protective layer to prevent damage to the film and the material surface it is applied to. The insulating film may also be formed to provide a safety layer, in order to convert regular materials to have increased resistance to shattering or breaking, for example as in automobile windshields. The insulating film according to the present invention comprises first and second substantially flexible layers, and one or more thermally insulating layers, such as a micro structural layer, positioned between the first and second substantially flexible layers. The film may include one or more IR and/or UV reflecting or absorbing layers.
The insulating film may be applied on a surface that is already installed, such as in temperature-controlled containers, residential homes, commercial buildings, transportation vehicles, appliances, walls, and windows. The insulating film does not need to be sandwiched between two surfaces or layers of any material. In some embodiments, the film may be self-supporting.
Referring now to
As also shown in
As shown in
In the interior of the film 100, a microstructure layer 104 is positioned between the gasket 105 and also in-between the first and second substrate layers 101a and 101b. Although the term “microstructure” is used herein, it will be understood that the term “micro” refers to a small internal support structure, which may have a variety of sizes and configurations, and preferably, is a nanoscale structure positioned within the gasket 105.
The insulating film 100 may also have one or more optional transparent conductive layer(s) (not shown), deposited on one of the first or second substrate layers 101a and 102a. The transparent conductive layers may include, for example, transparent metal oxides, such as indium tin oxide, or other oxide layers, such as zinc oxide, or any other compounds that enhance the energy efficiency of the film. Other examples of materials for the substrate include one or more layers of graphene, low-e coatings, such as Solarban® products, commercially available from PPG Industries, and other low-e coatings known to those of skill in the art.
In certain embodiments, the film 100 may contain one or more polyamide layers. For example, a polyamide layer may be deposited on top of the transparent conductive layer, or at any other appropriate position. After deposition of the polyamide layer, the polyamide layer may be cured with heat. The polyamide layer imparts enhanced thermal properties to the film, because the polymer within the polyamide layer absorbs some of the heat that is incident on the film. Accordingly, less heat reaches the micro structural layer, and the thermal insulation provided by the film is improved. Again, the one or more polyamide layers are not required, and may be omitted from the film 100.
Referring now to
The microstructure layer 104 may be formed with a variety of configurations. As shown in
Referring again to
Referring again to
According to another embodiment, an outer adhesive layer, for example layer 114 or 116, such as a pressure sensitive adhesive, a heat sensitive adhesive, or a moisture sensitive adhesive, may be deposited or otherwise adhered to the film 100. The outer adhesive may be used in embodiments where the film 100 is adhered to a substrate. A release layer (not shown) may also be applied to the surface of the outer adhesive, for example to the outside of one of layer 114 or 116, such that the film 100 may be transported and applied to its end purpose.
Referring now to
According to a preferred embodiment, the film 100 has a polarizer layer 110, more preferably, the polarizer layer 110, is reflective in nature. The reflective polarizers may be birefringence-based, or may be wire grids of metals that may further reflect IR light and at least partially block UV light. Further, the polarizers may be absorptive in nature, in which case the selection of polarization is achieved by absorbing light in the unwanted polarization direction by the polarizing film. By including or omitting a polarizing layer, varying the amount of transparent conductive layer on the film 100, and varying the thickness of the micro structural layer 104, the U-values and SHGC may be varied. Accordingly, the properties of the films described herein can be varied to accommodate and optimize the films for various climates and different applications.
According to another embodiment of the invention, a method of improving the energy efficiency of a transparent surface is provided. According to the method, the energy efficiency of a substrate is improved by applying the insulating film 100 according to the invention to the surface of the substrate. According to one embodiment, an outer adhesive layer 114 or 116 is included on the insulating film 100 and the film is adhered to the surface of a transparent substrate. In one embodiment, the insulating film 100 is applied to an existing structure having a transparent surface, such as an aftermarket film which is applied to a car or building window. In other embodiments, the insulating film is applied to interior surfaces, such as for insulating machine parts or larger structures. In other embodiments, the insulating film 100 is formed directly on the transparent substrate. The characteristics of the thermally-insulating film may be selected according to the desired energy efficiency and solar heat gain.
As shown in
According to another embodiment of the invention, a method of preparing a film is provided. The method includes first, providing a first transparent substrate. A bottom layer of a gasket is deposited on a surface of the first substrate layer adjacent to an outer edge of the first substrate layer. A microstructure layer is then positioned on the gasket and a top layer of a gasket is positioned on the microstructure layer. A second transparent substrate layer is also positioned on the microstructure layer and the gasket. A vacuum is created surrounding the microstructure layer and within the gasket and the gasket is sealed. In some embodiments, the gasket is sealed by curing an adhesive within the gasket.
Referring now to
In another embodiment, the microstructure layer is deposited directly on the first substrate layer 101a within the boundary created by the gasket 105. And he second substrate layer 101b and a top layer of the gasket 105, which may be the same or different as the adhesive 102b are then positioned on a top side of the micro structure layer 104. The microstructural layer 104 and gasket 105 are evacuated and sealed as described above.
In another embodiment, a first transparent conductive layer may be deposited on the first substrate layer 101a within the boundary created by the gasket 105. The first transparent conductive layer may be deposited by spraying, etching, or utilizing other deposition methods known to those of skill in the art.
According to another embodiment, a method for making the insulating film in a roll to roll production line is provided. According to the method includes, a first substrate layer 101a is provided. The first substrate layer 101a is provided as a film roll that is rolled out to a production line. Then a gasket 105 is positioned on a top side the first substrate layer 101a, and an outer edge of the first substrate layer 101a. Accordingly, the gasket 105 must be sufficiently tall to accommodate the layers. The gasket 105 may be positioned by deposition or a film which is positioned on the first substrate layer 101a. The microstructure layer is then positioned or created on the gasket 105, as described herein, either by etching a microstructure material 103, or by depositing a microstructural layer 104 directly on the gasket, either by deposition or as a film layer. The top layer of the gasket 105 is then positioned on the microstructural layer 104, either as a layer or by deposition. A second transparent substrate 101b is then provided. The second transparent substrate 101b may be provided as a film roll that is rolled out to the production line. The second substrate layer 101b is then positioned on top of the microstructure layer 104 and the gasket 105. Once the layers have been aligned to ensure direct contact between the gasket 105 and the second transparent substrate 101b, the gasket 105 is cured to create the insulating film 100. In one embodiment, the gasket 105 includes a UV-curable adhesive 102, which is cured by applying UV light. In another embodiment, at least one second film may be deposited on the insulating film 100. For example, the second film may be a supplementary film 110, 112, 114 and/or 116 as described herein, such as a protective film, shock absorbing film, an IR reflective film, a UV reflective film, safety film, light reflective layer and/or a light polarizing layer. As discussed above, the first and second transparent conductive layers are not required, and may be added or omitted from the method used to produce the film 100.
According to another embodiment of the invention, the substrate layers 101a and 101b may be substantially flexible non-transparent substrates, or a substantially flexible transparent substrate. The substantially flexible substrates form a film 100 which will be able to conform to curved or uneven surfaces.
While the foregoing written description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiments, methods, and examples herein. And, although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments, methods, and examples contained herein.
This Application claims the benefit of U.S. Provisional Patent Application No. 62/301,020 filed Feb. 29, 2016, the entire contents of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4148775 | Shima | Apr 1979 | A |
4204015 | Wardlaw | May 1980 | A |
4358490 | Nagai | Nov 1982 | A |
4531511 | Hochberg | Jul 1985 | A |
5018328 | Cur et al. | May 1991 | A |
5354195 | Dublinski | Oct 1994 | A |
6528131 | Lafond | Mar 2003 | B1 |
6828001 | Tokonabe | Dec 2004 | B2 |
8313818 | Vo | Nov 2012 | B2 |
20020106482 | Bourlier | Aug 2002 | A1 |
20020170265 | Tokonabe | Nov 2002 | A1 |
20030101672 | Di Gregorio | Jun 2003 | A1 |
20050042416 | Blackmon | Feb 2005 | A1 |
20050048231 | Morphet | Mar 2005 | A1 |
20050123717 | Shen | Jun 2005 | A1 |
20050136198 | Bourlier | Jun 2005 | A1 |
20050161154 | Anderson | Jul 2005 | A1 |
20050167036 | Yokoyama | Aug 2005 | A1 |
20060003138 | Kaczmarek | Jan 2006 | A1 |
20060024469 | Tenra | Feb 2006 | A1 |
20060029777 | Yanai | Feb 2006 | A1 |
20070122588 | Milburn | May 2007 | A1 |
20070212516 | Conterno | Sep 2007 | A1 |
20070243358 | Gandini | Oct 2007 | A1 |
20080115883 | Mishima | May 2008 | A1 |
20090252921 | Bottler | Oct 2009 | A1 |
20100255225 | Cording | Oct 2010 | A1 |
20100266808 | Klein | Oct 2010 | A1 |
20110165367 | Kojima | Jul 2011 | A1 |
20120031957 | Whitaker | Feb 2012 | A1 |
20120048487 | Brewster | Mar 2012 | A1 |
20120118002 | Kim | May 2012 | A1 |
20120321835 | Hethcock, Jr. | Dec 2012 | A1 |
20120324806 | Chen | Dec 2012 | A1 |
20130029082 | Park | Jan 2013 | A1 |
20130149481 | Hiemeyer | Jun 2013 | A1 |
20140141192 | Fernando | May 2014 | A1 |
20140224408 | Kuntz | Aug 2014 | A1 |
20150079363 | Free | Mar 2015 | A1 |
20150159800 | Kimura | Jun 2015 | A1 |
20160138324 | Lameris | May 2016 | A1 |
20160185069 | Zhao | Jun 2016 | A1 |
20160369936 | Hwang | Dec 2016 | A1 |
20170165946 | Poupa Parsigneau | Jun 2017 | A1 |
20170234487 | Shima | Aug 2017 | A1 |
20170368799 | Barbetta | Dec 2017 | A1 |
20180072018 | Liu | Mar 2018 | A1 |
20180274289 | Whitehead | Sep 2018 | A1 |
20180347181 | Herfurth | Dec 2018 | A1 |
20180371749 | Rahbek | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
2657278 | Oct 2013 | EP |
2993040 | Mar 2016 | EP |
2006003199 | Jan 2006 | WO |
2014178540 | Nov 2014 | WO |
Entry |
---|
PCT International Search Report, PCT/US2017/020055, dated Jun. 27, 2017. |
Number | Date | Country | |
---|---|---|---|
20170246829 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
62301020 | Feb 2016 | US |