Insulating sheath for electrosurgical forceps

Information

  • Patent Grant
  • 8251996
  • Patent Number
    8,251,996
  • Date Filed
    Tuesday, September 23, 2008
    16 years ago
  • Date Issued
    Tuesday, August 28, 2012
    12 years ago
Abstract
An electrosurgical forceps includes a shaft having a pair of jaw members at a distal end movable about a pivot from a first position disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue. One or both of the jaw members are adapted to connect to a source of electrical energy such that the jaw members are capable of conducting electrical energy to tissue held therebetween. An insulative sheath is fitted for removal atop at least a portion of an exterior surface of one or both jaw members, about the pivot and the distal end of the shaft. The insulative sheath houses a silicone lube configured to facilitate insertion of the forceps through a cannula after removal of the insulative sheath.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to an insulated electrosurgical forceps and more particularly, the present disclosure relates to an insulating boot for use with either an endoscopic or open bipolar and/or monopolar electrosurgical forceps for sealing, cutting, and/or coagulating tissue.


2. Background of Related Art


Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.


Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters to twelve millimeters. Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.


Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.


It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.


A general issue with existing electrosurgical forceps is that the jaw members rotate about a common pivot at the distal end of a metal or otherwise conductive shaft such that there is potential for both the jaws, a portion of the shaft, and the related mechanism components to conduct electrosurgical energy (either monopolar or as part of a bipolar path) to the patient tissue. Existing electrosurgical instruments with jaws either cover the pivot elements with an inflexible shrink-tube or do not cover the pivot elements and connection areas and leave these portions exposed.


SUMMARY

The present disclosure relates to an electrosurgical forceps that includes a shaft having a pair of jaw members at a distal end thereof that are movable about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue. A movable handle is included that actuates a drive assembly to move the jaw members relative to one another and one or both of the jaw members are adapted to connect to a source of electrical energy such that the jaw members are capable of conducting energy to tissue held therebetween. An insulative sheath is fitted for removal atop at least a portion of an exterior surface of one or both jaw members, about the pivot and the distal end of the shaft. The insulative sheath houses a silicone lube configured to facilitate insertion of the forceps through a cannula after removal of the insulative sheath.


The present disclosure also relates to a method of facilitating insertion of a forceps through a cannula comprising the initial step of providing a forceps including: a shaft having a pair of jaw members at a distal end thereof that are movable about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue; one or both of the jaw members are adapted to connect to a source of electrical energy such that the jaw members are capable of conducting energy to tissue held therebetween; and an insulative sheath disposed atop at least a portion of an exterior surface of one or both jaw members, about the pivot and the distal end of the shaft, the insulative sheath housing a silicone lube configured to facilitate insertion of the forceps through a cannula after removal of the insulative sheath.


The method also includes the steps of: removing the insulative sheath to expose the silicone lube atop the exterior surface of the jaw member(s), about the pivot and the distal end of the shaft; engaging the forceps for insertion through a cannula; and inserting the forceps through the cannula utilizing the silicone lube to facilitate insertion.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the subject instrument are described herein with reference to the drawings wherein:



FIG. 1 is a left, perspective view including an endoscopic bipolar forceps showing a housing, a shaft and an end effector assembly having an insulating boot according to one embodiment of the present disclosure;



FIG. 2A is an enlarged, right perspective view of the end effector assembly with a pair of jaw members of the end effector assembly shown in open configuration having the insulating boot according to the present disclosure;



FIG. 2B is an enlarged, bottom perspective view of the end effector assembly with the jaw members shown in open configuration having the insulating boot according to the present disclosure;



FIG. 3 is a right, perspective view of another version of the present disclosure that includes an open bipolar forceps showing a housing, a pair of shaft members and an end effector assembly having an insulating boot according to the present disclosure;



FIG. 4A is an rear perspective view of the end effector assembly of FIG. 1 showing a pair of opposing jaw members in an open configuration;



FIG. 4B is an rear perspective view of the end effector assembly of FIG. 1 showing a pair of opposing jaw members in a closed configuration;



FIG. 4C is an side view of the end effector assembly of FIG. 1 showing the jaw members in a open configuration;



FIG. 5 is an enlarged, schematic side view of the end effector assembly showing one embodiment of the insulating boot configured as a mesh-like material;



FIG. 6A is an enlarged, schematic side view of the end effector assembly showing another embodiment of the insulating boot which includes an enforcement wire disposed longitudinally therealong which is dimensioned to strengthen the boot;



FIG. 6B is a front cross section along line 6B-6B of FIG. 6A;



FIG. 7 is an enlarged, schematic side view of the end effector assembly showing another embodiment of the insulating boot which includes wire reinforcing rings disposed at the distal end proximal ends thereof;



FIG. 8A is an enlarged view of a another embodiment of the insulating boot according to the present disclosure;



FIG. 8B is a front cross section along line 8B-8B of FIG. 8A



FIG. 8C is an enlarged view of the insulating boot of FIG. 8A shown in a partially compressed orientation;



FIG. 8D is an enlarged side view of the end effector assembly shown with the insulating boot of FIG. 8A disposed thereon;



FIG. 8E is an enlarged side view of the end effector assembly shown with the insulating boot of FIG. 8A disposed thereon shown in a partially compressed orientation;



FIG. 9A is an enlarged view of another embodiment of the insulating boot according to the present disclosure including a mesh and silicone combination;



FIG. 9B is a greatly-enlarged, broken view showing the radial expansion of the mesh portion of the insulating boot of FIG. 9A when longitudinally compressed;



FIG. 10 is an enlarged view of another embodiment of the insulating boot according to the present disclosure including a detent and dollop of adhesive to provide mechanical retention of the insulating boot atop the forceps jaws;



FIG. 11 is an enlarged view of another embodiment of the insulating boot according to the present disclosure including a chamfer section which provides an inflow channel for the adhesive during curing;



FIG. 12 is an enlarged view of another embodiment of the insulating boot according to the present disclosure including a heat activate adhesive flow ring which facilitates adherence of the insulating boot to the jaw members;



FIG. 13 is an enlarged view of another embodiment of the insulating boot according to the present disclosure including an adhesive layer which seals the junction between the insulating boot and the jaw overmold;



FIG. 14 is an enlarged view of another embodiment of the insulating boot according to the present disclosure which includes a tape layer to hold the boot against the back of the jaw members;



FIG. 15A is an enlarged view of another embodiment of the insulating boot according to the present disclosure including a ring of elastomer connections which both transfer current and facilitate retention of the insulating boot atop the jaw members;



FIG. 15B is a front cross section along line 15B-15B of FIG. 15A;



FIG. 16 is an enlarged view of another embodiment of the present disclosure which includes an insulating sheath filled with silicone gel to facilitate insertion of the cannula within a body cavity;



FIG. 17A is an enlarged view of another embodiment of the present disclosure which includes a plastic shield overmolded atop the jaw members to insulate the jaw members from one another;



FIG. 17B is an enlarged view of a the two jaw members of FIG. 17A shown assembled;



FIG. 18A is an enlarged view of another embodiment of the present disclosure similar to FIGS. 17A and 17B wherein a weather stripping is utilized to seal the gap between jaw members when assembled;



FIG. 18B is a front cross section along line 18B-18B of FIG. 18A;



FIG. 19A is an enlarged view of another embodiment of the present disclosure which includes an insulating boot with a series of radially extending ribs disposed therearound to reduce surface friction of the insulating boot during insertion through a cannula;



FIG. 19B is a front cross section along line 19B-19B of FIG. 19A;



FIG. 20 is an enlarged view of another embodiment of the present disclosure wherein a soft, putty-like material acts as the insulator for the various moving parts of the jaw members;



FIG. 21 is an enlarged view of another embodiment of the present disclosure which includes an insulating shield disposed between the boot and the metal sections of the jaw members;



FIG. 22A is an enlarged view of another embodiment of the present disclosure which includes a plastic wedge disposed between the boot and the proximal end of the jaw members which allows the jaw members to pivot;



FIG. 22B is a cross section along line 22B-22B of FIG. 22A;



FIG. 23A is an enlarged view of another embodiment of the present disclosure which includes a silicone boot with a ring disposed therein which is composed of an adhesive material which actively fills any holes created by arcing high current discharges;



FIG. 23B is a cross section along line 23B-23B of FIG. 23A;



FIG. 24A is an enlarged view of another embodiment of the present disclosure which includes a silicone boot with an ring disposed therein which is composed of an insulative material which actively fills any holes created by arcing high current discharges;



FIG. 24B is a cross section along line 24B-24B of FIG. 24A;



FIG. 25 is an enlarged view of another embodiment of the present disclosure wherein a distal end of a shaft which is overmolded with a silicone material;



FIG. 26A is an enlarged view of another embodiment of the present disclosure which includes an insulating boot being made from a low durometer material and a high durometer material—the low durometer material being disposed about the moving parts of the jaw members;



FIG. 26B is a cross section along line 26B-26B of FIG. 26A;



FIG. 27 is an enlarged view of another embodiment of the present disclosure which includes an insulating ring being made from a high durometer material;



FIG. 28 is an enlarged view of another embodiment of the present disclosure which includes an insulating boot which is packaged with a cannula and designed for engagement over the jaw members when the jaw members are inserted into the cannula;



FIGS. 29A-29D are enlarged views of other embodiments of the present disclosure which includes an insulating boot having varying inner and outer diameters;



FIG. 30 is an enlarged view of another embodiment of the present disclosure which includes an insulating boot having a detent in the jaw overmold which is designed to mechanically engage the insulating boot;



FIG. 31 is an enlarged view of another embodiment of the present disclosure which includes an insulating boot having a tapered distal end;



FIG. 32 is an enlarged view of another embodiment of the present disclosure which includes an insulating boot having a square taper distal end;



FIGS. 33A and 33B are enlarged views of another embodiment of the present disclosure which includes a co-molded boot having a silicone portion and proximal and side portions made a thermoplastic material;



FIG. 34 is an enlarged view of another embodiment having a silicone boot with a plastic shell overlapped with a heat shrink tubing;



FIG. 35 is an enlarged view of another embodiment of the present disclosure which includes a weather strip type mechanical interface disposed at the junction of the boot and the jaw members;



FIGS. 35A-35B is an enlarged view of another embodiment of the present disclosure including a thermoplastic clevis having a pair of fingers and which project inwardly to mechanically engage the proximal end of jaw members.



FIG. 36 is an enlarged view of another embodiment of the present disclosure which includes a silicone overmolded clevis similar to the embodiment of FIG. 38 which also includes a thermoplastic tube configured to encompass an endoscopic shaft member FIG. 37 is an enlarged view of another embodiment of the present disclosure with thermoplastic rails along a length thereof;



FIG. 38A-38D are enlarged views of another embodiment of the present disclosure which includes an insulating boot with a ring-like mechanical interface which is configured to include a key-like interface for engaging the proximal ends of the jaw members;



FIG. 39A-39D are enlarged views of another embodiment of the present disclosure which includes an insulating boot having a key-like interface disposed at a distal end thereof for engaging the proximal ends of the jaw members, the insulating boot being made from a low durometer material and a high durometer material;



FIG. 40 are enlarged views of another embodiment of the present disclosure which includes a plastic guard rail which secures the insulating boot to the jaw members and heat shrink material by a series of hook-like appendages;



FIG. 41 is an enlarged view of another embodiment of the present disclosure which includes an insulating boot having a series of pores defined in an outer periphery thereof, the pores having a heat activated lubricant disposed therein the facilitate insertion of the forceps within a cannula;



FIG. 42 is an enlarged view of another embodiment of the present disclosure which includes a heat-cured adhesive which is configured to mechanically engage and secure the insulating boot to the jaw members;



FIG. 43 is an enlarged view of another embodiment of the present disclosure which includes an insulating boot having an overlapping portion which engages overlaps the jaw members, the jaw members including a hole defined therein which contains a glue which bonds to the overlapping portion of the insulating boot;



FIGS. 44A-44B are enlarged views of another embodiment of the present disclosure which includes an uncured adhesive sleeve which is configured to engage the distal end of the shaft and the jaw members and bond to the uninsulated parts when heated;



FIGS. 45A-45B are enlarged views of another embodiment of the present disclosure which includes an insulating boot having an uncured adhesive ring which is configured to bond and secure the insulating boot to the jaw members when heated; and



FIG. 46 is an enlarged view of another embodiment of the present disclosure which includes a coating disposed on the exposed portions of the jaw members, the coating being made from a material that increases resistance with heat or current.





DETAILED DESCRIPTION

Referring initially to FIGS. 1-2B, one particularly useful endoscopic forceps 10 is shown for use with various surgical procedures and generally includes a housing 20, a handle assembly 30, a rotating assembly 80, a trigger assembly 70 and an end effector vascular tissue. For the purposes herein, forceps 10 will be described generally. However, the various particular aspects of this particular forceps are detailed in commonly owned U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846 B2, “VESSEL SEALER AND DIVIDER FOR USE WITH SMALL TROCARS AND CANNULAS”, issued to Dycus et al. on Jan. 2, 2007, U.S. patent application Ser. No. 10/953,757, now U.S. Pat. No. 7,150,749 B2, “VESSEL SEALER AND DIVIDER HAVING ELONGATED KNIFE STROKE AND SAFETY CUTTING MECHANISM”, issued to Dycus et al. on Dec. 19, 2006, and U.S. patent application Ser. No. 11/348,072, now U.S. Pat. No. 7,771,425 B2, “VESSEL SEALER AND DIVIDER HAVING A VARIABLE JAW CLAMPING MECHANISM”, issued to Dycus et al. on Aug. 10, 2010, the entire contents of all of which are incorporated by reference herein.


Forceps 10 also includes a shaft 12 that has a distal end 16 dimensioned to mechanically engage the end effector assembly 100 and a proximal end 14 that mechanically engages the housing 20 through rotating assembly 80. As will be discussed in more detail below, the end effector assembly 100 includes a flexible insulating boot 500 configured to cover at least a portion of the exterior surfaces of the end effector assembly 100.


Forceps 10 also includes an electrosurgical cable 310 that connects the forceps 10 to a source of electrosurgical energy, e.g., a generator (not shown). The generator includes various safety and performance features including isolated output, independent activation of accessories, and Instant Response™ technology (a proprietary technology of Valleyiab, Inc., a division of Tyco Healthcare, LP) that provides an advanced feedback system to sense changes in tissue many times per second and adjust voltage and current to maintain appropriate power. Cable 310 is internally divided into a series of cable leads (not shown) that each transmit electrosurgical energy through their respective feed paths through the forceps 10 to the end effector assembly 100.


Handle assembly 30 includes a two opposing handles 30a and 30b which are each movable relative to housing 20 from a first spaced apart position wherein the end effector is disposed in an open position to a second position closer to housing 20 wherein the end effector assembly 100 is positioned to engage tissue. Rotating assembly 80 is operatively associated with the housing 20 and is rotatable in either direction about a longitudinal axis “A” (See FIG. 1). Details of the handle assembly 30 and rotating assembly 80 are described in the above-referenced patent applications, namely, U.S. patent application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846 B2, U.S. patent application Ser. No. 10/953,757, now U.S. Pat. No. 7,150,749 B2, and U.S. patent application Ser. No. 11/348,072, now U.S. Pat. No. 7,771,425 B2.


As mentioned above and as shown best in FIGS. 2A and 2B, end effector assembly 100 is attached at the distal end 14 of shaft 12 and includes a pair of opposing jaw members 110 and 120. Opposing handles 30a and 30b of handle assembly 30 are ultimately connected to a drive assembly (not shown) that, together, mechanically cooperate to impart movement of the jaw members 110 and 120 from an open position wherein the jaw members 110 and 120 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 110 and 120 cooperate to grasp tissue therebetween. All of these components and features are best explained in detail in the above-identified commonly owned U.S. application Ser. No. 10/460,926, now U.S. Pat. No. 7,156,846 B2.



FIG. 3 shows insulating boot 500 configured to engage a forceps 400 used in open surgical procedures. Forceps 400 includes elongated shaft portions 412a and 412b having an end effector assembly 405 attached to the distal ends 416a and 416b of shafts 412a and 412b, respectively. The end effector assembly 405 includes pair of opposing jaw members 410 and 420 which are pivotably connected about a pivot pin 465 and which are movable relative to one another to grasp tissue.


Each shaft 412a and 412b includes a handle 415a and 415b, respectively, disposed at the proximal ends thereof. As can be appreciated, handles 415a and 415b facilitate movement of the shafts 412a and 412b relative to one another which, in turn, pivot the jaw members 410 and 420 from an open position wherein the jaw members 410 and 420 are disposed in spaced relation relative to one another to a clamping or closed position wherein the jaw members 410 and 420 cooperate to grasp tissue therebetween. Details relating to the internal mechanical and electromechanical components of forceps 400 are disclosed in commonly-owned U.S. patent application Ser. No. 10/962,116, now U.S. Pat. No. 7,811,283 B2, “OPEN VESSEL SEALING INSTRUMENT WITH HOURGLASS CUTTING MECHANISM AND OVER-RATCHET SAFETY”, issued to Moses et al. on Oct. 12, 2010. As will be discussed in more detail below, an insulating boot 500 or other type of insulating device as described herein may be configured to cover at least a portion of the exterior surfaces of the end effector assembly 405 to reduce stray current concentrations during electrical activation.


As best illustrated in FIG. 3, one of the shafts, e.g., 412b, includes a proximal shaft connector 470 which is designed to connect the forceps 400 to a source of electrosurgical energy such as an electrosurgical generator (not shown). The proximal shaft connector 470 electromechanically engages an electrosurgical cable 475 such that the user may selectively apply electrosurgical energy as needed. The cable 470 connects to a handswitch 450 to permit the user to selectively apply electrosurgical energy as needed to seal tissue grasped between jaw members 410 and 420. Positioning the switch 450 on the forceps 400 gives the user more visual and tactile control over the application of electrosurgical energy. These aspects are explained below with respect to the discussion of the handswitch 450 and the electrical connections associated therewith in the above-mentioned commonly-owned U.S. patent application Ser. No. 10/962,116, now U.S. Pat. No. 7,811,283 B2.


A ratchet 430 is included which is configured to selectively lock the jaw members 410 and 420 relative to one another in at least one position during pivoting. A first ratchet interface 431a extends from the proximal end of shaft member 412a towards a second ratchet interface 431b on the proximal end of shaft 412b in general vertical registration therewith such that the inner facing surfaces of each ratchet 431a and 431b abut one another upon closure of the jaw members 410 and 420 about the tissue. The ratchet position associated with the cooperating ratchet interfaces 431a and 431b holds a specific, i.e., constant, strain energy in the shaft members 412a and 412b which, in turn, transmits a specific closing force to the jaw members 410 and 420.


The jaw members 410 and 420 are electrically isolated from one another such that electrosurgical energy can be effectively transferred through the tissue to form a tissue seal. Jaw members 410 and 420 both include a uniquely-designed electrosurgical cable path disposed therethrough which transmits electrosurgical energy to electrically conductive sealing surfaces 412 and 422, respectively, disposed on the inner facing surfaces of jaw members, 410 and 420.


Turning now to the remaining figures, FIGS. 4A-46, various envisioned embodiments of electrical insulating devices are shown for shielding, protecting or otherwise limiting or directing electrical currents during activation of the forceps 10, 400. More particularly, FIGS. 4A-4C show one embodiment wherein the proximal portions of the jaw members 110 and 120 and the distal end of shaft 12 are covered by the resilient insulating boot 500 to reduce stray current concentrations during electrosurgical activation especially in the monopolar activation mode. More particularly, the boot 500 is flexible from a first configuration (See FIG. 4B) when the jaw members 110 and 120 are disposed in a closed orientation to a second expanded configuration (See FIGS. 4B and 4C) when the jaw members 110 and 120 are opened. When the jaw members 110 and 120 open, the boot flexes or expands at areas 220a and 220b to accommodate the movement of a pair of proximal flanges 113 and 123 of jaw members 110 and 120, respectively (see FIGS. 17A and 17B). Further details relating to one envisioned insulating boot 500 are described with respect to commonly-owned U.S. application Ser. No. 11/529,798 entitled “INSULATING BOOT FOR ELECTROSURGICAL FORCEPS”, now U.S. Pat. No. 7,846,161 B2 issued to Dumbauld et al. on Dec. 7, 2010, the entire contents of which being incorporated by reference herein.



FIG. 5 shows another embodiment of an insulating boot 600 which is configured to reduce stray current concentrations during electrical activation of the forceps 10. More particularly, the insulating boot 600 includes a woven mesh 620 which is positioned over a proximal end of the jaw members 110 and 120 and a distal end of the shaft 12. During manufacturing, the mesh 620 is coated with a flexible silicone-like material 610 which is designed to limit stray currents from emanating to surrounding tissue areas. The woven mesh 620 is configured to provide strength and form to the insulating boot 600. The woven mesh 620 is also configured to radially expand when the mesh 620 longitudinally contracts (See FIGS. 9A and 9B).



FIGS. 6A and 6B show another embodiment of an insulating boot 700 which includes a pair of longitudinally extending wires 720a and 720b encased within corresponding channels 710a and 710b, respectively, defined within the boot 700. The wires 720a and 720b re-enforce the boot 700 and may be manufactured from conductive or non-conductive materials. As can be appreciated, any number of wires 720a and 720b may be utilized to support the insulating boot 700 and enhance the fit of the boot 700 atop the jaw members 110 and 120. The wires 720a and 720b may be adhered to an outer periphery of the boot 700, adhered to an inner periphery of the boot 700, recessed within one or more channels disposed in the outer or inner periphery of the boot 700 or co-extruded or insert-molded into the insulating boot 700. The wires 720a and 720b may be manufactured from a flexible metal, surgical stainless steel, NiTi, thermoplastic, polymer, high durometer material and combinations thereof.



FIG. 7 shows another embodiment of an insulating boot 800 which includes a pair of circumferential wires 820a and 820b disposed within or atop the boot 800. The wires 820a and 820b re-enforce the boot 700 at the proximal and distal ends thereof and may be manufactured from conductive or non-conductive materials such as flexible metals, surgical stainless steel, NiTi, thermoplastic and polymers. Due to the tensile strength of the wires 820a and 820b, the boot 800 stays in place upon insertion though a cannula and further prevents the boot 800 from rolling onto itself during repeated insertion and/or withdrawal from a cannula. As can be appreciated, any number of wires 820a and 820b may be utilized to support the insulating boot 800 and enhance the fit of the boot atop the jaw members 110 and 120. For example, in one embodiment, the wires are insert molded to the boot 800 during a manufacturing step.



FIGS. 8A-8E show yet another embodiment of an insulating boot 900 which includes a molded thermoplastic shell 905 having a series of slits 930a-930d disposed therethrough which are configured to flex generally outwardly (See FIGS. 8C and 8E) upon the travel of the forceps shaft 12 to actuate the jaw members 110 and 120 to the open configuration. Shell 905 includes an inner periphery thereof lined with a silicone-like material 910a and 910b which provides patient protection from electrosurgical currents during activation while outer thermoplastic shell 905 protects the silicone material 910a and 910b during insertion and retraction from a surgical cannula (not shown). The outer shell 905 and the silicone-like material 910a and 910b may be overmolded or co-extruded during assembly.


As mentioned above, the outer shell 905 expands at expansion points 935a and 935b upon contraction of the shaft 12 or movement of the jaw members 110 and 120. During expansion of the shell 905, the shell 905 does not adhere to the inner silicone material 910a and 910b due the inherent properties of the silicone material 910a and 910b and selective texturing thereof. Shell 905 may also include an inner rim or latching areas 915a and 915b disposed at the distal (and/or proximal) end thereof. The latching areas 915a and 915b are configured to mechanically interface with the jaw members 110 and 120 and hold the shell 905 in place during relative movement of the shaft 12. Other mechanical interfaces 908 may also be included which are configured to engage the shell 905 with the jaw members and/or shaft 12, e.g., adhesive. The outer shell 905 may include a relief section 911 to facilitate engagement of the outer shell 905 atop the jaw members 110 and 120.



FIGS. 9A and 9B show yet another embodiment of the insulating boot 1000 which is configured to include an insulative mesh 1010 disposed at one end of boot 1000 and a silicone (or the like) portion 1020 disposed at the other end thereof. Mesh portion 1010 is configured to radially expand and longitudinally contract from a first configuration 1010 to a second configuration 1010′ as shown in FIG. 9B. The mesh portion 1010 is typically associated with the part of the boot closest to the jaw members 110 and 120.



FIG. 10 shows yet another embodiment of the insulating boot 1100 which is configured to mechanically engage a corresponding mechanical interface 1110 (e.g., detent or bump) disposed on a proximal end of the jaw members, e.g., jaw member 110. An adhesive 1120 may also be utilized to further mechanical retention. The at least one mechanical interface 1110 may also include a raised protuberance, flange, spike, cuff, rim, bevel and combinations thereof. The mechanical interface 1110 may be formed by any one of several known processes such as co-extrusion and overmolding.


Similarly, one or both jaw members 110 and 120 may include an underlapped or chamfered section 1215 which enhances mechanical engagement with the insulating boot 1200. For example and as best shown in FIG. 11, an adhesive 1210 may be utilized between the beveled section 1215 defined in jaw member 110 and the insulating boot 1200 to enhance mechanical engagement of the boot 1200. Further and as best shown in FIG. 12, an adhesive 1410 may be utilized to atop the intersection of the bevel 1415 and insulating boot 1400 to further mechanical retention of the boot 1400. The adhesive 1410 may be configured to cure upon application of heat, ultraviolet light, electrical energy or other ways customary in the trade.



FIG. 13 shows yet another embodiment of an insulating boot 1300 which includes an internally-disposed glue ring 1310 disposed along the inner periphery 1320 of the boot 1300. The glue ring 1310 is configured to cure when heated or treated with light (or other energy) depending upon a particular purpose or manufacturing sequence.



FIG. 14 shows yet another embodiment of an insulating boot 1500 which is configured to cooperate with a glue-like tape 1510 which holds the insulating boot 1500 in place atop the proximal ends 111 and 121 of the jaw members 110 and 120, respectively. Tape 1510 may be configured to cure upon application of heat or other energy. The tape 1510 may also be configured to include an aperture 1511 defined therein which is dimensioned to receive the proximal end of the jaw members 110 and 120.



FIGS. 15A and 15B show yet another embodiment of an insulating boot 1600 which includes a series of electrical leads 1610a-1610h disposed therethrough which are designed to electromechanically engage the jaw members 110 and 120 and supply current thereto. More particularly, boot 1600 may include leads 1610a-1610d which carry on electrical potential to jaw member 110 and leads 1610e-1610h which are designed to carry a second electrical potential to jaw member 120. The leads 1610a-1610h may be configured as metal strands disposed along the inner peripheral surface of boot 1600 which are configured to provide electrical continuity to the jaw members 110 and 120. The leads 1610a-1610f may be co-extruded or insert molded to the inner periphery of the boot 1600. At least one of the leads 1610a-1610h may be configured to carry or transmit a first electrical potential and at least one of the leads 1610a-1610h may be configured to carry a second electrical potential.



FIG. 16 shows yet another version of an insulating sheath or boot 1700 which is configured to be removable prior to insertion through a cannula (not shown). Boot 1700 is designed like a condom and is filled with a silicone lube 1710 and placed over the distal end of jaw members 110 and 120. Prior to insertion of the forceps 10 through a cannula, the boot 1700 is removed leaving residual silicone 1710 to facilitate insertion through the cannula. The forceps 10 may also include a second insulating boot 500 to reduce current concentrations similar to any one of the aforementioned embodiments or other embodiments described herein.


The present disclosure also relates to a method of facilitating insertion of a forceps through a cannula and includes the steps of providing a forceps including a shaft having a pair of jaw members at a distal end thereof. The jaw members are movable about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue. At least one of the jaw members is adapted to connect to a source of electrical energy such that the at least one jaw member is capable of conducting energy to tissue held therebetween. An insulative sheath is disposed atop at least a portion of an exterior surface of at least one jaw member, about the pivot and the distal end of the shaft. The insulative sheath houses a silicone lube configured to facilitate insertion of the forceps through a cannula after removal of the insulative sheath.


The method also includes the steps of removing the insulative sheath to expose the silicone lube atop the exterior surface of at least one jaw member, about the pivot and the distal end of the shaft, engaging the forceps for insertion through a cannula and inserting the forceps through the cannula utilizing the silicone lube to facilitate insertion.



FIGS. 17A and 17B show still another embodiment of the insulating boot 1800 which is configured as elastomeric shields 1800a and 1800b which are overmolded atop the proximal ends of respective jaw members 110 and 120 during a manufacturing step. A retention element (e.g., mechanical interface 1110) may also be included which engages one or both shields 1800a, 1800b. Once the forceps 10 is assembled, the elastomeric shields 1800a and 1800b are configured to abut one another to reduce stray current concentrations. FIGS. 18A and 18B show a similar version of an insulating boot 1900 which includes two overmolded elastomeric shields 1900a and 1900b which are mechanically engaged to one another by virtue of one or more weather strips 1910a and 1910b. More particularly, the weather strips 1910a and 1910b are configured to engage and seal the two opposing shields 1900a and 1900b on respective jaw members 110 and 120 during the range of motion of the two jaw members 110 and 120 relative to one another.



FIGS. 19A and 19B show yet another embodiment of the insulating boot 2000 which includes an elastomeric or silicone boot similar to boot 500 wherein the outer periphery of the boot 2000 includes a plurality of ribs 2010a-2010h which extend along the length thereof. It is contemplated that the ribs 2010a-2010h reduce the contact area of the boot 2000 with the inner periphery of a cannula (not shown) to reduce the overall surface friction of the boot during insertion into and withdrawal from the cannula.



FIG. 20 shows still another embodiment of the insulating boot 2100 which includes a soft caulk or putty-like material 2110 formed atop or within the boot which is configured to encapsulate the moving parts of the forceps 10. As best shown in FIG. 21, an overmolded section 114′ may be formed over the proximal flange 113 of the jaw members, e.g., jaw member 110, to provide a rest for the insulating boot 500 (or any other version described above).



FIGS. 22A and 22B show yet another embodiment of an insulating boot 2200 which includes a plastic wedge-like material 2210 formed between the boot 2200 and the proximal ends 110′ and 120′ of the jaw members, e.g., jaw member 110 and jaw member 120, respectively. As best illustrated in the cross-section view of FIG. 22B, the plastic wedge-like material forms an upper wedge 2210a and a lower wedge 2210b that are configured to allow a range of motion of the jaw members 110 and 120 while keeping the boot 2200 intact atop the shaft 12 and the moving flanges 113 and 123 of the jaw members 110 and 120, respectively.



FIGS. 23A and 23B show still another envisioned embodiment of an insulating boot 2300 which includes an outer silicone-like shell 2310 which is dimensioned to house a layer of high resistance adhesive material 2320. If high current flowing through the insulating boot 2300 causes a rupture in the boot 2300, the adhesive material 2320 melts and flows through the ruptured portion to reduce the chances of current leakage during activation. FIGS. 24A and 24B show a similar insulative boot 2400 wherein the insulative boot 2400 includes a free flowing material which is designed to flow through the ruptured portion to provide additional insulation from current during activation. More particularly, the boot 2400 includes an internal cavity 2410 defined therein which retains a free-flowing material 2420. The free-flowing material 2420 is configured to disperse from the internal cavity 2410 when ruptured. The free-flowing material 2420 may be a high resistive adhesive, a lubricating material or an insulating material or combinations thereof. The internal cavity 2410 may be annular and disposed on a portion or the boot 2400 or may be longitudinal and disposed along a portion of the boot 2400. The free-flowing material 2420 may be configured to change state between a solid state and a liquid state upon the application of energy (e.g., heat energy) or light (e.g., ultraviolet). The free-flowing material 2420 may be disposed on either the distal and/or proximal ends of the flexible insulating boot 2400.



FIG. 25 shows yet another embodiment of the insulting boot 2500 wherein the distal end of the shaft 12 and the jaw members 110 and 120 are overmolded during manufacturing with a silicone material (or the like) to protect against stray current leakage during activation.



FIGS. 26A, 26B and 27 show other embodiments of an insulating boots 2600 and 2700, respectively, wherein boots 2600 and 2700 include low durometer portions and high durometer portions. The boots 2600 and 2700 may be formed from a two-shot manufacturing process. More particularly, FIGS. 26A and 26B include a boot 2600 with a high durometer portion 2610 having an elongated slot of low durometer material 2620 disposed therein or therealong. The low durometer portion 2620 is dimensioned to encapsulate the moving flanges 113 and 123 of the jaw members 110 and 120, respectively. FIG. 27 shows another embodiment wherein a ring of high durometer material 2710 is disposed at the distal end of the boot 2700 for radial retention of the jaw members 110 and 120. The remainder of the boot 2700 consists of low durometer material 2720.



FIG. 28 shows another embodiment of the present disclosure wherein the insulating boot 2800 may be packaged separately from the forceps 10 and designed to engage the end of the shaft 12 and jaw members 110 and 120 upon insertion though a cannula 2850. More particularly, boot 2800 may be packaged with the forceps 10 (or sold with the cannula 2850) and designed to insure 90 degree insertion of the forceps 10 through the cannula 2850. The boot 2800 in this instance may be made from silicone, plastic or other insulating material.



FIGS. 29A-29D include various embodiments of a boot 2900 having a tapered distal end 2920 and a straight proximal end 2910. More particularly, FIG. 29A shows a tapered bottle-like distal end 2920 which is configured to provide enhanced retentive force at the distal end of the forceps 10 which reduces the chances of the boot 2900 slipping from the boot's 2900 intended position. FIG. 29B shows another version of the tapered boot 2900′ which includes a sharply tapered distal end 2920′ and a straight proximal end 2910′. FIG. 29C shows another boot 2900″ which includes a square-like taper 2920″ at the distal end thereof and a straight proximal end 2910″. FIG. 29D shows yet another version of a tapered boot 2900′″ which includes a square, tapered section 2930′″ disposed between distal and proximal ends, 2920′ and 2910′″, respectively. The outer diameter of the insulating boot 2900 or the inner periphery of the insulating boot 2900 may include the tapered section.



FIG. 30 shows yet another embodiment of the presently disclosed boot 3000 which is configured to be utilized with a jaw member 110 having a proximal overmolded section 114′ similar to the jaw members disclosed with respect to FIG. 21 above. More particularly, jaw member 110 includes proximal overmolded section 114′ having a bump or protrusion 115′ disposed thereon. Bump 115′ is configured to mechanically cooperate with a corresponding portion 3010 of boot 3000 to enhance retention of the boot 3000 atop the jaw member 110.



FIG. 31 shows still another embodiment of an insulating boot 500 which includes a silicone (or similar) ring-like sleeve 3100 which is configured to engage and secure the boot 500 atop the shaft 12. FIG. 32 shows a similar boot 500 configuration wherein a pair of weather strips 3200a and 3200b are positioned to secure the boot 500 at the junction point between the end of shaft 12 and the proximal end of the jaw members 110 and 120.



FIGS. 33A-33B show yet another embodiment of a co-molded boot 3300 having a silicone portion 3305 and proximal and side portions 3310c, 3310a and 3310b made a thermoplastic material (or the like). The thermoplastic materials 3310a-3310c enhance the rigidity and durability of the boot 3300 when engaged atop the jaw members 110 and 120 and the shaft 12. Thermoplastic portions 3310a and 3310b may be dimensioned to receive and/or mate with the proximal flanges 113 and 123 of jaw members 110 and 120, respectively.



FIG. 34 shows yet another embodiment of an insulating boot having a silicone boot 3350 mounted under a plastic shell 3355. A heat shrink tubing (or the like) 3360 is included which overlaps at least a portion of the plastic shell 3355 and silicone boot 3350.



FIGS. 35A and 35B show still another embodiment of an insulating boot 3400 which includes an overmolded thermoplastic clevis 3410 disposed on an inner periphery thereof which is configured to enhance the mechanical engagement of the boot 3400 with the jaw members 110 and 120 and shaft 12. More particularly, the clevis 3410 includes a pair of fingers 3410a and 3410b which project inwardly to mechanically engage the proximal end of jaw members 110 and 120. The proximal end of the boot 3400 fits atop the end of shaft 12 much like the embodiments described above (See FIG. 35B). An outer shell 3402 is disposed atop the overmolded thermoplastic clevis 3410 to enhance the rigidity of the boot 3400. The clevis 3410 includes a channel 3412 defined between the two fingers 3410a and 3410b which facilitates movement of the jaw members 110 and 120.



FIG. 36 shows yet another embodiment of an insulating boot 3500 which is similar to boot 3400 described above with respect to FIGS. 35A and 35B and includes a thermoplastic clevis 3510 having a pair of fingers 3510a and 3510b which project inwardly to mechanically engage the proximal end of jaw members 110 and 120. Boot 3500 also includes outer thermoplastic portions 3520a and 3520b which are configured to further enhance the rigidity of the boot 3500 and act as a so-called “exoskeleton”. A channel 3515 is defined between in the outer exoskeleton to facilitate movement of the jaw members 110 and 120. The two outer portions 3520a and 3520b also include a relief portion 3525 disposed therebetween which allows the boot 3500 to expand during the range of motion of jaw members 110 and 120.



FIG. 37 shows yet another embodiment of an insulating boot 3600 which includes a plurality of thermoplastic rails 3610a-3610d disposed along the outer periphery thereof. The rails 3610a-3610d may be formed during the manufacturing process by overmolding or co-extrusion and are configured to enhance the rigidity of the boot 3600 similar to the embodiment described above with respect to FIG. 19B.



FIGS. 38A-38D show still another embodiment of an insulating boot 3700 which includes a low durometer portion 3725 generally disposed at the proximal end 3720 thereof and a high durometer portion 3730 generally disposed at the distal end 3710 thereof. The high durometer portion 3730 may be configured to mechanically engage the low durometer portion 3725 or may be integrally associated therewith in a co-molding or over-molding process. The inner periphery 3750 of the high durometer portion 3730 is dimensioned to receive the flanges 113 and 123 of jaw members 110 and 120, respectively. The low durometer portion 3725 may be dimensioned to allow the proximal ends 113 and 123 of flanges to flex beyond the outer periphery of the shaft 12 during opening of the jaw members 110 and 120. It is also contemplated that the high durometer portion 3730 (or a combination of the high durometer portion 3730 and the low durometer portion 3725) may act to bias the jaw members 110 and 120 in a closed orientation.



FIGS. 39A-39D show yet another embodiment of an insulating boot 3800 which includes a low durometer portion 3825 and a high durometer portion 3830 generally disposed at the distal end 3810 thereof. The high durometer portion 3830 includes proximally-extending fingers 3820a and 3820b which define upper and lower slots 3840a and 3840b, respectively, dimensioned to receive upper and lower low durometer portions 3825a and 3825b, respectively. The inner periphery 3850 of the high durometer portion 3830 is dimensioned to receive flanges 113 and 123 of jaw members 110 and 120, respectively. It is also contemplated that the high durometer portion 3830 (or a combination of the high durometer portion 3830 and the low durometer portions 3825a and 3825b) may act to bias the jaw members 110 and 120 in a closed orientation.



FIG. 40 shows yet another version of an insulating boot 3900 which includes a pair of hook-like mechanical interfaces 3900a and 3900b which are designed to engage the jaw members 110 and 120 at one end (e.g., the hook ends 3905a and 3905b) and designed to engage the shaft 12 at the opposite ends 3908a and 3908b, respectively. More particularly, the boot 3900 includes a pair of rails or slots 3912a and 3912b defined in an outer periphery thereof which are dimensioned to receive the corresponding hook-like mechanical interfaces 3900a and 3900b therealong. The proximal ends 3908a and 3908b of the hook-like mechanical interfaces 3900a and 3900b are configured to secure about the shaft 12 during an initial manufacturing step and then are held in place via the employment of heat shrink wrapping 12′. The heat shrink wrapping 12′ prevents the hook-like mechanical interfaces 3900a and 3900b from slipping during insertion and removal of the forceps 10 through a cannula.



FIG. 41 shows still another version of an insulating boot 4000 which includes a series of pores 4010a-4010f disposed along the outer periphery thereof. A heat-activated adhesive or lubricant 4030 is included in the pores 4010a-4010f such that when the lubricant 4030 is heated, the lubricant 4030 flows freely over the boot 4000 thereby facilitating insertion and withdrawal of the forceps 10 from a cannula.



FIG. 42 shows still another embodiment of an insulating boot 500 which includes a strip of heat activated adhesive 4100 to secure the boot 500 to the jaw members 110 and 120. The heat activated adhesive 4100 is designed to cure upon the application of heat to prevent unwanted motion between the two jaw members 110 and 120 or between the jaw members 110 and 120 and the shaft 12. FIG. 43 shows similar concept which includes an insulating boot 4200 having a pair of overlapping flanges 4220a and 4220b which extend toward the jaw members 110 and 120 and which cooperate with one or more apertures (not shown) defined in the proximal flanges 113 and 123 of the jaw members 110 and 120 to retain a heat-activated adhesive 4230 therein. Once heated, the adhesive 4230 cures and maintains a strong, low profile bond between the boot 4200 and the jaw members 110 and 120.



FIGS. 44A and 44B show still another embodiment of an insulating boot 4300 which involves a two-step process for deployment atop the jaw members 110 and 120. During an initial manufacturing step the boot 4300 is in the form of an uncured adhesive sleeve 4300 and is fitted atop the proximal ends of the jaw members 110 and 120 and the shaft 12. Once properly positioned, the uncured adhesive sleeve 4300 is then cured using heat or UV light such that the cured boot 4300′ creates a conformal coating atop the jaw members 110 and 120 and acts to secure the boot 4300′ to the jaw members 110 and 120 and shaft 12 and insulate the surrounding tissue from negative electrical and thermal effects.



FIGS. 45A and 45B show still another embodiment of an insulating boot 4400 which also involves a two-step process for deployment atop the jaw members 110 and 120. During an initial manufacturing step the boot 4400 includes a ring of uncured adhesive material 4410 disposed along an inner periphery thereof. The boot 4400 with the uncured adhesive ring 4410 and is fitted atop the proximal ends of the jaw members 110 and 120 and the shaft 12. Once properly positioned, the uncured adhesive ring 4410 is then cured using heat or UV light such that the cured boot 4400′ conforms atop the jaw members 110 and 120 and acts to secure the boot 4400′ to the jaw members 110 and 120 and shaft 12.



FIG. 46 shows still another embodiment of the present disclosure which includes a coating 110′ and 120′ disposed on the exposed portions of the jaw members 110 and 120. The coating 110′ and 120′ may be made from an insulating material or made from a material that increases resistance with heat or current. The tip portion 111 of the jaw members 110 is exposed and does not include the coating material such that electrosurgical energy may be effectively transferred to tissue via the exposed tip portion 111.


As mentioned above, the insulating boot 500 may be from any type of visco-elastic, elastomeric or flexible material that is biocompatible and that is configured to minimally impede movement of the jaw members 110 and 120 from the open to closed positions. The insulating boot 1500 may also be made at least partially from a curable material which facilitates engagement atop the jaw members 110 and 120 and the shaft 12. The presently disclosed insulating boots 500-4400′ described herein above may also be utilized with any of the forceps designs mentioned above for use with both endoscopic surgical procedures and open surgical procedures and both bipolar electrosurgical treatment of tissue (either by vessel sealing as described above or coagulation or cauterization with other similar instruments) and monopolar treatment of tissue.


The aforedescribed insulating boots, e.g., boot 500, unless otherwise noted, are generally configured to mount over the pivot, connecting jaw member 110 with jaw member 120. The insulating boots, e.g., boot 500, is flexible to permit opening and closing of the jaw members 110 and 120 about the pivot.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example and although the general operating components and inter-cooperating relationships among these components have been generally described with respect to a vessel sealing forceps, other instruments may also be utilized that may be configured to include any of the aforedescribed insulating boots to allow a surgeon to safely and selectively treat tissue in both a bipolar and monopolar fashion. Such instruments include, for example, bipolar grasping and coagulating instruments, cauterizing instruments, bipolar scissors, etc.


Furthermore, those skilled in the art recognize that while the insulating boots described herein are generally tubular, the cross-section of the boots may assume substantially any shape such as, but not limited to, an oval, a circle, a square, or a rectangle, and also include irregular shapes necessary to cover at least a portion of the jaw members and the associated elements such as the pivot pins and jaw protrusions, etc.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. An electrosurgical forceps, comprising: a shaft having a pair of jaw members at a distal end thereof, the jaw members being movable about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue;a movable handle that actuates a drive assembly to move the jaw members relative to one another;at least one of the jaw members being adapted to connect to a source of electrical energy such that the at least one jaw member is capable of conducting energy to tissue held between the pair of jaw members; anda removable insulative sheath enclosing: at least one of the jaw members; at least a portion of the pivot; and at least a portion of the distal end of the shaft; the removable insulative sheath including a silicone lube disposed therein configured to remain on at least a portion of the forceps when the insulative sheath is removed therefrom, the silicone lube configured to facilitate insertion of the forceps through a cannula after removal of the insulative sheath.
  • 2. The electrosurgical forceps according to claim 1 wherein the removable insulative sheath encloses both jaw members.
  • 3. The electrosurgical forceps according to claim 1 wherein the removable insulative sheath encloses both jaw members, the pivot and at least a portion of the shaft.
  • 4. The electrosurgical forceps according to claim 1, further including an insulating boot disposed on at least a portion of an exterior surface of at least one jaw member and circumferentially around at least a portion of the pivot.
  • 5. The electrosurgical forceps according to claim 4, wherein the insulating boot is disposed between the insulative sheath and the pivot.
  • 6. A method of facilitating insertion of a forceps through a cannula comprising the steps of: providing a forceps including: a shaft having a pair of jaw members at a distal end thereof, the jaw members being movable about a pivot from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members are closer to one another for grasping tissue;at least one of the jaw members being adapted to connect to a source of electrical energy such that the at least one jaw member is capable of conducting energy to tissue held between the pair of jaw members;a removable insulative sheath enclosing: at least one of the jaw members; at least a portion of the pivot and at least a portion of the distal end of the shaft; the removable insulative sheath including a silicone lube disposed therein configured to remain on at least a portion of the forceps when the insulative sheath is removed therefrom, the silicone lube configured to facilitate insertion of the forceps through a cannula after removal of the removable insulative sheath;removing the removable insulative sheath, at least a portion of the silicone lube remaining on at least one of the at least one jaw member, the pivot and the distal end of the shaft;engaging the forceps for insertion through a cannula; andinserting the forceps through the cannula utilizing the silicone lube to facilitate insertion.
  • 7. The electrosurgical forceps according to claim 6 wherein the step of removing the insulative sheath occurs prior to the step of inserting the forceps through the cannula.
  • 8. The electrosurgical forceps according to claim 6, further including an insulating boot disposed on at least a portion of an exterior surface of at least one jaw member and disposed circumferentially around at least a portion of the pivot.
  • 9. The electrosurgical forceps according to claim 8, wherein the insulating boot is disposed between the insulative sheath and the pivot.
  • 10. The electrosurgical forceps according to claim 8, wherein at least a portion of the silicone lube remains on the insulating boot when the insulating sheath is removed.
CROSS REFERENCE TO RELATED APPLICATION

The present application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/995,866 filed on Sep. 28, 2007, the entire contents of which is incorporated by reference herein.

US Referenced Citations (881)
Number Name Date Kind
371664 Brannan et al. Oct 1887 A
702472 Pignolet Jun 1902 A
728883 Downes May 1903 A
1586645 Bierman Jun 1926 A
1813902 Bovie Jul 1931 A
1822330 Ainslie Sep 1931 A
1852542 Sovatkin Apr 1932 A
2002594 Wappler et al. May 1935 A
2011169 Wappler Aug 1935 A
2031682 Wappler et al. Feb 1936 A
2054149 Wappler Sep 1936 A
2176479 Willis Oct 1939 A
2305156 Grubel Apr 1941 A
2279753 Knopp Apr 1942 A
2327353 Karle Aug 1943 A
2632661 Cristofv Aug 1948 A
2668538 Baker Feb 1954 A
2796065 Kapp Jun 1957 A
3073311 Tibbs et al. Jan 1963 A
3372288 Wigington Mar 1968 A
3459187 Pallotta Aug 1969 A
3643663 Sutter Feb 1972 A
3648001 Anderson et al. Mar 1972 A
3651811 Hildebrandt et al. Mar 1972 A
3678229 Osika Jul 1972 A
3720896 Beierlein Mar 1973 A
3763726 Hildebrand Oct 1973 A
3779918 Ikeda et al. Dec 1973 A
3801766 Morrison, Jr. Apr 1974 A
3862630 Balamuth Jan 1975 A
3863339 Reaney et al. Feb 1975 A
3866610 Kletschka Feb 1975 A
3911766 Fridolph et al. Oct 1975 A
3920021 Hiltebrandt Nov 1975 A
3921641 Hulka Nov 1975 A
3938527 Rioux et al. Feb 1976 A
3952749 Fridolph et al. Apr 1976 A
3970088 Morrison Jul 1976 A
3987795 Morrison Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4016881 Rioux et al. Apr 1977 A
4041952 Morrison, Jr. et al. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4076028 Simmons Feb 1978 A
4080820 Allen Mar 1978 A
4088134 Mazzariello May 1978 A
4112950 Pike Sep 1978 A
4127222 Adams Nov 1978 A
4128099 Bauer Dec 1978 A
4165746 Burgin Aug 1979 A
4187420 Piber Feb 1980 A
4233734 Bies Nov 1980 A
4236470 Stenson Dec 1980 A
4300564 Furihata Nov 1981 A
4311145 Esty et al. Jan 1982 A
D263020 Rau, III Feb 1982 S
4370980 Lottick Feb 1983 A
4375218 DiGeronimo Mar 1983 A
4416276 Newton et al. Nov 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4452246 Bader et al. Jun 1984 A
4470786 Sano et al. Sep 1984 A
4492231 Auth Jan 1985 A
4493320 Treat Jan 1985 A
4503855 Maslanka Mar 1985 A
4506669 Blake, III Mar 1985 A
4509518 McGarry et al. Apr 1985 A
4552143 Lottick Nov 1985 A
4574804 Kurwa Mar 1986 A
4597379 Kihn et al. Jul 1986 A
4600007 Lahodny et al. Jul 1986 A
4624254 McGarry et al. Nov 1986 A
4655215 Pike Apr 1987 A
4655216 Tischer Apr 1987 A
4657016 Garito et al. Apr 1987 A
4662372 Sharkany et al. May 1987 A
4671274 Sorochenko Jun 1987 A
4685459 Koch et al. Aug 1987 A
4733662 DeSatnick et al. Mar 1988 A
D295893 Sharkany et al. May 1988 S
D295894 Sharkany et al. May 1988 S
4754892 Retief Jul 1988 A
4763669 Jaeger Aug 1988 A
4827929 Hodge May 1989 A
4829313 Taggart May 1989 A
4846171 Kauphusman et al. Jul 1989 A
4887612 Esser et al. Dec 1989 A
4938761 Ensslin Jul 1990 A
4947009 Osika et al. Aug 1990 A
4985030 Melzer et al. Jan 1991 A
5007908 Rydell Apr 1991 A
5026370 Lottick Jun 1991 A
5026371 Rydell et al. Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047046 Bodoia Sep 1991 A
5078716 Doll Jan 1992 A
5084057 Green et al. Jan 1992 A
5085659 Rydell Feb 1992 A
5099840 Goble et al. Mar 1992 A
5100430 Avellanet et al. Mar 1992 A
5108392 Spingler Apr 1992 A
5112343 Thornton May 1992 A
5116332 Lottick May 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5151978 Bronikowski et al. Sep 1992 A
5176695 Dulebohn Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5197964 Parins Mar 1993 A
5209747 Knoepfler May 1993 A
5211655 Hasson May 1993 A
5215101 Jacobs et al. Jun 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217458 Parins Jun 1993 A
5217460 Knoepfler Jun 1993 A
5219354 Choudhury et al. Jun 1993 A
5244462 Delahuerga et al. Sep 1993 A
5250047 Rydell Oct 1993 A
5250063 Abidin et al. Oct 1993 A
5258001 Corman Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261918 Phillips et al. Nov 1993 A
5275615 Rose Jan 1994 A
5277201 Stern Jan 1994 A
5282799 Rydell Feb 1994 A
5282800 Foshee et al. Feb 1994 A
5282826 Quadri Feb 1994 A
5290286 Parins Mar 1994 A
5300082 Sharpe et al. Apr 1994 A
5304203 El-Mallawany et al. Apr 1994 A
5308353 Beurrier May 1994 A
5308357 Lichtman May 1994 A
5313027 Inoue et al. May 1994 A
5314445 Degwitz et al. May 1994 A
5318589 Lichtman Jun 1994 A
5324289 Eggers Jun 1994 A
D348930 Olson Jul 1994 S
5326806 Yokoshima et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5334166 Palestrant Aug 1994 A
5334183 Wuchinich Aug 1994 A
5334215 Chen Aug 1994 A
5336220 Ryan et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342359 Rydell Aug 1994 A
5342381 Tidemand Aug 1994 A
5342393 Stack Aug 1994 A
5344424 Roberts et al. Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352222 Rydell Oct 1994 A
5354271 Voda Oct 1994 A
5356408 Rydell Oct 1994 A
5366477 LeMarie, III et al. Nov 1994 A
5368600 Failla et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5376089 Smith Dec 1994 A
5383875 Bays et al. Jan 1995 A
5383897 Wholey Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389103 Melzer et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5391183 Janzen et al. Feb 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5409763 Serizawa et al. Apr 1995 A
5411519 Tovey et al. May 1995 A
5411520 Nash et al. May 1995 A
5413571 Katsaros et al. May 1995 A
5415656 Tihon et al. May 1995 A
5415657 Taymor-Luria May 1995 A
5422567 Matsunaga Jun 1995 A
5423810 Goble et al. Jun 1995 A
5425690 Chang Jun 1995 A
5425739 Jessen Jun 1995 A
5429616 Schaffer Jul 1995 A
5431672 Cote et al. Jul 1995 A
5431674 Basile et al. Jul 1995 A
5437292 Kipshidze et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439478 Palmer Aug 1995 A
5441517 Kensey et al. Aug 1995 A
5443463 Stern et al. Aug 1995 A
5443464 Russell et al. Aug 1995 A
5443480 Jacobs et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445658 Durrfeld et al. Aug 1995 A
5449480 Kuriya et al. Sep 1995 A
5451224 Goble et al. Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5461765 Linden et al. Oct 1995 A
5462546 Rydell Oct 1995 A
5472442 Klicek Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5480406 Nolan et al. Jan 1996 A
5480409 Riza Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499997 Sharpe et al. Mar 1996 A
5509922 Aranyi et al. Apr 1996 A
5512721 Young et al. Apr 1996 A
5514134 Rydell et al. May 1996 A
5527313 Scott et al. Jun 1996 A
5528833 Sakuma Jun 1996 A
5529067 Larsen et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5536251 Evard et al. Jul 1996 A
5540684 Hassler, Jr. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5540715 Katsaros et al. Jul 1996 A
5542945 Fritzsch Aug 1996 A
5558671 Yates Sep 1996 A
5558672 Edwards et al. Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5562699 Heimberger et al. Oct 1996 A
5562720 Stern et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569241 Edwardds Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5573535 Viklund Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575805 Li Nov 1996 A
5578052 Koros et al. Nov 1996 A
5579781 Cooke Dec 1996 A
5582611 Tsukagoshi et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5585896 Yamazaki et al. Dec 1996 A
5590570 LeMaire, III et al. Jan 1997 A
5591181 Stone et al. Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5601641 Stephens Feb 1997 A
5603711 Parins et al. Feb 1997 A
5603723 Aranyi et al. Feb 1997 A
5611798 Eggers Mar 1997 A
5611808 Hossain et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620453 Nallakrishnan Apr 1997 A
5620459 Lichtman Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626609 Zvenyatsky et al. May 1997 A
5630833 Katsaros et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5638003 Hall Jun 1997 A
5643294 Tovey et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5655650 Naitou Aug 1997 A
5658281 Heard Aug 1997 A
D384413 Zlock et al. Sep 1997 S
5662667 Knodel Sep 1997 A
5665100 Yoon Sep 1997 A
5667526 Levin Sep 1997 A
5674220 Fox et al. Oct 1997 A
5674229 Tovey et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690652 Wurster et al. Nov 1997 A
5690653 Richardson et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5693920 Maeda Dec 1997 A
5695522 LeMaire, III et al. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702390 Austin et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5716366 Yates Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722421 Francese et al. Mar 1998 A
5725536 Oberlin et al. Mar 1998 A
5727428 LeMaire, III et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5759188 Yoon Jun 1998 A
5766130 Selmonosky Jun 1998 A
5766166 Hooven Jun 1998 A
5766170 Eggers Jun 1998 A
5766196 Griffiths Jun 1998 A
5769849 Eggers Jun 1998 A
5772655 Bauer et al. Jun 1998 A
5772670 Brosa Jun 1998 A
5776128 Eggers Jul 1998 A
5776130 Buysse et al. Jul 1998 A
5779646 Koblish et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
H1745 Paraschac Aug 1998 H
5792137 Carr et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5792177 Kaseda Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797938 Paraschac et al. Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5800449 Wales Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810808 Eggers Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810877 Roth et al. Sep 1998 A
5814043 Shapeton Sep 1998 A
5814054 Kortenbach et al. Sep 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820630 Lind Oct 1998 A
5824978 Karasik et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827279 Hughett et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5827548 Lavallee et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5843080 Fleenor et al. Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5859527 Cook Jan 1999 A
5860976 Billings et al. Jan 1999 A
5876401 Schulze et al. Mar 1999 A
5876412 Piraka Mar 1999 A
5882567 Cavallaro et al. Mar 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893863 Yoon Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5893877 Gampp, Jr. et al. Apr 1999 A
5897563 Yoon et al. Apr 1999 A
5902301 Olig May 1999 A
5906630 Anderhub et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908432 Pan Jun 1999 A
5911719 Eggers Jun 1999 A
5913874 Berns et al. Jun 1999 A
5921916 Aeikens et al. Jul 1999 A
5921984 Sutcu et al. Jul 1999 A
5925043 Kumar et al. Jul 1999 A
5928136 Barry Jul 1999 A
5935126 Riza Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944718 Dafforn et al. Aug 1999 A
5951546 Lorentzen Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5954733 Yoon Sep 1999 A
5957923 Hahnen et al. Sep 1999 A
5957937 Yoon Sep 1999 A
5960544 Beyers Oct 1999 A
5961514 Long et al. Oct 1999 A
5964758 Dresden Oct 1999 A
5976132 Morris Nov 1999 A
5984932 Yoon Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5989277 LeMaire, III et al. Nov 1999 A
5993466 Yoon Nov 1999 A
5993467 Yoon Nov 1999 A
5997565 Inoue Dec 1999 A
6004332 Yoon et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010516 Hulka et al. Jan 2000 A
6017358 Yoon et al. Jan 2000 A
6021693 Feng-Sing Feb 2000 A
6024741 Williamson et al. Feb 2000 A
6024743 Edwards Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027522 Palmer Feb 2000 A
6030384 Nezhat Feb 2000 A
6033399 Gines Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6041679 Slater et al. Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053914 Eggers et al. Apr 2000 A
6053933 Balazs et al. Apr 2000 A
D424694 Tetzlaff et al. May 2000 S
D425201 Tetzlaff et al. May 2000 S
6059782 Novak et al. May 2000 A
6066139 Ryan et al. May 2000 A
6074386 Goble et al. Jun 2000 A
6077287 Taylor et al. Jun 2000 A
6080180 Yoon et al. Jun 2000 A
RE36795 Rydell Jul 2000 E
6083223 Baker Jul 2000 A
6086586 Hooven Jul 2000 A
6086601 Yoon Jul 2000 A
6090107 Borgmeier et al. Jul 2000 A
6096037 Mulier et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6106542 Toybin et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113598 Baker Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6123701 Nezhat Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126658 Baker Oct 2000 A
6126665 Yoon Oct 2000 A
6139563 Cosgrove, III et al. Oct 2000 A
6143005 Yoon et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6162220 Nezhat Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6178628 Clemens et al. Jan 2001 B1
6179834 Buysse et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183467 Shapeton et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6190400 VanDeMoer et al. Feb 2001 B1
6193718 Kortenbach et al. Feb 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217602 Redmon Apr 2001 B1
6217615 Sioshansi et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6224593 Ryan et al. May 2001 B1
6224614 Yoon May 2001 B1
6228080 Gines May 2001 B1
6228083 Lands et al. May 2001 B1
6248124 Pedros et al. Jun 2001 B1
6248944 Ito Jun 2001 B1
6261307 Yoon et al. Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6280458 Boche et al. Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
D449886 Tetzlaff et al. Oct 2001 S
6298550 Kirwan Oct 2001 B1
6302424 Gisinger et al. Oct 2001 B1
6319262 Bates et al. Nov 2001 B1
6319451 Brune Nov 2001 B1
6322561 Eggers et al. Nov 2001 B1
6322580 Kanner Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6345532 Coudray et al. Feb 2002 B1
6350264 Hooven Feb 2002 B1
6352536 Buysse et al. Mar 2002 B1
6358249 Chen et al. Mar 2002 B1
6358259 Swain et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
D457959 Tetzlaff et al. May 2002 S
6387094 Eitenmuller May 2002 B1
6391035 Appleby et al. May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6409728 Ehr et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6419675 Gallo, Sr. Jul 2002 B1
6425896 Baltschun et al. Jul 2002 B1
6432112 Brock et al. Aug 2002 B2
6440144 Bacher Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6443970 Schulze et al. Sep 2002 B1
6451018 Lands et al. Sep 2002 B1
6458125 Cosmescu Oct 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461352 Morgan et al. Oct 2002 B2
6461368 Fogarty et al. Oct 2002 B2
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464704 Schmaltz et al. Oct 2002 B2
6485489 Teirstein et al. Nov 2002 B2
6494888 Laufer et al. Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6514215 Ouchi Feb 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517539 Smith et al. Feb 2003 B1
6527771 Weadock et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6545239 Spedale et al. Apr 2003 B2
6558385 McClurken et al. May 2003 B1
6562037 Paton et al. May 2003 B2
6569105 Kortenbach et al. May 2003 B1
6582450 Ouchi Jun 2003 B2
6585735 Lands et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6605790 Yoshida Aug 2003 B2
6616658 Ineson Sep 2003 B2
6616661 Wellman et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6620184 De Laforcade et al. Sep 2003 B2
6626901 Treat et al. Sep 2003 B1
6638287 Danitz et al. Oct 2003 B2
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6656175 Francischelli et al. Dec 2003 B2
6656177 Truckai et al. Dec 2003 B2
6660072 Chatterjee Dec 2003 B2
6663639 Laufer et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6669696 Bacher et al. Dec 2003 B2
6673092 Bacher Jan 2004 B1
6676660 Wampler et al. Jan 2004 B2
6676676 Danitz et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685724 Haluck Feb 2004 B1
6689131 McClurken Feb 2004 B2
6692445 Roberts et al. Feb 2004 B2
6693246 Rudolph et al. Feb 2004 B1
6695840 Schulze Feb 2004 B2
6702810 McClurken et al. Mar 2004 B2
6723092 Brown et al. Apr 2004 B2
6726068 Miller Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6726694 Blatter et al. Apr 2004 B2
6733498 Paton et al. May 2004 B2
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6755843 Chung et al. Jun 2004 B2
6756553 Yamaguchi et al. Jun 2004 B1
6757977 Dambal et al. Jul 2004 B2
D493888 Reschke Aug 2004 S
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773432 Clayman et al. Aug 2004 B1
6773434 Ciarrocca Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6786905 Swanson et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800825 Sasaki et al. Oct 2004 B1
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
D499181 Dycus et al. Nov 2004 S
6818000 Muller et al. Nov 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835200 Laufer et al. Dec 2004 B2
6857357 Fujii Feb 2005 B2
6860880 Treat et al. Mar 2005 B2
6887240 Lands et al. May 2005 B1
6889116 Jinno May 2005 B2
6914201 Van Vooren et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932816 Phan Aug 2005 B2
6934134 Mori et al. Aug 2005 B2
6936061 Sasaki Aug 2005 B2
D509297 Wells Sep 2005 S
6942662 Goble et al. Sep 2005 B2
6943311 Miyako Sep 2005 B2
6953430 Kodooka Oct 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
6960210 Lands et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966907 Goble Nov 2005 B2
6972017 Smith et al. Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979786 Aukland et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6987244 Bauer Jan 2006 B2
6994707 Ellman et al. Feb 2006 B2
6994709 Iida Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7001381 Harano et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7033354 Keppel Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041102 Truckai et al. May 2006 B2
7044948 Keppel May 2006 B2
7052489 Griego et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7063715 Onuki et al. Jun 2006 B2
D525361 Hushka Jul 2006 S
7070597 Truckai et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090689 Nagase et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7103947 Sartor et al. Sep 2006 B2
7107124 Green Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7115123 Knowlton et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135020 Lawes et al. Nov 2006 B2
D533942 Kerr et al. Dec 2006 S
7145757 Shea et al. Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7153314 Laufer et al. Dec 2006 B2
D535027 James et al. Jan 2007 S
7156842 Sartor et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179255 Lettice et al. Feb 2007 B2
7179258 Buysse et al. Feb 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7207990 Lands et al. Apr 2007 B2
D541938 Kerr et al May 2007 S
7223264 Daniel et al. May 2007 B2
7223265 Keppel May 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7241288 Braun Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7244257 Podjahsky et al. Jul 2007 B2
7246734 Shelto, IV Jul 2007 B2
7248944 Green Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7270660 Ryan Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7276068 Johnson et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7314471 Holman Jan 2008 B2
7318823 Sharps et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
D564662 Moses et al. Mar 2008 S
7338526 Steinberg Mar 2008 B2
7342754 Fitzgerald et al. Mar 2008 B2
7344268 Jhigamian Mar 2008 B2
D567943 Moses et al. Apr 2008 S
7367976 Lawes et al. May 2008 B2
7377920 Buysse et al. May 2008 B2
7384420 Dycus et al. Jun 2008 B2
7384421 Hushka Jun 2008 B2
7396336 Orszulak et al. Jul 2008 B2
D575395 Hushka Aug 2008 S
D575401 Hixson et al. Aug 2008 S
7435249 Buysse et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7458972 Keppel Dec 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld et al. Jan 2009 B2
7487780 Hooven Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7500975 Cunningham et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513898 Johnson et al. Apr 2009 B2
7540872 Schechter et al. Jun 2009 B2
7549995 Schultz Jun 2009 B2
7553312 Tetzlaff et al. Jun 2009 B2
20020013583 Camran et al. Jan 2002 A1
20020049442 Roberts et al. Apr 2002 A1
20020099372 Schulze et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020111624 Witt et al. Aug 2002 A1
20020188294 Couture et al. Dec 2002 A1
20030014052 Buysse et al. Jan 2003 A1
20030014053 Nguyen et al. Jan 2003 A1
20030018331 Dycus et al. Jan 2003 A1
20030018332 Schmaltz et al. Jan 2003 A1
20030032956 Lands et al. Feb 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069571 Treat et al. Apr 2003 A1
20030078578 Truckai et al. Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030139742 Wampler et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030181910 Dycus et al. Sep 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220637 Truckai et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20030236325 Bonora Dec 2003 A1
20030236518 Marchitto et al. Dec 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040049185 Latterell et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040073238 Makower Apr 2004 A1
20040073256 Marchitto et al. Apr 2004 A1
20040078035 Kanehira et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040115296 Duffin Jun 2004 A1
20040116924 Dycus et al. Jun 2004 A1
20040116979 Truckai et al. Jun 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040148035 Barrett et al. Jul 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040193153 Sarter et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040210282 Flock et al. Oct 2004 A1
20040224590 Rawa et al. Nov 2004 A1
20040230189 Keppel Nov 2004 A1
20040236326 Schulze et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040247849 Truckai Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260281 Baxter, III et al. Dec 2004 A1
20050004564 Wham et al. Jan 2005 A1
20050004569 Witt et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050059934 Wenchell et al. Mar 2005 A1
20050096645 Wellman et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050113818 Sartor et al. May 2005 A1
20050113819 Wham et al. May 2005 A1
20050113826 Johnson et al. May 2005 A1
20050149017 Dycus Jul 2005 A1
20050149151 Orszulak et al. Jul 2005 A1
20050154387 Moses et al. Jul 2005 A1
20050187547 Sugi Aug 2005 A1
20050197659 Bahney Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20060052778 Chapman et al. Mar 2006 A1
20060052779 Hammill Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060074417 Cunningham et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060079891 Arts et al. Apr 2006 A1
20060079933 Hushka et al. Apr 2006 A1
20060084973 Hushka Apr 2006 A1
20060089670 Hushka Apr 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060129146 Dycus et al. Jun 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060167452 Moses et al. Jul 2006 A1
20060173452 Buysse et al. Aug 2006 A1
20060189981 Dycus et al. Aug 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217709 Couture et al. Sep 2006 A1
20060229666 Suzuki et al. Oct 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060259036 Tetzlaff et al. Nov 2006 A1
20060264922 Sartor et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060283093 Petrovic et al. Dec 2006 A1
20060287641 Perlin Dec 2006 A1
20070016182 Lipson et al. Jan 2007 A1
20070016187 Weinberg et al. Jan 2007 A1
20070027447 Theroux et al. Feb 2007 A1
20070043352 Garrison et al. Feb 2007 A1
20070043353 Dycus et al. Feb 2007 A1
20070060919 Isaacson et al. Mar 2007 A1
20070062017 Dycus et al. Mar 2007 A1
20070074807 Guerra Apr 2007 A1
20070078456 Dumbauld et al. Apr 2007 A1
20070078458 Dumbauld et al. Apr 2007 A1
20070078459 Johnson et al. Apr 2007 A1
20070088356 Moses et al. Apr 2007 A1
20070106292 Kaplan et al. May 2007 A1
20070106295 Garrison et al. May 2007 A1
20070106297 Dumbauld et al. May 2007 A1
20070118111 Weinberg May 2007 A1
20070118115 Artale et al. May 2007 A1
20070142833 Dycus et al. Jun 2007 A1
20070142834 Dumbauld Jun 2007 A1
20070156139 Schechter et al. Jul 2007 A1
20070156140 Baily Jul 2007 A1
20070173811 Couture et al. Jul 2007 A1
20070173814 Hixson et al. Jul 2007 A1
20070179499 Garrison Aug 2007 A1
20070198011 Sugita Aug 2007 A1
20070213712 Buysse et al. Sep 2007 A1
20070255279 Buysse et al. Nov 2007 A1
20070260235 Podhajsky Nov 2007 A1
20070260238 Guerra Nov 2007 A1
20070260241 Dalla Betta et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20080004616 Patrick Jan 2008 A1
20080009860 Odom Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080021450 Couture Jan 2008 A1
20080033428 Artale et al. Feb 2008 A1
20080039835 Johnson et al. Feb 2008 A1
20080039836 Odom et al. Feb 2008 A1
20080045947 Johnson et al. Feb 2008 A1
20080058802 Couture et al. Mar 2008 A1
20080082100 Orton et al. Apr 2008 A1
20080091189 Carlton Apr 2008 A1
20080114356 Johnson et al. May 2008 A1
20080167651 Tetzlaff et al. Jul 2008 A1
20080195093 Couture et al. Aug 2008 A1
20080215051 Buysse et al. Sep 2008 A1
20080243120 Lawes et al. Oct 2008 A1
20080249527 Couture Oct 2008 A1
20080312653 Arts et al. Dec 2008 A1
20080319442 Unger et al. Dec 2008 A1
20090012520 Hixson et al. Jan 2009 A1
20090018535 Schechter et al. Jan 2009 A1
20090024126 Artale et al. Jan 2009 A1
20090043304 Tetzlaff et al. Feb 2009 A1
20090048596 Shields et al. Feb 2009 A1
20090062794 Buysse et al. Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090082767 Unger et al. Mar 2009 A1
20090082769 Unger et al. Mar 2009 A1
20090088738 Guerra et al. Apr 2009 A1
20090088739 Hushka et al. Apr 2009 A1
20090088740 Guerra et al. Apr 2009 A1
20090088741 Hushka et al. Apr 2009 A1
20090088744 Townsend Apr 2009 A1
20090088745 Hushka et al. Apr 2009 A1
20090088746 Hushka et al. Apr 2009 A1
20090088747 Hushka et al. Apr 2009 A1
20090088748 Guerra et al. Apr 2009 A1
20090088749 Hushka et al. Apr 2009 A1
20090088750 Hushka et al. Apr 2009 A1
20090112206 Dumbauld et al. Apr 2009 A1
20090131934 Odom et al. May 2009 A1
20090149853 Shields et al. Jun 2009 A1
20090149854 Cunningham et al. Jun 2009 A1
20090171350 Dycus et al. Jul 2009 A1
20090171353 Johnson et al. Jul 2009 A1
20090182327 Unger Jul 2009 A1
20090187188 Guerra et al. Jul 2009 A1
Foreign Referenced Citations (154)
Number Date Country
2104423 Feb 1994 CA
2415263 Oct 1975 DE
2514501 Oct 1976 DE
2627679 Jan 1977 DE
3612646 Apr 1987 DE
8712328 Mar 1988 DE
4303882 Aug 1994 DE
4403252 Aug 1995 DE
19515914 Jul 1996 DE
29616210 Jan 1997 DE
19608716 Apr 1997 DE
19751106 May 1998 DE
19751108 May 1999 DE
19738457 Jan 2009 DE
0364216 Apr 1990 EP
0467501 Jan 1992 EP
0518230 Dec 1992 EP
0541930 May 1993 EP
0572131 Dec 1993 EP
0584787 Mar 1994 EP
0589453 Mar 1994 EP
0589555 Mar 1994 EP
0623316 Nov 1994 EP
0624348 Nov 1994 EP
0650701 May 1995 EP
0694290 Mar 1996 EP
0717966 Jun 1996 EP
0754437 Mar 1997 EP
0517243 Sep 1997 EP
0853922 Jul 1998 EP
0875209 Nov 1998 EP
0878169 Nov 1998 EP
0887046 Jan 1999 EP
0923907 Jun 1999 EP
0986990 Mar 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
1025807 Oct 2000 EP
1034746 Oct 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1082944 Mar 2001 EP
1159926 Dec 2001 EP
1177771 Feb 2002 EP
1301135 Apr 2003 EP
1330991 Jul 2003 EP
1486177 Jun 2004 EP
1472984 Nov 2004 EP
0774232 Jan 2005 EP
1527747 May 2005 EP
1530952 May 2005 EP
1532932 May 2005 EP
1535581 Jun 2005 EP
1609430 Dec 2005 EP
1632192 Mar 2006 EP
1642543 Apr 2006 EP
1645238 Apr 2006 EP
1645240 Apr 2006 EP
1649821 Apr 2006 EP
1707143 Oct 2006 EP
1769765 Apr 2007 EP
1769766 Apr 2007 EP
1929970 Jun 2008 EP
1683496 Dec 2008 EP
623316 May 1949 GB
1490585 Nov 1977 GB
2214430 Jun 1989 GB
2213416 Aug 1989 GB
61-501068 Sep 1984 JP
65-502328 Mar 1992 JP
5-5106 Jan 1993 JP
5-40112 Feb 1993 JP
06343644 Dec 1994 JP
07265328 Oct 1995 JP
08056955 Mar 1996 JP
08252263 Oct 1996 JP
09010223 Jan 1997 JP
11244298 Sep 1999 JP
2000-342599 Dec 2000 JP
2000-350732 Dec 2000 JP
2001-008944 Jan 2001 JP
2001-029356 Feb 2001 JP
2001-128990 May 2001 JP
401367 Nov 1974 SU
WO 8900757 Jan 1989 WO
WO 9204873 Apr 1992 WO
WO 9206642 Apr 1992 WO
WO 9321845 Nov 1993 WO
WO 9408524 Apr 1994 WO
WO 9420025 Sep 1994 WO
WO 9502369 Jan 1995 WO
WO 9507662 Mar 1995 WO
WO 9515124 Jun 1995 WO
WO 9605776 Feb 1996 WO
WO 9622056 Jul 1996 WO
WO 9613218 Sep 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9710764 Mar 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9827880 Jul 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912488 Mar 1999 WO
WO 9923933 May 1999 WO
WO 9940857 Aug 1999 WO
WO 9940861 Aug 1999 WO
WO 9951158 Oct 1999 WO
WO 9966850 Dec 1999 WO
WO 0024330 May 2000 WO
WO 0024331 May 2000 WO
WO 0036986 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO 0047124 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0117448 Mar 2001 WO
WO 0154604 Aug 2001 WO
WO 0207627 Jan 2002 WO
WO 02067798 Sep 2002 WO
WO 02080783 Oct 2002 WO
WO 02080784 Oct 2002 WO
WO 02080785 Oct 2002 WO
WO 02080786 Oct 2002 WO
WO 02080793 Oct 2002 WO
WO 02080794 Oct 2002 WO
WO 02080795 Oct 2002 WO
WO 02080796 Oct 2002 WO
WO 02080797 Oct 2002 WO
WO 02080798 Oct 2002 WO
WO 02080799 Oct 2002 WO
WO 02081170 Oct 2002 WO
WO 03061500 Jul 2003 WO
WO 03090630 Nov 2003 WO
WO 03101311 Dec 2003 WO
WO 2004032776 Apr 2004 WO
WO 2004032777 Apr 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004073488 Sep 2004 WO
WO 2004073490 Sep 2004 WO
WO 2004073753 Sep 2004 WO
WO 2004082495 Sep 2004 WO
WO 2004098383 Nov 2004 WO
WO 2004103156 Dec 2004 WO
WO 2005004734 Jan 2005 WO
WO 2005004735 Jan 2005 WO
WO 2005110264 Nov 2005 WO
WO 2008045348 Apr 2008 WO
WO 2008045350 Apr 2008 WO
Related Publications (1)
Number Date Country
20090088747 A1 Apr 2009 US
Provisional Applications (1)
Number Date Country
60995866 Sep 2007 US