This application is the U.S. national phase of PCT/EP2009/057331 filed Jun. 15, 2009, which claims priority of European Patent Application No. 08158386.6 filed Jun. 17, 2008.
The present invention relates to a building system for an external building structure, e.g. a wall or a roof, or an internal building structure, such as a partitioning wall or a ceiling structure.
In WO 00/26483 a method and a profile for connecting building blocks is described resulting in a wall in a building system. According to this method, two construction blocks are joined along an edge face of each block abutting each other by a profile having a web and two flanges on each side with a perpendicularly extending flap at the distal ends of these two flanges. These flaps are inserted into a groove in the construction blocks whereby the blocks are held together.
This method is advantageous since prefabricated construction blocks may be provided off site and transported to the building site together with other materials and may be assembled on the building site. However, if the rectangular frame is subjected to a twisting force, the gripping flanges may slide out of the slits in the insulation making the entire building system unstable.
By the present invention it is realised that a building structure may be provided utilising this connecting method for both internal as well as external building structures.
Accordingly, there is provided an insulating building system for an external building structure, such as a wall or a roof, or an internal building structure, such as a wall or a ceiling or floor structure, said system comprising an assembly having a first side and a second side opposite of said first side, wherein said building assembly comprises at least one frame profile, such as two frame profiles arranged opposite each other peripherally on the building structure, such as a top and/or a bottom profile; a plurality of joining profiles between and/or extending said at least one frame profile, said joining profiles having a first and second joining profile side surfaces which are abutted by the first and second contact sides, respectively, of adjacent insulating panels on each side of said joining profiles, wherein the opposite profile contact sides of the insulation panels are provided with a shape matching the first and second profile side surfaces, respectively, such that the insulation panels are retained between two profiles.
In one embodiment of the insulating building system, the total thickness of the insulation panels is larger than the height of the joining profiles. The total thickness of the insulation panels may be the thickness of a single insulation panel or, when double or multiple layers of insulation panels are provided, the sum of the thicknesses of the multiple provided insulation panels. Preferably, the height of the joining profiles is measured in a direction which is parallel to the direction in which the thickness of the insulation panels is measured and preferably the height of the joining profiles is measured as the distance from the outside of the first flange portion of the joining profile to the outside of the second flange portion of the joining profile in a direction parallel to the central body portion of the joining profile.
In a second embodiment of the insulating building system, a plurality of insulation panels is provided between two adjacent joining profiles, said insulation panels having a width corresponding to the axial distance between said two adjacent joining profiles. Further, in another embodiment, at least one insulation panel is provided between two adjacent joining profiles, said insulation panel having a width corresponding to the axial distance between said two adjacent joining profiles and a length corresponding to the length of said joining profiles.
The joining profiles may be made of sheet metal, such as galvanised steel, preferably with a thickness of 0.8-2 mm. The sheet metal may be bent or otherwise formed into the predetermined shape. Hereby the thermal conductivity of the joining profiles is kept low. The thermal conductivity may be further reduced by providing holes in the body portion of the profile, which is located between two insulation panels.
More preferably the sheet metal of the joining profiles and/or the peripheral frame profiles may have a thickness of 0.5-2 mm and yet more preferably 0.7-1.5 mm, more preferably 0.75 mm, in particular 0.6 mm, 0.8 mm, 1 mm or 1.2 mm.
In one embodiment of the invention, the profile abutment portions of the contact sides of the insulation panels are adapted to contact a central body portion of the generally I- or H-shaped joining profile.
According to an embodiment of the invention, the joining profiles are made of wood. Hereby, the thermal conductivity is reduced due to the low thermal conductivity of the material. In another embodiment of the invention, the joining profiles are made of plastic, preferably a reinforced plastic material.
In a preferred embodiment, the joining profiles are parallelly mounted so as to be spaced apart by a distance ranging from 400 mm to 1800 mm, preferably 500-1500 mm, more preferably 900-1200 mm. Hereby, the thermal conductivity of the building structure is significantly reduced. It is found possible to provide this extra wide distance between column profiles in a wall structure (which is usually approx. 600 mm) since the insulation provides for a self-supporting wall structure. If extra load bearing strength is need, it is of course realised that joining profiles may be parallelly mounted so as to be spaced apart by a distance of 400 to 800 mm. This could be advantageous for instance in relation to floor or roof constructions. By the invention it is also realised that the usual smaller distance between the joining profiles, e.g. between 400-700 mm, more preferably 450-600 mm, could be retained and instead thinner joining profiles are provided thereby also reducing the thermal conductivity. This becomes advantageous since the thin joining profiles are supported by the insulation panels.
Preferably, a first cover structure is provided on the first side of the assembly, and a second cover structure on said second side thereof.
In one embodiment, the first cover structure is a sheet cover, such as a plywood or gypsum sheet cover structure. In another embodiment, the second cover structure may be a climate shield cover, such as an insulated outer wall system. Hereby, a low energy solution having high thermal insulation properties is provided when using the system according to the invention for an external building structure.
In another embodiment, the system comprises at least one insulation panel for fitting between joining profiles, such as I- or H-profiles, in a framework of an insulating building system for an external building structure, such as a wall or a roof, or an internal building structure, such as a wall or a ceiling or floor structure, said panel comprising substantially parallel first and second main surfaces with substantially parallel, oppositely situated first and second joining profile contact sides and substantially parallel, oppositely situated third and fourth sides between said main surfaces, wherein said first and second joining profile contact sides are provided with a longitudinal slit substantially parallel to the first main surface in a predetermined distance therefrom so that said first and second joining profile contact sides are provided with a joining profile abutment portion and a joining profile covering portion.
In one embodiment of the insulation panel, the profile covering portion extends beyond the abutment portion of at least one of the side edges of the insulation panel.
The insulation panel may be used for a self-supporting system for an internal or external wall, floor, ceiling or roof in a building structure. In a vertically arranged building structure according to the invention, it is found that by providing the preformed insulation panels between the joining profiles, the joining profiles are prevented from buckling due to the compression load, since the insulation panels are not only retained at the first set of opposite sides abutting the adjacent joining profiles but are also retained by frame profiles at the other peripheral sides. By a system according to the invention, the form stability in the insulation panel, such as mineral fibrous insulation material, is utilised to prevent displacement in the building structure.
By a system according to the invention, it is realized that a fast installation time on the building site may be achieved. Moreover, it is a cost-effective and simple solution with a high degree of flexibility, as the system according to the invention may be used for different building applications.
The insulation panels are preferably made of a mineral fibre wool material with a density between 30-150 kg/m3, preferably 50-125 kg/m3 and most preferably 60-100 kg/m3. Mineral fibre wool, such as stone wool fibre panels, is advantageous since a non-combustible building system is thereby provided. However, it is realised that other materials could be used, such as polystyrene foam or the like.
By the present invention, it is found that the insulation panels may have a total thickness ranging from 75 mm to 500 mm. Hereby also modern insulation requirements for domestic housings can be met by a building system according to the invention. In one embodiment, each insulation panel consists of one insulation slab. However, the invention may in one embodiment be used with an arrangement of double or multiple layers of insulation slabs, e.g. each insulation panel may comprise two or more insulation slabs provided in a stacked and/or layered configuration, whereby the total thickness of the insulation panel becomes roughly the sum of the thicknesses of the provided insulation slabs, which is suitable in particular for large thicknesses of insulation. Further, for large thicknesses of insulation, the profile may comprise fixing means, like claws or clamps, that may be bent out from the body portion of the profile to secure the different insulation layers.
In one embodiment of the invention, the insulation panels may have a dual density structure so that the density of the insulation panel between the profile covering portions of the two contact sides is higher than the density of the insulation panel between the profile abutment portions of the two contact sides. Further, an insulation panel may have a compression elasticity modulus of at least 500 kPa, preferably when measured parallel to the width of an insulation panel, where the width of an insulation panel typically is roughly equal to the distance between joining profiles.
The compression elasticity modulus, E, is preferably calculated according to the European Standard EN 826: 1996, which concerns thermal insulating products for building applications. According to the standard, section 8.3, the compression elasticity modulus, E, is calculated in kPa using the formula E=sigma*(d0/Xe) with sigma=(10^3)*(Fe/A0) where Fe is the force at the end of the conventional elastic zone (distinct straight portion of the force-displacement curve), in newtons; Xe is the displacement at Fe in millimeters; A0 is the initial cross-sectional area of the specimen, in square millimeters, and d0 is the initial thickness (as measured) of the specimen, in millimeters.
In one embodiment of the insulation panels, at least the profile abutment portions of the contact sides are provided with an adhesive layer for adhering to the profile. In one embodiment, the provided adhesive layer comprises gluing. Providing an adhesive layer may yield extra strength against shearing forces, may prevent bending of the insulation panels or the joining profiles, and may promote internal bracing and stability. Further, the insulation panels may be provided with slits in top and/or bottom side edges for receiving a flange of top and/or bottom frame profiles in the building structure for retention of the insulation panel therein.
Preferably, the side surfaces of the joining profiles and the corresponding contact surfaces on the insulation panels are shaped such that an insulation panel retaining is provided. In particular, the joining profiles are advantageously provided with retention profile members at both the first and second side of the partitioning assembly and preferably at least one of retention profile members of the joining profiles is adapted for subsequent mounting. In a particular embodiment, the joining profiles are generally I- or H-shaped. I- and H-shaped profiles are similar when rotated, although in practice there is distinguished between both due to the proportions of the flanges in relation to the body. By such suitable shape of the profile, the insulation panels are accommodated in the profile frame structure and prevented from being displaced, e.g. by a twist in the frame structure. By the invention it is realised that other suitable shapes may be used, such as C-shaped, H-shaped or Z-shaped profiles.
The invention is further explained in the following under reference to the accompanying drawings in which:
With reference to
In one embodiment, the frame profiles comprise a U- or C-shaped bottom profile and a reverse U- or C-shaped top profile.
With reference to
A flex zone/flexible zone is a portion of an insulation panel made less rigid during the manufacture, e.g. by pressing rollers into the zone and moving them along the edge. This has the advantage that this zone is compressible and may be compressed in order to provide a tight panel-panel junction or in order to fit between the rafters and beams of a building structure. Further, the need for different formats of panels is reduced by using a flexible zone comprising a flexible section along one side of the insulation panel.
A flex zone may be provided by softening the respective side by compressing or stretching the edge portion during manufacture and thereby reducing the fibre bonding in the flexible section. Hereby, the fibre bondings are partly broken making the fibrous insulation element flexible without reducing the density and without significantly influencing the thermal insulation properties.
With reference to
With reference to
With reference to
With reference to
With reference to
Above, some embodiments currently considered advantageous are described. For instance, the invention is described with reference to a building system for a building structure, such as a vertical building system, for instance a wall or the like. However, it is realised that variants to these embodiments may be provided without departing from the inventive principles illustrated above. Further, by the invention it is realised that other advantageous embodiments may be provided without departing from the scope of the invention as set forth in the accompanying claims. For instance, any of the structures shown in the embodiments above may be used with different orientations, vertically, horizontally or inclined, and may also be used for either internal or external partitioning building structures in a building.
Number | Date | Country | Kind |
---|---|---|---|
08158386 | Jun 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/057331 | 6/15/2009 | WO | 00 | 1/31/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/153232 | 12/23/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1841785 | Bryant | Jan 1932 | A |
2257001 | Davis | Sep 1941 | A |
3090699 | Bulson | May 1963 | A |
4062721 | Guyer et al. | Dec 1977 | A |
4169688 | Toshio | Oct 1979 | A |
4633634 | Nemmer et al. | Jan 1987 | A |
5047120 | Izard et al. | Sep 1991 | A |
5062250 | Buzzella | Nov 1991 | A |
5136822 | Blum | Aug 1992 | A |
6134861 | Spude | Oct 2000 | A |
6959520 | Hartman | Nov 2005 | B2 |
7073301 | Price | Jul 2006 | B1 |
7677002 | Bennett et al. | Mar 2010 | B2 |
8161699 | LeBlang | Apr 2012 | B2 |
8539733 | Bogeskov et al. | Sep 2013 | B2 |
20030046892 | Albany et al. | Mar 2003 | A1 |
20060117689 | Onken et al. | Jun 2006 | A1 |
20060185305 | Schaffer | Aug 2006 | A1 |
20070227086 | Beavers et al. | Oct 2007 | A1 |
20120210657 | Sanders et al. | Aug 2012 | A9 |
Number | Date | Country |
---|---|---|
79 32 271 | Apr 1980 | DE |
20110293 | Sep 2002 | DE |
1479825 | Nov 2004 | EP |
0 896 106 | Sep 2005 | EP |
WO 8805096 | Jul 1988 | WO |
0171119 | Sep 2001 | WO |
WO 2004110748 | Dec 2004 | WO |
2006086228 | Dec 2006 | WO |
2007085260 | Aug 2007 | WO |
Entry |
---|
DOW Dow Building Soultions, COmposite panel solutions with STYROFOAM, Form No. 802-00251BOE101007, p. 1-16. |
Number | Date | Country | |
---|---|---|---|
20110113724 A1 | May 2011 | US |