The disclosed subject matter relates generally to insulation displacement contacts, or IDCs.
Insulation displacement contacts, or IDCs, are used in a variety of data connectivity applications to electrically terminate insulated wires to other conductors or conductive traces. IDCs typically comprise two electrically conductive parallel blades that form a gap therebetween for receiving an insulated wire. The blades cut through a wire's insulation as the wire is inserted into the gap, and make electrical contact with the conductor (or conductors) of the wire through the insulation displaced by the blades, thereby electrically connecting the conductor of the wire with another conductor or trace that may be terminated to the IDC. IDCs are often found in multi-wire connectors such as ribbon cable connectors or registered jack 45 (RJ45) connectors, on printed circuit boards, or in other such connectivity contexts.
Due to the limited elasticity of the IDC blades, current IDC technology is limited in the range of wire diameter that can be securely terminated. IDCs are also susceptible to weakening with repeated use due to deformation fatigue incurred by the blades of the IDC.
The above-described deficiencies of IDCs are merely intended to provide an overview of some of the problems of current technology and are not intended to be exhaustive. Other problems with the state of the art, and corresponding benefits of some of the various non-limiting embodiments described herein, may become further apparent upon review of the following detailed description.
The following presents a simplified summary of the disclosed subject matter in order to provide a basic understanding of some aspects of the various embodiments. This summary is not an extensive overview of the various embodiments. It is intended neither to identify key or critical elements of the various embodiments nor to delineate the scope of the various embodiments. Its sole purpose is to present some concepts of the disclosure in a streamlined form as a prelude to the more detailed description that is presented later.
Various embodiments described herein relate to an IDC capable of securely terminating various conductors having a wide range of diameters. The IDC is also capable of withstanding repeated terminations of the widest conductor diameters while still being capable of securely terminating the smallest conductor diameters. To these and other ends, the IDC described herein is designed to include two or more distinct deformation or flex regions. As the IDC blades are spread apart during termination of a wire, the mechanical stress or deformation absorbed by the blades is sequenced through the flex regions in a staged manner. To achieve this, at least one of the flex regions includes a mechanical stop on each of the two IDC blades. The mechanical stop limits the amount of deformation that can take place within that flex region, thereby ensuring that the elastic limits of the flex region are not exceeded. When the mechanical stops are engaged, further deflection of the IDC blades is absorbed by the next flex region.
To the accomplishment of the foregoing and related ends, the disclosed subject matter, then, comprises one or more of the features hereinafter more fully described. The following description and the annexed drawings set forth in detail certain illustrative aspects of the subject matter. However, these aspects are indicative of but a few of the various ways in which the principles of the subject matter can be employed. Other aspects, advantages, and novel features of the disclosed subject matter will become apparent from the following detailed description when considered in conjunction with the drawings. It will also be appreciated that the detailed description may include additional or alternative embodiments beyond those described in this summary.
The subject disclosure is now described with reference to the drawings wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the subject disclosure. It may be evident, however, that the subject disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the subject disclosure.
Some reference numbers used herein to label illustrated components are suffixed with letters to delineate different instances of a same or similar component. In general, if a reference number without an appended letter is used within this disclosure, the descriptions ascribed to the reference number are to be understood to be applicable to all instances of that reference number with or without an appended letter unless described otherwise.
In the case of multi-strand wire 108, the pressure applied to the wire 108 by the blades 106a and 106b may compress the conductors 110 into a narrower arrangement at the termination location. In the example depicted in
To address these and other issues, one or more embodiments described herein provide an IDC capable of securely terminating wires having a wide range of diameters. The IDC is also designed to withstand repeated terminations of wires having diameters at the large end of the supported size range while remaining capable of securely terminating wires having diameters at the small end of the range. To these ends, the IDC comprises two or more distinct flex regions. At least one of the flex regions has an associated mechanical stop that limits the degree of deformation that can be applied to that region as a wire is being terminated on the IDC. If the diameter of the wire being terminated on the IDC is large enough to deflect the first flex region to the end of its deflection range, the mechanical stop is engaged, causing further deflection to be transferred to the next flex region. This configuration allows the IDC gap to have a narrow resting width in order to accommodate small conductors (or an extreme compression of a multi-strand wire), while also permitting one or more additional stages of deflection to accommodate larger wire diameters. These additional stages of deflection are triggered when wires of larger diameters are terminated on the IDC.
In contrast to IDC 102 described above in connection with
Whereas each blade 206a and 206b has its own, individual first flex region—regions 214a and 214b, respectively—the second flex region 224 is a single flex region that is common to both blades 206a and 206b. The second flex region 224 is located on the base region 218 of the IDC 202 at the meeting point of the two blades 206a and 206b, and is created by the inclusion of another round hole 216 formed at the bottom of the slot 208 between the two blades 206a and 206b. As will be described in more detail below, the deformation stress caused by deflection of the blades 208 is staged sequentially through the first and second flex regions as the blades 206a and 206b are spread apart by a wire. When the first flex regions 214a, 214b have reached the end of their permitted degree of deformation, as determined by the width of the gaps 210a and 210b, further deformation of the blades 206 is transferred to the second flex region 224 such that the blades 206 pivot about the base region 218.
The width of the slot 208 while the IDC 202 is at rest can be designed to be sufficiently small (e.g., approximately 3-6 mils) to ensure secure termination of small wires (e.g., approximately 6 mils in diameter), and also to reliably accommodate scenarios in which conductors of a multi-strand wire are compressed into a narrower, vertically stacked arrangement during termination (as illustrated in
Behavior of the IDC 202 as a wire is being terminated is now described.
The widths of the gaps 210a, 210b formed on the blades 206a, 206b determine the maximum degree of deformation permitted by the first flex regions 214a, 214b. As the upper portions of the blades 206a, 206b are deflected outward by the wire 302, the facing edges of the gaps 210a, 210b— that is, the edges that define the two sides of each gap 210, and which face each other across the gap 210—are moved closer together. If the diameter of the wire 302 is sufficiently small, the deflection of the blades 206a and 206b will not be sufficient to cause the facing edges of the gaps 210a and 210b to contact one another even when the wire 302 is pressed fully into the slot 208, and deflection will not be transferred from the first flex region 214 to the second flex region 224. In the example depicted in
The facing edges of the gaps 210a and 210b act as mechanical stops for the first flex regions 214a, 214b. If the diameter of the wire 302 is large enough to exceed the deflection capacity of the first flex regions 214a, 214b, as in the scenario depicted in
Although the example IDC 202 illustrated in
In another example embodiments, one of the two blades 206a or 206b may be designed with no flex regions other than the common flex region located in the base region 218, while the other blade 206a or 206b includes one or more flex regions. By this arrangement, the blade 206 without flex regions remains relatively stationary as a wire 302 is being terminated, while the blade 206 including the one or more flex regions assumes most or all of the deflection.
The design of IDC 202 described herein can accommodate a wider range of wire diameters relative to conventional IDCs, such as IDC 102 depicted in
At 406, a determination is made as to whether the facing edges of the gap become engaged while the portion of the first blade is being deflected by the wire. If the facing edges are not engaged (NO at step 406), as in the case of a wire whose diameter is less than a maximum deflection threshold of the first flex region, the portion of the first blade continues to deflect until the wire is terminated in the gap. Alternatively, if the facing edges of the gap become engaged during deflection (YES at step 406), as in the case of a wire whose diameter exceeds the maximum deflection threshold of the first flex region, the methodology proceeds to step 408, where the first blade is deflected away from the second blade about a second flex region located on a base region of the IDC.
The above description of illustrated embodiments of the subject disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various modifications are possible that are considered within the scope of such embodiments and examples, as those skilled in the relevant art can recognize.
In this regard, while the disclosed subject matter has been described in connection with various embodiments and corresponding figures, where applicable, it is to be understood that other similar embodiments can be used or modifications and additions can be made to the described embodiments for performing the same, similar, alternative, or substitute function of the disclosed subject matter without deviating therefrom. Therefore, the disclosed subject matter should not be limited to any single embodiment described herein, but rather should be construed in breadth and scope in accordance with the appended claims below.
In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. Moreover, articles “a” and “an” as used in the subject specification and annexed drawings should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
What has been described above includes examples of systems and methods illustrative of the disclosed subject matter. It is, of course, not possible to describe every combination of components or methodologies here. One of ordinary skill in the art may recognize that many further combinations and permutations of the claimed subject matter are possible. Furthermore, to the extent that the terms “includes,” “has,” “possesses,” and the like are used in the detailed description, claims, appendices and drawings such terms are intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.