Claims
- 1. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of insulated wire conductors, the connector comprising:a dielectric body having a plurality of contact cavities therein, each contact cavity having an open contact insertion first end, an open second end and an associated stop; a plurality of planar slotted beam contacts, each contact sized to be inserted through the open contact insertion first end of one of the contact cavities and positioned within the contact cavity, each contact having a first end portion, a second end portion and a mid-portion therebetween, the mid-portion having an outward facing side with a protrusion projecting away from the outward side, each contact being configured such that when within one of the contact cavities the first end portion is positioned toward the open contact insertion first end of the contact cavity to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors located toward the open contact insertion first end and the second end portion is positioned toward the open second end of the contact cavity to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the second set of conductors located toward the open second end; and a plurality of resilient arms, each arm having a hinge portion attached to the body and a free end portion positioned spaced away from the stop associated with the contact cavity at which the arm is positioned by a distance sufficient to receive the protrusion of the contact positioned in the contact cavity between the free end portion of the arm and the stop, the free end portion of the arm being positioned to engage the protrusion of the contact within the contact cavity at which the arm is positioned when the contact is within the contact cavity and limit movement of the contact in a direction toward the open contact insertion first end of the contact cavity, the stop being positioned to engage the protrusion of the contact within the contact cavity with which the stop is associated when the contact is within the contact cavity and limit movement of the contact in a direction toward the open second end of the contact cavity, the hinge portion of the arm having sufficient resiliency to allow the free end portion of the arm to be resiliently moved away from the outward side of the mid-portion of the contact in the contact cavity at which the arm is positioned as the contact is inserted into the contact cavity from the open contact insertion first end thereof in response to sliding engagement of the free end portion of the arm with the protrusion of the contact and resiliently moved toward the outward side of the mid-portion of the contact when the free end portion of the arm is out of sliding engagement with the protrusion of the contact to position the free end portion to prevent removal of the contact from the contact cavity through the open contact insertion first end thereof.
- 2. The connector of claim 1 wherein the resiliency of the hinge portion of the arm is sufficient to allow the free end portion of the arm to be resiliently moved away from the outward side of the mid-portion of the contact to release the protrusion and allow removal of the contact from the contact cavity through the open contact insertion first end thereof after the contact is first inserted into the contact cavity.
- 3. The connector of claim 1 wherein the body and the arms are formed with a one-piece construction.
- 4. The connector of claim 1 wherein the free end portion of each arm includes an end wall positioned to engage the protrusion of the contact within the contact cavity at which the arm is positioned.
- 5. The connector of claim 4 wherein the end wall of the free end portion of each arm has a recess sized to receive the protrusion of the contact therewithin.
- 6. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of conductors, the connector comprising:a body having a plurality of contact cavities therein, each contact cavity having an open contact insertion end; a plurality of insulation penetrating contacts, each contact sized to be inserted through the open contact insertion end of one of the contact cavities and positioned within the contact cavity, each contact having a first end portion and a second portion spaced away from the first end portion, the first end portion being configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors and the second portion having a protrusion projecting outward; a plurality of arms, each arm positioned adjacent to one of the contact cavities, each arm having an attachment portion attached to the body and a free end portion configured to engage the protrusion of the contact within the contact cavity adjacent to which the arm is positioned when the contact is within the contact cavity and limit movement of the contact in a direction toward the open contact insertion end of the contact cavity, the arm being resiliently movable away from the second portion of the contact in the contact cavity adjacent to which the arm is positioned as the contact is inserted into the contact cavity from the open contact insertion end thereof in response to sliding engagement of the free end portion with the protrusion of the contact and being resiliently movable toward the second portion of the contact when the free end portion of the arm is out of sliding engagement with the protrusion of the contact to position the free end portion to retain the contact within the contact cavity against removal through the open contact insertion end thereof; and a plurality of stops, each stop associated with one of the contact cavities and positioned spaced away from the free end portion of the arm positioned adjacent to the contact cavity by a distance sufficient to receive the protrusion therebetween, the stop being positioned to engage the protrusion of the contact within the contact cavity with which the stop is associated when the contact is within the contact cavity and limit movement of the contact in a direction away from the open contact insertion end of the contact cavity.
- 7. The connector of claim 6 wherein the arm is sufficiently resiliently movable to allow the free end portion to be again moved away from the second portion of the contact to release the protrusion and allow removal of the contact from the contact cavity through the open contact insertion end thereof.
- 8. The connector of claim 6 wherein the attachment portion of the arm provides a hinged attachment of the arm to the body and has sufficient resiliency to allow the arm to be resiliently moved away from the second portion of the contact to release the protrusion and allow movement of the contact in the direction toward the open contact insertion end and removal of the contact from the contact cavity through the open contact insertion end thereof.
- 9. The connector of claim 6 wherein the first end portion of the contact is positioned toward the open contact insertion end of the contact cavity when the contact is within the contact cavity.
- 10. The connector of claim 6 wherein the body and the arms are formed with a one-piece construction.
- 11. The connector of claim 6 wherein the contact cavities are arranged in a common plane, the contacts are planar with the second portion of each contact having a planar face, when the contacts are received within the contact cavities the contacts are retained in a coplanar arrangement parallel to the common plane with the planar contact faces of the contacts facing transverse to the common plane, and the free end portion of each arm is arranged for engagement with the planar contact face of the contact in the contact cavity adjacent to which the arm is positioned and the protrusion projects outward from the planar contact face toward the free end portion of the arm.
- 12. The connector of claim 6 wherein the contact cavities are arranged in a common plane, the second portions of the contacts each has a planar face, when the contacts are received within the contact cavities the cavities retain the planar contact faces in a coplanar arrangement parallel to the common plane with the planar contact faces facing transverse to the common plane, the protrusion projecting outward from the planar contact face outward of the common plane and the free end portion of each arm being positioned adjacent to the planar contact face of the contact in the contact cavity adjacent to which the arm is positioned.
- 13. The connector of claim 6 wherein the body is elongated along a longitudinal body axis and has first and second walls extending along the body axis, the first and second body walls facing in opposite first and second outward directions, respectively, transverse to the body axis, the contact cavities are positioned between the first and second body walls and arranged along the body axis, the second portions of the contacts each has a face, when the contacts are received within the contact cavities the contact faces are retained facing in the first direction and the protrusions project outward from the contact faces in the first direction, and the free end portion of each arm is positioned at the first body wall and facing in the second direction and arranged adjacent to the contact face of the contact in the contact cavity adjacent to which the arm is positioned.
- 14. The connector of claim 6 wherein the free end portion of each arm includes an end wall positioned to engage the protrusion of the contact within the contact cavity adjacent to which the arm is positioned.
- 15. The connector of claim 6 wherein the body includes a plurality of apertures having first and second opposing sides, each aperture positioned adjacent to one of the contact cavities and opening to the adjacent contact cavity, the arm positioned adjacent to the contact cavity extending at least partially across the aperture and having the attachment portion thereof attached to the body at the first aperture side and the free end portion thereof positioned toward the second aperture side, the stop associated with the contact cavity being attached to the body at the second aperture side, the protrusion of the contact within the contact cavity projecting outward into the aperture.
- 16. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of conductors, the connector comprising:a dielectric body having a plurality of contact cavities therein, each contact cavity having first and second open ends; a plurality of insulation penetrating beam contacts, each contact being received within one of the contact cavities, each contact having a first end portion positioned at the first open end of the contact cavity and a second portion spaced away from the first end portion, the second portion of each contact having an outward projecting engagement member, the first end portion configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors; a plurality of spring arms, each spring arm being positioned at one of the contact cavities adjacent to the second portion of the contact received within the contact cavity, each spring arm having a resilient hinge portion attached to the body and a free end portion, the free end portion of the spring arm being in releasable engagement with the engagement member of the contact received within the contact cavity to releasably retain the contact within the contact cavity; and a plurality of stops, each stop associated with one of the contact cavities and positioned spaced away from the free end portion of the spring arm positioned at the contact cavity by a distance sufficient to receive the engagement member of the contact within the contact cavity therebetween, the stop being positioned to engage the engagement member to retain the contact within the contact cavity.
- 17. The connector of claim 16 wherein the contact cavities are arranged in a common plane and the spring arms are arranged for the free end portions thereof to be resiliently movable toward and away from the common plane, the engagement members of the contacts projecting outward of the common plane and toward the free end portion of the spring arm positioned at the contact cavity within which the contact is received.
- 18. The connector of claim 17 wherein the second portions of the contacts each has a planar face, when the contacts are received within the contact cavities the contact cavities retain the planar contact faces in a coplanar arrangement parallel to the common plane with the planar contact faces facing transverse to the common plane, the engagement member of each contact projecting outward from the planar contact face thereof.
- 19. The connector of claim 16 wherein the contact cavities are arranged in a common plane and the engagement members project outward of the common plane.
- 20. The connector of claim 16 for use when the second set of conductors are a set of insulated wire conductors, wherein each contact has a third end portion extending out of the second open end of the contact cavity within which received and configured to make electrical contact with one of the conductors of the second set of conductors, the third end portion of each contact being configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the second set of conductors, the second portion of the contact being located between the first and third end portions of the contact.
- 21. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of conductors, the connector comprising:a body having a plurality of contact cavities therein, each contact cavity having an open end; a plurality of insulation penetrating beam contacts, each contact sized to be received within one of the contact cavities through the contact cavity open end, each contact having a first end portion and a second portion spaced away from the first end portion, the first end portion configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors, and the second portion of the contact having a protrusion; a plurality of resilient spring arms each configured to be operable independent of the other spring arms, each spring arm positioned at one of the contact cavities adjacent to the second portion of the contact when received within the contact cavity, each spring arm having a first portion attached to the body and a resiliently movable free end second portion, the free end second portion of the spring arm being in engagement with the protrusion of the second portion of the contact when received within the contact cavity to limit movement of the contact in a direction toward the open end of the contact cavity to retain the contact within the contact cavity against removal through the open end of the contact cavity; and a plurality of stops, each stop associated with one of the contact cavities and positioned spaced away from the free end second portion of the spring arm positioned at the contact cavity by a distance sufficient to receive the protrusion of the contact within the contact cavity therebetween, the stop being positioned to engage the engagement member and limit movement of the contact in a direction away from the open end of the contact cavity to retain the contact within the contact cavity.
- 22. The connector of claim 21 wherein the free end second portion of the spring arm is positioned to contact and be resiliently moved in response to the free end second portion engaging the contact by an amount sufficient to permit insertion of the contact into the contact cavity through the open end of the contact cavity.
- 23. The connector of claim 21 wherein the free end second portion of the spring arm is positioned to be contacted by the protrusion during insertion of the contact into the contact cavity and be resiliently moved in response thereto by an amount sufficient to permit insertion of the contact into the contact cavity through the open end of the contact cavity.
- 24. The connector of claim 23 wherein the free end second portion of the spring arm includes an end wall positioned to engage the protrusion of the second portion of the contact within the contact cavity at which the arm is positioned, the end wall of the free end second portion of the spring arm having a recess sized to receive the protrusion of the contact therewithin.
- 25. The connector of claim 23 wherein the spring arm is sufficiently resiliently movable to allow the free end second portion of the spring arm to be resiliently moved by an amount sufficient to disengage the free end second portion from the protrusion to permit the removal of the contact from the contact cavity through the contact cavity open end.
- 26. The connector of claim 21 wherein the body includes a plurality of apertures having first and second opposing sides, each aperture positioned adjacent to one of the contact cavities and opening to the adjacent contact cavity, the spring arm positioned adjacent to the contact cavity extending at least partially across the aperture and having the first portion thereof attached to the body at the first aperture side and the free end second portion thereof positioned toward the second aperture side, the stop associated with the contact cavity being attached to the body at the second aperture side, the protrusion of the contact within the contact cavity projecting outward into the aperture.
- 27. The connector of claim 21 wherein the contact cavities are arranged in a common plane, the contacts are planar and each contact has a planar face, when the contacts are received within the contact cavities the contacts are retained in a coplanar arrangement parallel to the common plane with the planar contact faces of the contacts facing transverse to the common plane, and the free end second portion of the spring arm is arranged for engagement with the planar contact face of the contact within the contact cavity at which the spring arm is positioned.
- 28. The connector of claim 27 wherein each contact has oppositely facing first and second edge walls facing transverse to the planar contact face of the contact, and each contact is adjacent to at least one other contact cavity with adjacent contact cavities having a dividing wall therebetween with oppositely facing first and second side walls, the first side wall being positioned to engage the first edge wall of the contact in the one adjacent contact cavity and the second side wall being positioned to engage the second edge wall of the contact in the other adjacent contact cavity to assist in holding in place the contacts within the adjacent contact cavities.
- 29. The connector of claim 21 wherein the contact cavities are arranged in a common plane, the second portions of each contact has a planar face, when the contacts are received within the contact cavities the cavities retain the planar contact faces in a coplanar arrangement parallel to the common plane with the planar contact faces facing transverse to the common plane, the free end second portion of the spring arm being positioned adjacent to the planar contact face of the contact within the contact cavity at which the spring arm is positioned.
- 30. The connector of claim 29 wherein the planar contact faces of the second portions of the contacts each has the protrusion of the contact projecting out of the common plane.
- 31. The connector of claim 21 wherein the contact cavities are arranged in a common plane and the spring arms are arranged for the free end second portions thereof to be resiliently movable toward and away from the common plane.
- 32. The connector of claim 31 wherein the protrusions of the second portions of the contacts project outward of the common plane and toward the free end second portion of the spring arm positioned at the contact cavity within which the contact is received.
- 33. The connector of claim 21 wherein the body is elongated along a longitudinal body axis and has first and second walls extending along the body axis, the first and second body walls facing in opposite first and second outward directions, respectively, transverse to the body axis, the contact cavities are positioned between the first and second body walls and arranged along the body axis, when the contacts are received within the contact cavities the second portions of the contacts are retained facing in the first direction, the free end second portion of each spring arm is positioned at the first body wall and resiliently movable in the second direction toward and away from the second portion of the contact within the contact cavity at which the spring arm is positioned.
- 34. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of conductors, the connector comprising:a body having a plurality of contact cavities therein arranged in a common plane, each contact cavity having an open end; a plurality of insulation penetrating beam contacts, each contact sized to be received within one of the contact cavities through the contact cavity open end, the contact cavities being configured to hold the contacts therein in the common plane, each contact having a first end portion and a second portion spaced away from the first end portion with a protrusion projecting outward of the common plane, the first end portion configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors; a plurality of resilient spring members, each spring member having a first portion attached to the body and a resiliently movable second portion, each spring member positioned at one of the contact cavities with the second portion adjacent to the second portion of the contact when received within the contact cavity and in engagement with the protrusion to limit movement of the contact within the contact cavity toward the contact cavity open end, the spring members being arranged for the second portions thereof to be resiliently movable away from and toward the common plane, the second portion of each spring member being resiliently movable away from the common plane when engaged by the protrusion of the contact to permit the protrusion to move therealong as the contact is moved into the contact cavity through the contact cavity open end and being resiliently movable toward the common plane after the contact is received within the contact cavity to engage the protrusion; and a plurality of stops, each stop associated with one of the contact cavities and positioned spaced away from the second portion of the spring member positioned at the contact cavity by a distance sufficient to receive the protrusion of the contact within the contact cavity therebetween, the stop being positioned to engage the protrusion and limit movement of the contact in a direction away from the contact cavity open end, whereby when the second portion of the spring member is in position to engage the protrusion with the protrusion positioned between the second portion of the spring member and the stop the contact is retained within the contact cavity against removal through the contact cavity open end.
- 35. The connector of claim 34 wherein the body is elongated along a longitudinal body axis and has first and second walls extending along the body axis, the first and second body walls facing in opposite first and second outward directions, respectively, transverse to the body axis, the contact cavities are positioned between the first and second body walls and arranged along the body axis, when the contacts are received within the contact cavities the second portions of the contacts are retained facing in the first direction, each spring member having the first portion attached to the body first wall and the second portion positioned at the first body wall and resiliently movable in the second direction toward and away from the second portion of the contact within the contact cavity at which the spring member is positioned.
- 36. The connector of claim 34 wherein the spring member second portion is sufficiently resiliently movable away from the common plane after the contact is moved into the contact cavity to disengage the spring member second portion from the protrusion to permit movement of the contact toward and the removal of the contact from the contact cavity through the contact cavity open end.
- 37. The connector of claim 34 wherein the body and the spring members are formed with a one-piece construction.
- 38. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of conductors, the connector comprising:a body having a plurality of contact cavities therein, each contact cavity having an open end; a plurality of insulation penetrating beam contacts, each contact sized to be received within one of the contact cavities through the contact cavity open end, each contact having a first end portion and a second portion spaced away from the first end portion with a protrusion projecting outward, the first end portion configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors; a plurality of resilient spring arms, each spring arm having a first portion attached to the body and a resiliently movable second portion positioned at one of the contact cavities adjacent to the second portion of the contact received within the contact cavity, the spring arms each being configured to allow the second portion thereof to move independent of the second portion of adjacent ones of the spring arms and without interference with the simultaneous movement of the second portion of adjacent ones of the spring arms, the second portion of each spring arm being resiliently movable outward to permit the protrusion of the contact to pass therealong as the contact is moved into the contact cavity through the contact cavity open end and being resiliently movable inward in position for engagement with the protrusion after the contact is received within the contact cavity to limit movement of the contact within the contact cavity toward the contact cavity open end; and a plurality of stops, each stop associated with one of the contact cavities and positioned spaced away from the second portion of the spring arm positioned at the contact cavity by a distance sufficient to receive the protrusion of the contact within the contact cavity therebetween, the stop being positioned to engage the protrusion and limit movement of the contact in a direction away from the contact cavity open end, whereby when the second portion of the spring member is in position to engage the protrusion with the protrusion positioned between the second portion of the spring member and the stop the contact is retained within the contact cavity against removal through the contact cavity open end.
- 39. The connector of claim 38 wherein the spring arm second portion is sufficiently resiliently movable outward after the contact is received within the contact cavity to disengage the spring arm second portion from the protrusion to permit the removal of the contact from the contact cavity through the contact cavity open end.
- 40. The connector of claim 38 wherein the contact cavities are arranged in a common plane and the spring arms are arranged for the second portions thereof to be resiliently movable toward and away from the common plane.
- 41. An electrical connector of the type for electrically interconnecting a first set of insulated wire conductors with a second set of conductors, the connector comprising:a body having a plurality of contact cavities therein; a plurality of insulation penetrating beam contacts, each contact positioned within one of the contact cavities, each contact having a first end portion and a second portion spaced away from the first end portion and having an engagement member projecting outward, the first end portion configured to displace the insulation and make electrical contact with the wire of one of the insulated wire conductors of the first set of conductors; a plurality of resilient spring arms, each spring arm having a first portion attached to the body and a resiliently movable second portion positioned at one of the contact cavities adjacent to the second portion of the contact within the contact cavity, the spring arms each being configured to allow the second portion thereof to move independent of the second portion of adjacent ones of the spring arms and without interference with the simultaneous movement of the second portion of adjacent ones of the spring arms, the second portion of each spring arm being positioned to resiliently engage the protrusion of the contact in the contact cavity at which the second portion of the spring arm is positioned to limit movement of the contact within the contact cavity in a first direction; and a plurality of stops, each stop associated with one of the contact cavities and positioned spaced away from the second portion of the spring arm positioned at the contact cavity by a distance sufficient to receive the protrusion of the contact within the contact cavity therebetween, the stop being positioned to engage the protrusion and limit movement of the contact in a second direction different from the first direction such that when the second portion of the spring member is in position to engage the protrusion with the protrusion positioned between the second portion of the spring member and the stop, the contact is retained within the contact cavity.
- 42. The connector of claim 41 wherein the contact cavities are arranged in a common plane and the spring arms are arranged for the second portions thereof to be resiliently movable toward and away from the common plane.
- 43. The connector of claim 42 wherein the protrusions project outward of the common plane and toward the second portion of the spring arm positioned at the contact cavity within which the contact is received.
- 44. The connector of claim 42 wherein the body is elongated along a longitudinal body axis parallel to the common plane and has first and second walls extending along the body axis, the first and second body walls facing in opposite first and second outward directions, respectively, transverse to the body axis, the contact cavities are positioned between the first and second body walls and arranged along the body axis, and hold the second portions of the contacts therein facing in the first direction, each spring arm having the first portion attached to the body first wall and the second portion positioned at the first body wall and resiliently movable in the second direction toward and away from the second portion of the contact within the contact cavity at which the second portion of the spring arm is positioned.
CROSS-REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of U.S. patent application Ser. No. 10/288,384, filed Nov. 4, 2002, now U.S. Pat. No. 6,626,694, which is a continuation of U.S. patent application Ser. No. 09/905,746, filed Jul. 12, 2001, and issued Nov. 5, 2002, as U.S. Pat. No. 6,475,019, which applications are incorporated herein by reference in their entirety.
US Referenced Citations (25)
Continuations (1)
|
Number |
Date |
Country |
| Parent |
09/905746 |
Jul 2001 |
US |
| Child |
10/288384 |
|
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
| Parent |
10/288384 |
Nov 2002 |
US |
| Child |
10/303218 |
|
US |