This invention relates to insulation displacement systems, including insulation displacement systems used as a tap or splice.
Insulation displacement systems (IDS) provide a convenient way to establish an electrical connection between an electrical conductor and an electrical contact (e.g., an electric terminal, electric interface, a second electric wire, etc.).
A conventional IDS includes a terminal with an open slot extending from one edge of the terminal. A section of an electrical cable (which includes a single or multi-strand electrical conductor surrounded by an insulator) is directed into the slot in such a way that the longitudinal axis of the electrical cable and the longitudinal axis of the slot are substantially perpendicular. Typically, the width of the slot is narrower than the diameter of the conductor bundle. Thus, as the insulated cable is pressed into the slot, the edges of the slot cut into the insulation surrounding the electrical conductor(s) and displace the insulator, thereby exposing the electrical conductor(s). Additionally, as the exposed electrical conductor continues to travel into the slot, making contact with the electrically conducting edges of the slot, the substantially round shape of the conductor bundle is compressed into an oval shape, establishing an electric connection with the electrical contact.
Disclosed herein is an insulation displacement system that includes a first insulation displacement terminal (IDT) adapted to receive in a mating configuration another IDT. In an embodiment, two such IDT's include slots that are each configured to receive a cable and displace the cable's insulation to expose the cable's conductor. In their mated configuration, the slots of the two IDT's are adjacent to each other but with opposite orientation to the wire bundle, and thus define a closed adjustable aperture that holds the conductors of the cable. This closed aperture maintains the wire bundle in a compressed state; the bundle cannot relax, for example, as a result of elastomenric deformation of the insulating jacket. The individual wires in the bundle cannot migrate up the throat (or open end) of the slot, as the slot is effectively capped by the adjacent terminals. In this fashion each terminal serves to support and cap the adjacent terminal. In addition, the slot of each terminal independently engages the wires of the bundle, thereby increasing the area of direct terminal-to-wire interface, which in turn facilitates current flow. Additionally, maintaining the wire bundle in a compressed state reduces the harmful effect of vibration. Also, when the wire bundle is designed to deliver power, maintaining the wire bundle in a compressed state enables a more even distribution of the power density amongst the wires of bundle.
In one aspect, the invention includes an insulation-displacement system that comprises a first insulation-displacement terminal (IDT) adapted to receive in a mating configuration a second IDT. The first IDT comprises a first plate that includes a base edge, and a slot configured to receive an electrical conductor surrounded by an insulator and displace the insulator. The slot extends towards the center of the first plate from a second edge located opposite the base edge.
In some embodiments, the insulation-displacement system further comprises the second IDT. The second IDT comprises a second plate that includes a base edge, and a slot configured to receive the electrical conductor and displace the insulator. The slot extends towards the center of the plate from a second edge located opposite the base edge. The surface of the plate of the first IDT is placed substantially adjacent to the surface of the plate of the second IDT, and the second edge of the second IDT is displaceable towards the base edge of the first IDT.
In some embodiments, the second edge of each plate of each of the IDT's is V-shaped, and each slot of the IDT's extends from the respective V-shaped edge.
In further embodiments, the slot of the first IDT and the slot of the second IDT are substantially adjacent such that the slots define a closed adjustable aperture configured to hold the electrical conductor.
In yet further embodiments, the plate of the second IDT further includes two substantially flat side edges, and the plate of the first IDT further includes two side edges formed to define tracks configured to receive the respective side edges of the second IDT. In some embodiments, the formed side edges of the first IDT are curved inwardly.
In some embodiments, each plate of each of the IDT's further includes an arc-shaped rib configured to prevent slot deformation.
In some further embodiments, each plate of each of the IDT's is substantially entirely constructed from an electrical conductive material.
In some other embodiments, each of the IDT's further includes a projection extending from the plate of the corresponding IDT. The projection is configured to electrically couple the corresponding IDT to an electrical contact. In some embodiments the projection of each of the IDT's is a blade that extends in a direction that is substantially perpendicular to surface of the corresponding plate. In further embodiments, the surfaces of the respective blades of the first IDT and the second IDT are positioned adjacent to each other such that the adjacently placed blades define a resultant blade having a thickness that is substantially the sum of the thickness of the respective blades of the first IDT and the second IDT.
In some embodiments, the resultant blade is configured to be received in an electrically conducting socket. In some embodiments, the socket is coupled to a crimp connector. In yet further embodiments, the socket comprises a female fastener configured to maintain the resultant blade within the socket.
In some embodiments, the first IDT further comprises a folded blade extending from the first plate, the folded blade comprising at least one pivotable plate extending from an end of the blade proximate to the first plate such the at least one pivotable plate and the first plate define a passage for receiving a side edge of the second plate of the second IDT.
In further embodiments, the first IDT further includes a rolled receiver configured to fixture and lock the second IDT.
In another aspect, the invention includes a method for electrically coupling an electrical conductor surrounded by an insulator to an electrical contact. The method comprises providing an insulation-displacement device that includes a first insulation-displacement terminal (IDT) and a second IDT, each of the IDT's comprising a plate that includes a base edge, and a slot configured to receive the electrical conductor and displace the insulator, the slot extends towards the center of the plate of the IDT from a second edge located opposite of the base edge. The surface of the plate of the first IDT is placed substantially adjacent to the surface of the plate of the second IDT, and the second edge of the second IDT is displaceable towards the base edge of the first IDT. The method further comprises placing the electrical conductor in the slots of the adjacently placed plates of the first IDT and the second IDT, displacing the second IDT plate so that the second edge of the second IDT moves towards the base edge of the first IDT to thereby displace the insulator of the electrical conductor and to decrease the size of a closed adjustable aperture defined by the slots, and connecting the adjacently placed plates of the IDT's to the electrical contact.
In another aspect, the invention includes an electrical tap connector comprising a first insulation-displacement terminal (IDT) adapted to receive in a mating configuration a second IDT, each of the IDT's comprises an electrically conducting member, and the mated first IDT and the second IDT are configured to electrically couple to a first electrical conductor surrounded by an insulator. The electrical tap connector further comprises an electrically conducting receiver electrically coupled to a second electrical conductor, the receiver is configured to receive, for example, the member of the first IDT, and/or the member of the second IDT.
In a further aspect, the invention includes a method for splicing a first electrical conductor surrounded by an insulator and a second electrical conductor. The method comprises providing an insulation-displacement system comprising a first insulation-displacement terminal (IDT) adapted to receive in a mating configuration a second IDT, each of the IDT's comprises an electrically conducting member, and the mated first IDT and the second IDT are configured to electrically couple to the first electrical conductor. The method further comprises electrically coupling the first electrical conductor to the insulation-displacement device, placing at least one of the member of the first IDT and the member of the second IDT in an electrically conducting receiver, and electrically coupling the receiver to the second electrical conductor.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
The insulation displacement system 100 includes a first insulation displacement terminal (IDT) 110 that includes a plate 112. As shown in
The plate 112 has a base edge 114, and a second edge 116 that is located opposite the base edge 114. A slot 118 extends from the second edge 116 towards the center of the plate 112. In some embodiments, the second edge 116 of the plate 112 is V-shaped, thus enabling the cable to be easily guided along the contour of the second edge 116 towards the opening of the slot 118. In such embodiments, the slot 118 extends from the V-shaped edge. The second edge 116 may have other shapes and/or configurations.
The slot 118 is configured to receive the electrical cable 102 and to displace the insulation surrounding the conductor of the cable 102. Particularly, the outside surface of a section of the insulator of the electric cable 102 is directed into the slot, for example by applying sufficient force on the cable to press it into the slot. The edges of the slot 118, which are electrically conducting, then slice and penetrate into the insulator of the cable 102. As a result, the edges of the slot 118 impede the movement of the cable along the slot. Consequently, as mechanical force continues to be applied on the cable 102, the edges of the slot 118 cause the insulator to be separated from the electrical conductor inside the insulator. The section of the insulation layer of the cable 102 received in the slot 118 is thus displaced, and the electrical conductor is exposed.
As further shown in
To receive the second IDT 130 in a mating configuration, the second edge 136 of the plate 132 of the second IDT 130 is aligned to receive another section of the cable 102. That other section of the cable 102 is located substantially opposite the side of the cable 102 having the section that was received by the slot 118 of the first IDT 110. Thus, for example, in
With reference to
With reference to
With reference to
As further shown in
As further shown in
In the embodiment shown in
Thus, in operation, a section on one side of the cable 102 is received in the slot 118 of the first IDT 110. Mechanical forces applied either to the cable 102 or to the first IDT 110 cause the received section of the cable 102 to be directed towards the end of the slot 118. The edges of slot 118 slice the insulation of the cable 102 and displace the insulation towards the opening of the slot (i.e., in a direction opposite the direction in which the cable is moving in the slot 118).
A second IDT 130 is positioned so that its slot 138 can receive another section of the cable 102 on the side of the cable that is substantially opposite where the first section of the cable was received by the slot 118 of the first IDT 110. Mechanical forces are applied either to the cable 102 or to the second IDT 130 to cause the second section of the cable to be directed along the slot 138 of the second IDT 130. The edges defining the slot 138 pierce the insulation of the cable 102, and cause the insulation to be displaced towards the opening of the slot 138.
The first IDT 110 and the second IDT 130 are positioned so that the second IDT 130 is received in a mating configuration by the first IDT 110. Particularly, the side edges 140a and 140b of the second IDT 130 are received in tracks defined by the side edges 120a and 120b of the first IDT 110. The second IDT 130 is displaced relative to the first IDT 110 such that the second edge 136 of the second IDT 130 moves towards the base edge 114 of the first IDT 110. As the plates are displaced relative to each other the insulator of the cable 102 is displaced.
Once the first IDT 110 and the second IDT 130 are in their mated positions, their respective slots 118 and 138 define a closed adjustable aperture that holds the exposed conductors of the cable 102 in a confined space, thereby enabling the conductor to establish a strong electrical connection with the electrical conducting edges of the slots 118 and 138, thus establishing a strong electrical connection with the electrical contact connected to the insulation displacement system 100.
As shown, the electrical tap connector 500 includes a crimp connector 504 configured to receive the electrical conductor(s) of a second cable 502, and establish an electrical connection between the conductors of the second cable 502 and the conductor of the electrical cable 102 that is electrically coupled to the insulation displacement system 100.
With reference to
The socket 520 includes a socket base 610, an upper rolled-rail fastener 612 that extends from a first side of the socket base 610, and a lower rolled-rail fastener 614 that extends from the side opposite the first side of the socket base 610. The upper rolled-rail fastener 612, lower rolled-rail fastener 614, and the socket base 610 define a slot that is configured to receive an electrical conducting blade, such as the resultant blade 210. Other types of fasteners (e.g., female fasteners) may be used to receive the electrical conducting projections extending from the IDS.
As shown in
Although
Thus, in operation, an insulation displacement system, such as system 100, is used to electrically couple the conductor of the cable 102 to the insulation displacement system 100. At least one of the electrical conducting blades 126 and/or 146 is placed in an electrically conducting receiver, such as the socket 520 of the crimp connector 504 shown in
The IDT 710 is adapted to receive in a mating configuration a second IDT, such as IDT 730. The second IDT 730 includes a flat plate 732 that includes a base edge 734 and a second edge 736. In some embodiments the base edge 734 is bent so that it forms an angled portion with respect to the plate 732. A slot 738 extends from the second edge 736 towards the center of the plate 732. The edges defining the slot 738 are electrically conducting. In some embodiments the second edge 736 of the second IDT 730 is V-shaped, and the slot 738 extends from the V-shaped edge towards the center of the second plate 732.
To facilitate displacing the plates of the respective IDT's into their mating positions, the first IDT 710 includes a rolled receiver 720 that defines a passage or channel for receiving side edge 740a of the second IDT 730. The rolled receiver 720 is configured to fixture and lock the second IDT 730 near the side edge 740a when the two IDT's 710 and 730 are placed in their mated configuration, thereby providing stable mechanical contact between the first IDT 710 and the second IDT 730.
As further shown in
Optionally, the sheet that is folded may have perforation to facilitate the folding operation. As also shown in
In operation, the IDT 730 is directed into mating configuration with the IDT 710 by guiding the second edge 736 into the passage defined by the rolled rail fastener 720 and the passage defined by pivotable plates 728a and 728b. To insert the second edge 736 into the passage formed in the IDT 710 some degree of force may be required to overcome the biasing force exerted by the rolled rail fastener and the pivotable plates. The IDT 730 is then displaced so that its second edge 736 moves towards the base edge 714 of the first IDT 710.
An electrical cable (not shown) is placed in the closed adjustable aperture defined by the two opposing slots of the displaced IDT's 710 and 730. The two IDT's may then continue moving towards each other until the slots 718 and 738 slice the insulation of the cable and establish an electrical connection between the IDS 700 and the cable. When the two IDT's 710 and 730 have reached their final mated position, the mechanical forces exerted by the rolled rail fastener 720 and pivotable plates 728a and 728b on the IDT 730 maintain the IDT's 710 and 730 in a secure mechanical contact. The projection 726 is then connected to the electrical contact to establish the electrical connection between the cable placed in the closed adjustable aperture defined by the slots 718 and 738 and the electrical contact.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, in some embodiments, the plate 112 of the first IDT 110 and/or the plate 132 of the second IDT 130 may have a circular configuration, or may have other shapes, configurations and dimensions. Further, in some embodiments; only part of the plate 112, and/or the plate 132, may be composed of an electrically conducting material in a manner sufficient to establish an electrical path between the conductor of the cable 102 and the electrical contact. Accordingly, other embodiments are within the scope of the following claims.