The present invention relates generally to insulating concrete form (ICF) systems and, more particularly, to an insulation insert panel which can used in conjunction with ICF systems to increase and/or improve the insulation capability of the concrete wall being formed by the ICF system.
Insulating concrete form (ICF) systems are well-known in the industry and are commonly used to form wall systems in both residential and commercial structures. Such systems utilize a plurality of individual blocks aligned horizontally and vertically in an interlocking arrangement to create forms for concrete walls. Each ICF block includes a pair of foamed panels which are retained in a spaced-apart relationship parallel to each other by a plurality of tie members. The ICF blocks serve to contain fluid concrete while it solidifies and also provides insulation for the finished wall structure.
The spacing tie members in each ICF block are truss-like in structure and include opposing flange portions which typically reside within the respective opposing foam panels forming a particular ICF block. The opposing flange portions are separated by an intermediate web portion connected therebetween, enabling the tie member to hold and secure the panel portions. The web portion includes a pair of substantially identical transverse bridge members for providing centralized structural support within and along the entire ICF block. The ICF blocks as well as the associated tie members come in a variety of sizes depending upon the thickness of the concrete wall desired.
Although the pair of foam panels forming each respective ICF block provide added insulation to the concrete wall being formed on both opposite sides thereof, there are times when additional insulation or increased R-value is desired along an entire length of a particular wall, along a portion of a particular wall, or at specified locations along a particular wall section.
It is therefore desirable to provide a mechanism for improving or increasing the insulation capability associated with a particular ICF system without changing the structure of the ICF blocks or without redesigning the ICF system currently in use.
Accordingly, the present invention is designed to allow a user of a particular ICF system to add additional insulation capability to a particular wall or wall section under construction without changing or redesigning the particular ICF blocks being used to form that particular wall structure.
The present invention relates to an insulation insert panel that can be easily positioned along the length of an ICF block adjacent the interior surface of one of the panels forming the ICF block so as to improve or increase the insulation capability associated with that particular ICF block. The present insulation insert panel includes a plurality of slots positioned and located along the length of the insulation panel, the slots being positioned and located so as to be in alignment with the respective plurality of ties associated with that particular ICF block when the present insulation panel is positioned for engagement with the ICF block. Each slot or gap extends from adjacent the bottom edge portion of each respective insulation insert panel to a predetermined location short of the top edge portion of each insert panel. Each slot or gap is sufficiently wide so as to allow the intermediate web structure of each respective tie member to pass therethrough as the present insulation panel is slidably positioned into its operative position. The bottom edge portions of each respective slot is tapered or beveled so as to guide the slot or gap over the reinforcing crossbar members associated with the web portion of each respective tie member.
The terminal end portion of each respective slot includes a pair of spaced apart notches which are positioned and located so as to receive and engage the projecting crossbar member associated with each opposite side of the transverse bridge member associated with the upper portion of each respective tie member. In this regard, the pair of notches are specifically positioned and located so as to engage the reinforcing crossbar members of the tie members associated with the Reward Wall Systems, Inc. (Reward Wall) iForm ICF system as will be hereinafter further explained. The second notch is positioned and located so as to engage certain tie members associated with certain Reward Wall iForm ICF blocks wherein the respective bridge members each include a pair of reinforcing crossbar members. When the present insulation insert panel is positioned adjacent the inner surface of one of the ICF block panels, the projecting reinforcing crossbar members associated with each respective web bridge member is engaged with one or both notches associated with the upper portion of each respective slot so as to lock the insert panel into proper position within the particular ICF block into which it is inserted. This insures a tight, stable engagement with the respective tie members when the present insulation insert panel is properly positioned inside a particular ICF block and prevents movement during pouring of the concrete into the respective ICF blocks.
The present insulation insert member is typically made of an expanded polystyrene material or any other suitable material, and it can be coated with graphite or other materials in order to increase its R-value. The density of the polystyrene associated with forming each respective insulation insert panel can likewise be changed and/or varied so as to increase or decrease the R-value associated with each respective panel. The insulation insert panels are typically sized in height and length so as to correspond to the height and length of each respective panel member making up a particular ICF block. This allows a user to cover the entire inner surface of one of the ICF block panels with a single insert panel. It is also recognized and anticipated that the height and length of each of the present insulation insert panels can be varied so as to cover any portion or section of a particular ICF block and they can be made in varying thicknesses.
The present insulation insert panel is typically positioned adjacent the inside surface of the particular ICF block panel that faces the outside portion of the wall structure to be formed. This allows additional insulation to be located between the outside face of the concrete wall to be formed and the outside wall surface thereby providing greater insulation between the outside surface of the wall structure and the temperatures associated with the outside environment.
The top and bottom surfaces of each respective insulation insert panel may likewise include cooperatively engageable means for cooperatively engaging one insulation insert panel with another insulation insert panel when vertically stacked one upon the other within vertically stacked ICF blocks. In this regard, one of the top and bottom surfaces may include a longitudinally extending groove configured so as to cooperatively receive a corresponding longitudinally extending projection associated with the opposite end portion thereof. Although optional, this cooperatively engageable arrangement allows the top of one of the present insulation insert panels to cooperatively accept and receive the bottom of the next insert panel when stacked one above the other and such an arrangement further helps to eliminate movement of the respective insert panels during pouring of the concrete within each respective ICF block. It is recognized and anticipated that other cooperatively engageable means can likewise be utilized, if necessary, to cooperatively engage a plurality of the present insulation insert panels when they are stacked one upon the other inside a plurality of stacked ICF blocks to form a particular wall structure.
These and other objects of the present invention will become more apparent to those skilled in the art after considering the following detailed specification taken in conjunction with the accompanying drawings.
Referring to the drawings more particularly by reference numbers wherein like numerals refer to like parts, the numeral 10 in
The rebar seats 24 are substantially identical to each other in configuration and are arranged in a pair of opposing rows along each transverse bridge member 22. Each rebar seat 24 is of a substantially U-shaped well formed by a pair of adjacent fingers 26. Each rebar seat 24 is capable of retaining at least one rebar rod positioned therein. An inwardly extending lateral knuckle or projection 28 is formed in either or both distal ends of adjacent fingers 26 creating a distance between opposing projections 28 that is substantially less than the lateral distance between the proximal ends of adjacent fingers 26. The knuckles or projections 28 serve to help retain the rebar rod within each respective rebar seat 24.
In the embodiment illustrated in
In addition, cooperatively engageable means in the form of an array of alternating teeth and sockets are formed along the opposing horizontal longitudinal edges associated with each block panel 14 for removably attaching one ICF block 12 to other ICF blocks 12 having similar and complimentary engaging means associated therewith when such ICF blocks are vertically stackably arranged one on top of the other to form a particular wall structure. In the particular example illustrated in
In similar fashion, the opposed vertical ends of each respective ICF block panel 14 likewise includes cooperatively engageable means in the form of an array of alternating teeth and sockets (not shown) for removably attaching one ICF block 12 to another ICF block 12 having similar and complimentary engaging means associated therewith when the ICF blocks 12 are placed in a side-by-side arrangement. For simplicity purposes, the vertical end wall engagement means are not illustrated in
The present insulation insert panel 10 as best illustrated in
As best illustrated in
As best illustrated in
As illustrated in
Since the Reward Wall iForm twelve inch tie member includes two spaced apart projecting reinforcing crossbar members similar to the single crossbar member 30 on each opposite side of the transverse bridge member 22 illustrated in
The bottom edge portion of each respective slot 34 at each opposed end portion 50 (
As previously explained, the present insulation insert panels 10 are used to increase and/or improve the insulation capability associated with a particular ICF system without changing the structure or width of the ICF blocks currently in use for a particular wall structure. As illustrated in
The present insulation insert panel 10 can be made of expanded polystyrene, or any other suitable insulation type material. In addition, the density of the polystyrene associated with each respective insert panel 10 can be changed and/or varied to achieve a specific R-value. Still further, other materials can be added to the polystyrene to likewise change the R-value associated with a particular insert panel 10, and the panels 10 can be coated with graphite or other materials to likewise increase the insulation capability and R-value of that particular panel. Polystyrene coated with graphite can likewise be used to achieve this goal. It is also recognized and anticipated that still other materials may be utilized to achieve the insulation capabilities desired, and the overall dimensions of the present insert panel 10 as well as its specific shape are also subject to wide variations and may be sized and shaped into a wide variety of different sizes and configurations so as to be compatible with the size and shape of a particular ICF block panel or combination of blocks being used including straight, 90° corners, 45° corners and still other ICF block configurations. Other variations and modifications to the insert panel 10, the slots 34, and notches 42 and 44 are also contemplated.
Although the present insulation insert panel 10 is specifically designed to receive the Reward Wall iForm tie members as explained above, it is recognized and anticipated that one or both of the notches 42 and 44 can be sized and shaped to receive any projecting or lip portion associated with any of the known tie members used in the various ICF systems known in the industry. It is also recognized that the present insert panel 10 could be utilized with just one notch 42 when the corresponding tie members include just a single crossbar member 30 on each opposite end of the bridge member 22.
Still further, it is also recognized and anticipated that other tie members used in the ICF industry may include a wide variety of different types of projections, partial projections and/or extensions or lip portions associated with the transverse bridge members and that besides engaging a single notch associated with each respective slot 34, these projections and/or partial projections may likewise merely engage the slot 34. It is also recognized and anticipated that some of the various tie members used in the ICF industry may not include any type of projection or lip portion as described above. In this situation, the present slots 34 will merely receive the transverse bridge members associated with the tie members and no notches such as the notches 42 and 44 need be associated with each respective slot 34. In this particular situation, the width of each respective slot 34 can be dimensioned so as to slide over each respective transverse bridge member and sufficiently hold the entire insert panel 10 in its operative position when inserted within an ICF block. The overall length and height of each respective insert panel 10 will likewise help to stabilize and secure the insert panel in its operative position in a particular ICF block during the pouring of concrete. Other variations and modifications to the present insert panel 10 and the slots 34 are likewise contemplated.
Thus, there has been shown and described several embodiments of a novel insulation insert panel which is adapted for installation into an existing ICF block form, which insulation insert panel fulfills all of the objects and advantages sought therefor. Many changes, modifications, variations and other uses and applications of the present invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings. All such drawings, modifications, variations and other uses and applications which do not depart from the spirit and scope of the present invention are deemed to be covered by the present invention which is limited by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
2199112 | O'Leary | Apr 1940 | A |
3546833 | Perreton | Dec 1970 | A |
3704562 | Grants | Dec 1972 | A |
3885363 | Whittey | May 1975 | A |
4348845 | Iannarelli | Sep 1982 | A |
4655014 | Krecke | Apr 1987 | A |
5065561 | Mason | Nov 1991 | A |
6820384 | Pfeiffer | Nov 2004 | B1 |
Number | Date | Country |
---|---|---|
19548440 | Apr 1997 | DE |
Entry |
---|
The Fox Blocks Energy Stick, Copyright 2012 Fox Blocks. |
Number | Date | Country | |
---|---|---|---|
20130263544 A1 | Oct 2013 | US |