FIGURE is a schematic block circuit diagram showing an insulation-resistance degradation detecting device and a motor driving apparatus according to an embodiment of the present invention.
FIGURE is a schematic block circuit diagram showing an insulation-resistance degradation detecting device and a motor driving apparatus according to an embodiment of the present invention.
In FIGURE, numeral 2 denotes a motor driving apparatus. The motor driving apparatus 2 is composed of a power source unit 3 and motor drive amplifiers 4 and 4′. The power source unit 3 causes a rectifier circuit 7 to convert a three-phase AC power source into a DC power source. The amplifiers 4 and 4′ convert a DC power source into an optional AC power source to drive motors 5 and 5′. Numeral 1 denotes an insulation-resistance degradation detecting device for detecting insulation degradation of the motors. In this embodiment, the power source unit 3 is connected with the two motor drive amplifiers 4 and 4′. In this case, one or more motor drive amplifiers are connected to the power source unit 3.
The power source unit 3 of the motor driving apparatus 2 is provided with the rectifier circuit 7 and a smoothing capacitor C. The rectifier circuit 7 rectifies electric power supplied from the three-phase AC power source through an electromagnetic contactor 6 and converts it into a DC power source. The smoothing capacitor C smoothes the DC output rectified by the rectifier circuit 7.
Further, the motor drive amplifiers 4 and 4′ are composed individually of inverter circuits, which include switching elements Q1 to Q6 and Q1′ to Q6′, each formed of an IGBT or the like, and diodes D1 to D6 and D1′ to D6′ that are connected in parallel with the switching elements Q1 to Q6 and Q1′ to Q6′, respectively.
The motor drive amplifiers 4 and 4′ are connected to an output line (DC link section) of the rectifier circuit 7 of the power source unit 3 and supplied with a DC voltage.
In response to a command from a control device 9 of the motor driving apparatus 2, the switching elements Q1 to Q6 and Q1′ to Q6′ of the motor drive amplifiers 4 and 4′ are PWM-controlled by a control circuit (not shown), whereby the first and second motors 5 and 5′ are drivingly controlled. Further, the electromagnetic contactor 6 is on/off-controlled in response to the command from the control device 9.
The configuration of the motor driving apparatus 2 described above is not substantially different from that of a conventional motor driving apparatus.
The insulation-resistance degradation detecting device 1 of the present invention is configured to detect insulation-resistance degradation of the first and second motors 5 and 5′ that are driven by the motor driving apparatus 2. The insulation-resistance degradation detecting device 1 comprises a controller 10, a selector 11, contactors SW1 and SW2, contactors S1 and S2, resistors R1 and R2, an insulation amplifier 12, a reference voltage generator 13, a comparator 14, voltage-dividing resistors R3 and R4 for dividing voltage across a smoothing capacitor C, and discharge resistor R5 for discharging the smoothing capacitor C.
A signal outputted from the control device 9 to turn the electromagnetic contactor 6 off is inputted to the controller 10. A DC power output line on the negative side of the smoothing capacitor C is configured to be connected to the ground by the contactor SW1. A DC power output line on the positive side of the smoothing capacitor C is configured to be connected to one-phase coils of the motors 5 or 5′ through the contactor SW2, the detection resistor R1, the protective resistor R2, and the contactor S1 or S2. The contactors SW1, SW2, S1 and S2 may be composed of relay contacts, electromagnetic contactors, semiconductor switches, etc.
Further, the insulation amplifier 12 is connected to the opposite ends of the detection resistor R1 so that it can amplify the potential difference of the detection resistor R1 and output it to the comparator 14. The comparator 14 is configured to compare a reference voltage from the reference voltage generator 13 and the output of the insulation amplifier 12.
The following is a description of insulation degradation detecting operation. In detecting insulation degradation of any of the motors, the operations of the motor drive amplifiers 4 and 4′ are stopped, and the motor for which the insulation degradation is to be detected is selected by the selector 11. The controller 10 closes the contactor that corresponds to the motor that is selected by the selector 11. In this embodiment, the contactor S1 is closed when the motor 5 is selected, and the contactor S2 is closed when the motor 5′ is selected. Then, a command is issued from the control device 9 to close the electromagnetic contactor 6. The electric power supplied from the three-phase AC power source is rectified by the rectifier circuit 7 and the smoothing capacitor C is charged. When the smoothing capacitor C is fully charged after the passage of a predetermined time, a command is outputted from the control device 9 to open the electromagnetic contactor 6. This command from the control device 9 to open the contactor 6 is also inputted to the controller 10 of the insulation-resistance degradation detecting device 1. On receipt of this signal, the controller 10 receives divided voltages divided by the resistors R3 and R4 and compares them with a preset voltage.
When the electromagnetic contactor 6 is opened, the electric charge with which the smoothing capacitor C is charged is slowly discharged through the discharge resistor R5. The voltage obtained at this point of time is divided by the resistors R3 and R4 and the divided voltages are detected by the controller 10. When the preset voltage is reached, the controller 10 outputs a motor insulation degradation detection command and turns on the contactors SW1 and SW2. Thereupon, the charge voltage of the smoothing capacitor C is applied to the coil of the motor 5 or 5′ that is selected through the detection resistor R1. Thus, the power output line on the positive side of the smoothing capacitor C forms a closed circuit including the contactor SW2, detection resistor R1, protective resistor R2, contactor S1 or S2, one-phase coil of the motor 5 or 5′, insulation resistor Rx or Rx′ of the motor 5 or 5′ (including a parasitic capacitor of the motor), ground G2 or G1, contactor SW1, and negative-side terminal of the smoothing capacitor C. The charge voltage of the smoothing capacitor C is applied to this closed circuit, whereupon a current (leakage current) corresponding to the insulation resistor Rx or Rx′ of the motor flows through the closed circuit. The potential difference across the detection resistor R1 generated by this current is amplified by the insulation amplifier 12 and compared with the reference voltage from the reference voltage generator 13 by the comparator 14. If the output voltage of the insulation amplifier 12 is higher than the reference voltage, an insulation degradation signal is outputted from the comparator. The insulation degradation signal is inputted to an indicator such as a lamp (not shown), thereby informing an operator of insulation degradation of the selected motor. Alternatively, the insulation degradation signal is inputted to the control device 9 and displayed on a display unit of the control device 9.
If the insulation resistor Rx or Rx′ of the selected motor is degraded, the current (leakage current) that flows through the closed circuit increases, so that the potential difference across the detection resistor R1 becomes greater, and the output voltage from the insulation amplifier 12 increases. If this voltage is higher than the reference voltage, the insulation degradation signal is outputted from the comparator 14. Thereafter, the motors are selected in succession by the selector 11 and checked for insulation resistance degradation.
Thus, the insulation degradation of each motor can be detected with ease. Since a power source for the detection of the insulation degradation of the motor is energy with which the smoothing capacitor C is charged, the insulation degradation of the motor can be easily detected at low cost.
Although the contactor SW2 is provided in the embodiment described above, it is not essential. The DC power output line on the positive side of the smoothing capacitor C may be directly connected to one end of the detection resistor R1 in advance. When a preset voltage is reached by the voltage of the smoothing capacitor divided by the resistors R3 and R4, in this case, the controller 10 closes the contactor SW1 in response to the then outputted motor insulation degradation detection command and also closes the contactor (S1 or S2) selected by the selector 11, thereby forming the closed circuit.
In the present embodiment, moreover, the insulation-resistance degradation detecting device 1 is provided with the voltage-dividing resistors R3 and R4 and the discharge resistor R5 for detecting the voltage of the smoothing capacitor C. Alternatively, however, the motor driving apparatus 2 itself may be provided with voltage-dividing resistors and a discharge resistor for detecting the voltage of the smoothing capacitor C. In this case, the voltage of the smoothing capacitor C that is detected by the voltage-dividing resistors of the motor driving apparatus 2 should only be inputted to the detecting device 1.
If the charge voltage of the smoothing capacitor C reaches a predetermined value and varies little with the electromagnetic contactor 6 closed for a predetermined time or longer, furthermore, the voltage-dividing resistors R3 and R4 and the discharge resistor R5 for detecting the voltage of the smoothing capacitor C may be omitted. In this case, the controller 10 receives a signal to open the electromagnetic contactor 6 from the control device 9. In a predetermined time, it may output the motor insulation degradation detection command so that the contactors SW1 and SW2 are closed to form the closed circuit. The charge voltage of the smoothing capacitor C is applied to the closed circuit.
Number | Date | Country | Kind |
---|---|---|---|
286821/2006 | Oct 2006 | JP | national |