The device is in the field of insulating materials for various household appliances, specifically, a multi-component insulation material that is uniformly distributed throughout an insulating cavity for the appliance.
In at least one aspect, an insulation structure for an appliance includes a cabinet having an outer wrapper and an inner liner, with an insulating cavity defined therebetween. A plurality of hollow insulating spheres is disposed within the insulating cavity, wherein a secondary insulating volume is defined between the plurality of hollow insulating spheres and an interior surface of the cabinet. The interior surface of the cabinet defines the insulating cavity. An insulating fill material disposed within the secondary insulating volume, wherein the insulating fill material and the plurality of hollow insulating spheres define a substantially uniform insulating material.
In at least another aspect, a method of forming an insulating structure includes forming an insulating member, wherein the insulating member includes an interior surface that defines an interior insulating cavity. The method also includes forming a plurality of hollow insulating spheres and forming a fill material, wherein the fill material is defined by a nano-sized particulate or powder material. The method also includes disposing the hollow insulating spheres and the nano/micro-sized particulate material within the interior insulating cavity. The method also includes dispersing the nano/micro-sized particulate material throughout a secondary insulating volume defined within the interior insulating cavity and within the interstitial space defined between the plurality of hollow insulating spheres, wherein the nano/micro-sized particulate material and the hollow insulating spheres at least partially define a substantially uniform insulating material.
In at least another aspect, a method of forming an insulating material to be used in an insulating structure of an appliance includes forming a plurality of hollow insulating spheres, wherein a secondary insulating volume is defined within an interstitial space defined between the plurality of hollow insulating spheres. The method also includes forming a fill material, wherein the fill material is defined by a nano/micro-sized particulate material. The method also includes dispersing the nano/micro-sized particulate material throughout a secondary insulating volume, wherein the nano/micro-sized particulate material and the hollow insulating spheres at least partially define a substantially uniform insulating material.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
As illustrated in
According to the various embodiments, the suspended state 28 is defined by the insulating gas carrier 26 in motion or in an active state 32 and the insulating powder material 24 being an aeolian suspension 34 within the insulating gas carrier 26 while in motion in the active state 32. Typically, the active state 32 of the insulating gas carrier 26 is defined within the insulating cavity 16 before the insulating cavity 16 is sealed and enclosed.
Referring again to
According to the various embodiments, as exemplified in
Referring again to
According to the various embodiments, the aeolian suspension 34 of the insulating gas carrier 26 and the insulating powder material 24 can occur as the insulating gas carrier 26 moves past, through, or proximate to the insulating powder material 24. The fine particle size of the insulating powder material 24 makes the individual particles of the insulating powder material 24 light enough that they can be carried through movement of the insulating gas carrier 26, and suspended within the insulating gas carrier 26 to form the aeolian suspension 34. Due to the movement of the aeolian suspension 34 within the insulating cavity 16 of the cabinet 18, deposition of the insulating powder material 24 from the aeolian suspension 34 occurs. This deposition can be caused by various eddies 60, areas of turbulence within the insulating cavity 16, and other aerodynamic features that slow, re-direct or otherwise modify the flow of the aeolian suspension 34 through the insulating cavity 16. These eddies 60 can be produced by structures disposed within the insulating cavity 16 such as hollow insulating spheres 38, turbulence producing structures 62 attached to the inner liner 22 and/or the outer wrapper 20, combinations thereof and other similar turbulence producing features. Such modification of the flow of the aeolian suspension 34 results in the deposition of the insulating powder material 24 from the aeolian suspension 34. As a result of the injection of the aeolian suspension 34, the insulating cavity 16 is eventually filled with the precipitated insulating powder material 24 to fill all of, or substantially all of, the insulating cavity 16 of the cabinet 18. As will be described more fully below, the aeolian suspension 34 can be injected into a substantially hollow insulating cavity 16, or can be injected into an insulating cavity 16 that includes one or more components of the multi-component insulating material 14, where such components can include, but are not limited to, hollow insulating spheres 38, granular portions of the insulating powder material 24, foam insulation, organic fiber, inorganic fiber, combinations thereof or other insulating material that includes various porous areas 40 between individual particles.
Referring again to
According to the various embodiments, the hollow insulating spheres 38 can include an interior region 78 that is filled with one or more insulating gasses, sulfur, other gaseous material, or can include a low pressure region that defines a partial vacuum within the interior region 78 of the hollow insulating sphere 38.
According to the various embodiments, it is contemplated that the insulating cavity 16 that contains the uniform distribution of the multi-component insulating material 14 is hermetically sealed to contain the multi-component insulating material 14 within the insulating cavity 16. In such an embodiment, it is contemplated that the insulating cavity 16 further defines an at least partial vacuum to create a vacuum insulated structure 80. It is further contemplated that the vacuum insulated structure 80 can be a vacuum insulated cabinet 18 for an appliance 12, a vacuum insulated panel that can be disposed within a cabinet 18 of an appliance 12, various vacuum insulated structures 80 for appliances 12 and other fixtures, as will be described more fully below.
Referring again to
According to the various embodiments, in addition to the use of the aeolian suspension 34, various vibrating mechanisms 90 can be used to ensure that the multi-component insulating material 14 is tightly packed and substantially evenly distributed throughout the insulating cavity 16. Rotating mechanisms and air-pump mechanisms for generating an at least partial vacuum can also be implemented to tightly pack the multi-component insulating material 14 within the insulating cavity. In this manner, it is contemplated that the various hollow insulating spheres 38 of the plurality of hollow insulating spheres 38 that are disposed within the multi-component insulating material 14 are positioned to be in direct physical contact with at least one other adjacent hollow insulating sphere 38 of the plurality of hollow insulating spheres 38. It is also contemplated that at least a portion of the hollow insulating spheres 38 are separated from adjacent hollow insulating spheres 38 where the multi-component insulating material 14 includes larger proportions of the insulating powder material 24 and smaller proportions of the hollow insulating spheres 38.
According to the various embodiments, it is contemplated that the components of the multi-component insulating material 14 can be disposed within the insulating cavity 16 in a pattern, one at a time, or other sequential method. By way of example, and not limitation, it is contemplated that larger particles, such as the hollow insulating spheres 38, can be disposed in the insulating cavity 16 first, and progressively smaller particulate material can be disposed within the insulating cavity 16 thereafter. In this manner, as each smaller particle material is disposed with the insulating cavity 16, the spaces between the larger particulate material can be filled by the smaller particulate material. According to various embodiments, it is contemplated that any porous areas 40 that exist between the various particles of the multi-component insulating material 14 can be filled or otherwise occupied by an insulating gas carrier 26. Accordingly, the use of the multi-component insulating material 14 can be used to fill or substantially fill the entire insulating cavity 16. As discussed above, gas 46 disposed within the insulating cavity 16 can be expressed through one or more vacuum ports 44 to create the vacuum insulated structure 80. As further discussed above, the one or more gas inlets can be used in conjunction with the one or more vacuum ports 44 such that gas 46, such as air, that is expressed from the insulating cavity 16 can be replaced by an insulating gas carrier 26 to increase the insulating properties of the multi-component insulating material 14.
It is contemplated that the components and component proportions included within the multi-component insulating material 14 can vary depending upon the ultimate design, shape, size, desired performance, and other factors may bear on the ultimate design of the multi-component insulating material 14, and the appliance 12 as a whole.
Referring now to
Referring again to
Referring again to
Referring again to
According to the various embodiments, it is contemplated that the insulating gas carrier 26 can include, but is not limited to, argon, neon, carbon dioxide, xenon, krypton, combinations thereof, and other similar insulating gasses.
Referring again to
According to the various embodiments, it is contemplated that the method 400 can be used in conjunction with larger particles that are disposed within the insulating cavity 16 either before the aeolian suspension 34 is introduced or during injection of the aeolian suspension 34 into the insulating cavity 16. These larger particles can include a granular form of the insulating powder material 24, hollow insulating spheres 38, and other similar larger particle insulating materials. When the aeolian suspension 34 is injected through these larger materials, it is contemplated that the use of the vacuum port 44 to draw gas 46 and the insulating gas carrier 26 out from the insulating cavity 16 can help to move the aeolian suspension 34 in the pores and spaces defined between the larger particle material of the multi-component insulating material 14. In this manner, the combination of the larger particle materials and the aeolian suspension 34 can serve to uniformly distribute the various components of the multi-component insulating material 14 through the insulating cavity 16.
Referring now to
Referring now to
Referring again to
Referring again to
According to the various embodiments, it is contemplated that the hollow insulating insulating spheres 38 and the nano/micro-sized particulate material can be combined within the insulating cavity 16 at the same time, such that the hollow insulating spheres 38 and the nano/micro-sized particulate material are disposed through the one or more inlet port 42 at the same time. It is also contemplated that the insulating structure 10 can include multiple inlet ports 42, where each inlet port 42 is dedicated for depositing either the hollow insulating spheres 38 or the nano/micro-sized particulate material into the interior cavity. It is also contemplated that the hollow insulating spheres 38 and the nano/micro-sized particulate material can define a pre-mixed insulating material that is combined before being deposited into the interior insulating cavity 16. In such an embodiment, it is contemplated that the pre-mixed insulating material can be directly disposed within the insulating cavity 16. It is also contemplated that the pre-mixed insulating material can be disposed into the insulating cavity 16 along with an insulating gas carrier 26, such that the insulating gas carrier 26 provides for the substantially even and uniform movement of the components of the multi-component insulating material 14 throughout the insulating cavity 16.
According to various embodiments, it is contemplated the use of the insulating gas carriers 26 can cause hollow insulating spheres 38, such as nano-spheres or microspheres, to become suspended within the insulating gas carrier 26. In this manner, the aeolian suspension 34 can be used to distribute the hollow insulating spheres 38, the nano/micro-sized particulate material, and other components of the multi-component insulating material 14 throughout the insulating cavity 16. It is contemplated that certain components of the multi-component insulating material 14 may be too large to be suspended within the insulating gas carrier 26 moving in the active state 32. In such an embodiment, it is contemplated that such a material that may be substantially free of suspension within the insulating gas carrier 26 can be deposited separately, typically before, the aeolian suspension 34 is introduced into the insulating cavity 16.
Referring again to
Referring to
According to the various embodiments, it is contemplated that the insulating structure 10, when in the form of a cabinet 18, can include an inner liner 22 and outer wrapper 20 that are made up of various materials that can include, but are not limited to, high barrier plastic, metal, polymer, combinations thereof, and other substantially rigid materials that can form a hermetic seal. This seal can be formed by one of varying methods that can include, but are not limited to, crimping, folding, welding, adhering, adhesive bonding, fastening, combinations thereof, and other similar sealing techniques that can form a hermetic seal between like materials or dissimilar materials, depending upon the configuration of the insulating structure 10.
According to the various embodiments, while a refrigerating appliance 12 is exemplified in
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
The present application is a divisional of U.S. patent application Ser. No. 14/961,939 filed Dec. 8, 2015, entitled INSULATION STRUCTURE FOR AN APPLIANCE HAVING A UNIFORMLY MIXED MULTI COMPONENT INSULATION MATERIAL, AND A METHOD FOR EVEN DISTRIBUTION OF MATERIAL COMBINATIONS THEREIN, now U.S. Pat. No. 10,422,573, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1275511 | Welch | Aug 1918 | A |
1718507 | Wenzel et al. | Jun 1929 | A |
1849369 | Frost | Mar 1932 | A |
1921576 | Muffly | Aug 1933 | A |
2108212 | Schellens | Feb 1938 | A |
2128336 | Torstensson | Aug 1938 | A |
2164143 | Munters | Jun 1939 | A |
2191659 | Hintze | Feb 1940 | A |
2318744 | Brown | May 1943 | A |
2356827 | Coss et al. | Aug 1944 | A |
2432042 | Richard | Dec 1947 | A |
2439602 | Heritage | Apr 1948 | A |
2439603 | Heritage | Apr 1948 | A |
2451884 | Stelzer | Oct 1948 | A |
2538780 | Hazard | Jan 1951 | A |
2559356 | Hedges | Jul 1951 | A |
2660564 | Davis | Nov 1953 | A |
2729863 | Kurtz | Jan 1956 | A |
2768046 | Evans | Oct 1956 | A |
2817123 | Jacobs | Dec 1957 | A |
2942438 | Schmeling | Jun 1960 | A |
2985075 | Knutsson-Hall | May 1961 | A |
3086830 | Malia | Apr 1963 | A |
3125388 | Constantini et al. | Mar 1964 | A |
3137900 | Carbary | Jun 1964 | A |
3218111 | Steiner | Nov 1965 | A |
3258883 | Companaro et al. | Jul 1966 | A |
3290893 | Haldopoulos | Dec 1966 | A |
3338451 | Kesling | Aug 1967 | A |
3353301 | Heilweil et al. | Nov 1967 | A |
3353321 | Heilweil et al. | Nov 1967 | A |
3358059 | Snyder | Dec 1967 | A |
3379481 | Fisher | Apr 1968 | A |
3408316 | Mueller et al. | Oct 1968 | A |
3471416 | Fijal | Oct 1969 | A |
3597850 | Jenkins | Aug 1971 | A |
3607169 | Coxe | Sep 1971 | A |
3632012 | Kitson | Jan 1972 | A |
3633783 | Aue | Jan 1972 | A |
3634971 | Kesling | Jan 1972 | A |
3635536 | Lackey et al. | Jan 1972 | A |
3670521 | Dodge, III et al. | Jun 1972 | A |
3688384 | Mizushima et al. | Sep 1972 | A |
3769770 | Deschamps et al. | Nov 1973 | A |
3862880 | Feldman | Jan 1975 | A |
3868829 | Mann et al. | Mar 1975 | A |
3875683 | Waters | Apr 1975 | A |
3910658 | Lindenschmidt | Oct 1975 | A |
3933398 | Haag | Jan 1976 | A |
3935787 | Fisher | Feb 1976 | A |
4005919 | Hoge et al. | Feb 1977 | A |
4006947 | Haag et al. | Feb 1977 | A |
4043624 | Lindenschmidt | Aug 1977 | A |
4050145 | Benford | Sep 1977 | A |
4067628 | Sherbum | Jan 1978 | A |
4170391 | Bottger | Oct 1979 | A |
4242241 | Rosen et al. | Dec 1980 | A |
4260876 | Hochheiser | Apr 1981 | A |
4272935 | Lukas et al. | Jun 1981 | A |
4303730 | Torobin | Dec 1981 | A |
4303732 | Torobin | Dec 1981 | A |
4325734 | Burrage et al. | Apr 1982 | A |
4330310 | Tate, Jr. et al. | May 1982 | A |
4332429 | Frick et al. | Jun 1982 | A |
4396362 | Thompson et al. | Aug 1983 | A |
4417382 | Schiff | Nov 1983 | A |
4492368 | DeLeeuw et al. | Jan 1985 | A |
4529368 | Makansi | Jul 1985 | A |
4529638 | Yamamoto | Jul 1985 | A |
4548196 | Torobin | Oct 1985 | A |
4554041 | Schreier | Nov 1985 | A |
4583796 | Nakajima et al. | Apr 1986 | A |
4660271 | Lenhardt | Apr 1987 | A |
4671909 | Torobin | Jun 1987 | A |
4671985 | Rodrigues et al. | Jun 1987 | A |
4681788 | Barito et al. | Jul 1987 | A |
4745015 | Cheng et al. | May 1988 | A |
4777154 | Torobin | Oct 1988 | A |
4781968 | Kellerman | Nov 1988 | A |
4805293 | Buchser | Feb 1989 | A |
4865875 | Kellerman | Sep 1989 | A |
4870735 | Jahr et al. | Oct 1989 | A |
4914341 | Weaver et al. | Apr 1990 | A |
4917841 | Jenkins | Apr 1990 | A |
5007226 | Nelson | Apr 1991 | A |
5018328 | Cur et al. | May 1991 | A |
5033636 | Jenkins | Jul 1991 | A |
5066437 | Barito et al. | Nov 1991 | A |
5082335 | Cur et al. | Jan 1992 | A |
5084320 | Barito et al. | Jan 1992 | A |
5094899 | Rusek, Jr. | Mar 1992 | A |
5118174 | Benford et al. | Jun 1992 | A |
5121593 | Forslund | Jun 1992 | A |
5168674 | Molthen | Dec 1992 | A |
5171346 | Hallett | Dec 1992 | A |
5175975 | Benson et al. | Jan 1993 | A |
5212143 | Torobin | May 1993 | A |
5221136 | Hauck et al. | Jun 1993 | A |
5227245 | Brands et al. | Jul 1993 | A |
5231811 | Andrepont et al. | Aug 1993 | A |
5248196 | Lynn et al. | Sep 1993 | A |
5251455 | Cur et al. | Oct 1993 | A |
5252408 | Bridges et al. | Oct 1993 | A |
5263773 | Gable et al. | Nov 1993 | A |
5273801 | Barry et al. | Dec 1993 | A |
5340208 | Hauck et al. | Aug 1994 | A |
5353868 | Abbott | Oct 1994 | A |
5359795 | Mawby et al. | Nov 1994 | A |
5375428 | LeClear et al. | Dec 1994 | A |
5397759 | Torobin | Mar 1995 | A |
5418055 | Chen et al. | May 1995 | A |
5500287 | Henderson | Mar 1996 | A |
5500305 | Bridges et al. | Mar 1996 | A |
5505810 | Kirby et al. | Apr 1996 | A |
5507999 | Copsey et al. | Apr 1996 | A |
5509248 | Dellby et al. | Apr 1996 | A |
5512345 | Tsutsumi et al. | Apr 1996 | A |
5532034 | Kirby et al. | Jul 1996 | A |
5533311 | Tirrell et al. | Jul 1996 | A |
5586680 | Dellby et al. | Dec 1996 | A |
5599081 | Revlett et al. | Feb 1997 | A |
5600966 | Valence et al. | Feb 1997 | A |
5632543 | McGrath et al. | May 1997 | A |
5640828 | Reeves et al. | Jun 1997 | A |
5652039 | Tremain et al. | Jul 1997 | A |
5716581 | Tirrell et al. | Feb 1998 | A |
5768837 | Sjoholm | Jun 1998 | A |
5792801 | Tsuda et al. | Aug 1998 | A |
5826780 | Messer et al. | Oct 1998 | A |
5827385 | Meyer et al. | Oct 1998 | A |
5834126 | Sheu | Nov 1998 | A |
5843353 | DeVos et al. | Dec 1998 | A |
5857277 | Mayze | Jan 1999 | A |
5866228 | Awata | Feb 1999 | A |
5866247 | Klatt et al. | Feb 1999 | A |
5868890 | Fredrick | Feb 1999 | A |
5900299 | Wynne | May 1999 | A |
5918478 | Bostic et al. | Jul 1999 | A |
5924295 | Park | Jul 1999 | A |
5950395 | Takemasa et al. | Sep 1999 | A |
5952404 | Simpson et al. | Sep 1999 | A |
5966963 | Kovalaske | Oct 1999 | A |
5985189 | Lynn et al. | Nov 1999 | A |
6013700 | Asano et al. | Jan 2000 | A |
6063471 | Dietrich et al. | May 2000 | A |
6094922 | Ziegler | Aug 2000 | A |
6109712 | Haworth et al. | Aug 2000 | A |
6128914 | Tamaoki et al. | Oct 2000 | A |
6132837 | Boes et al. | Oct 2000 | A |
6158233 | Cohen et al. | Dec 2000 | A |
6163976 | Tada et al. | Dec 2000 | A |
6164030 | Dietrich | Dec 2000 | A |
6164739 | Schulz et al. | Dec 2000 | A |
6187256 | Aslan et al. | Feb 2001 | B1 |
6209342 | Banicevic et al. | Apr 2001 | B1 |
6210625 | Matsushita et al. | Apr 2001 | B1 |
6220473 | Lehman et al. | Apr 2001 | B1 |
6224179 | Wenning et al. | May 2001 | B1 |
6244458 | Frysinger et al. | Jun 2001 | B1 |
6260377 | Tamaoki et al. | Jul 2001 | B1 |
6263600 | Brink | Jul 2001 | B1 |
6266970 | Nam et al. | Jul 2001 | B1 |
6294595 | Tyagi et al. | Sep 2001 | B1 |
6305768 | Nishimoto | Oct 2001 | B1 |
6485122 | Wolf et al. | Jan 2002 | B2 |
6390378 | Briscoe, Jr. et al. | May 2002 | B1 |
6406449 | Moore et al. | Jun 2002 | B1 |
6408841 | Hirath et al. | Jun 2002 | B1 |
6415623 | Jennings et al. | Jul 2002 | B1 |
6428130 | Banicevic et al. | Aug 2002 | B1 |
6430780 | Kim et al. | Aug 2002 | B1 |
6460955 | Vaughan et al. | Oct 2002 | B1 |
6519919 | Takenouchi et al. | Feb 2003 | B1 |
6623413 | Wynne | Sep 2003 | B1 |
6629429 | Kawamura et al. | Oct 2003 | B1 |
6651444 | Morimoto et al. | Nov 2003 | B2 |
6655766 | Hodges | Dec 2003 | B2 |
6689840 | Eustace et al. | Feb 2004 | B1 |
6716501 | Kovalchuk et al. | Apr 2004 | B2 |
6736472 | Banicevic | May 2004 | B2 |
6749780 | Tobias | Jun 2004 | B2 |
6773082 | Lee | Aug 2004 | B2 |
6860082 | Yamamoto et al. | Mar 2005 | B1 |
6938968 | Tanimoto et al. | Sep 2005 | B2 |
6997530 | Avendano et al. | Feb 2006 | B2 |
7008032 | Chekal et al. | Mar 2006 | B2 |
7026054 | Ikegawa et al. | Apr 2006 | B2 |
7197792 | Moon | Apr 2007 | B2 |
7197888 | LeClear et al. | Apr 2007 | B2 |
7207181 | Murray et al. | Apr 2007 | B2 |
7210308 | Tanimoto et al. | May 2007 | B2 |
7234247 | Maguire | Jun 2007 | B2 |
7263744 | Kim et al. | Sep 2007 | B2 |
7278279 | Hirai et al. | Oct 2007 | B2 |
7284390 | Van Meter et al. | Oct 2007 | B2 |
7296432 | Muller et al. | Nov 2007 | B2 |
7316125 | Uekado et al. | Jan 2008 | B2 |
7343757 | Egan et al. | Mar 2008 | B2 |
7360371 | Feinauer et al. | Apr 2008 | B2 |
7386992 | Adamski et al. | Jun 2008 | B2 |
7449227 | Echigoya et al. | Nov 2008 | B2 |
7475562 | Jackovin | Jan 2009 | B2 |
7517031 | Laible | Apr 2009 | B2 |
7517576 | Echigoya et al. | Apr 2009 | B2 |
7537817 | Tsunetsugu et al. | May 2009 | B2 |
7614244 | Venkatakrishnan et al. | Nov 2009 | B2 |
7625622 | Teckoe et al. | Dec 2009 | B2 |
7641298 | Hirath et al. | Jan 2010 | B2 |
7665326 | LeClear et al. | Feb 2010 | B2 |
7703217 | Tada et al. | Apr 2010 | B2 |
7703824 | Kittelson et al. | Apr 2010 | B2 |
7757511 | LeClear et al. | Jul 2010 | B2 |
7762634 | Tenra et al. | Jul 2010 | B2 |
7794805 | Aumaugher et al. | Sep 2010 | B2 |
7815269 | Wenning et al. | Oct 2010 | B2 |
7842269 | Schachtely et al. | Nov 2010 | B2 |
7845745 | Gorz et al. | Dec 2010 | B2 |
7861538 | Welle et al. | Jan 2011 | B2 |
7886559 | Hell et al. | Feb 2011 | B2 |
7905614 | Aoki | Mar 2011 | B2 |
7908873 | Cur et al. | Mar 2011 | B1 |
7930892 | Vonderhaar | Apr 2011 | B1 |
7938148 | Carlier et al. | May 2011 | B2 |
7992257 | Kim | Aug 2011 | B2 |
8049518 | Wern et al. | Nov 2011 | B2 |
8074469 | Hamel et al. | Dec 2011 | B2 |
8079652 | Laible et al. | Dec 2011 | B2 |
8083985 | Luisi et al. | Dec 2011 | B2 |
8108972 | Bae et al. | Feb 2012 | B2 |
8113604 | Olson et al. | Feb 2012 | B2 |
8117865 | Allard et al. | Feb 2012 | B2 |
8157338 | Seo et al. | Apr 2012 | B2 |
8162415 | Hagele et al. | Apr 2012 | B2 |
8163080 | Meyer et al. | Apr 2012 | B2 |
8176746 | Allard et al. | May 2012 | B2 |
8182051 | Laible et al. | May 2012 | B2 |
8197019 | Kim | Jun 2012 | B2 |
8202599 | Henn | Jun 2012 | B2 |
8211523 | Fujimori et al. | Jul 2012 | B2 |
8266923 | Bauer et al. | Sep 2012 | B2 |
8281558 | Niemeyer et al. | Oct 2012 | B2 |
8299545 | Chen et al. | Oct 2012 | B2 |
8299656 | Allard et al. | Oct 2012 | B2 |
8343395 | Hu et al. | Jan 2013 | B2 |
8353177 | Adamski et al. | Jan 2013 | B2 |
8382219 | Hottmann et al. | Feb 2013 | B2 |
8434317 | Besore | May 2013 | B2 |
8439460 | Laible et al. | May 2013 | B2 |
8453476 | Kendall et al. | Jun 2013 | B2 |
8456040 | Allard et al. | Jun 2013 | B2 |
8491070 | Davis et al. | Jul 2013 | B2 |
8516845 | Wuesthoff et al. | Aug 2013 | B2 |
8522563 | Allard et al. | Sep 2013 | B2 |
8528284 | Aspenson et al. | Sep 2013 | B2 |
8590992 | Lim et al. | Nov 2013 | B2 |
8717029 | Chae et al. | May 2014 | B2 |
8726690 | Cur et al. | May 2014 | B2 |
8733123 | Adamski et al. | May 2014 | B2 |
8739567 | Junge | Jun 2014 | B2 |
8739568 | Allard et al. | Jun 2014 | B2 |
8752918 | Kang | Jun 2014 | B2 |
8752921 | Gorz et al. | Jun 2014 | B2 |
8756952 | Adamski et al. | Jun 2014 | B2 |
8763847 | Mortarotti | Jul 2014 | B2 |
8764133 | Park et al. | Jul 2014 | B2 |
8770682 | Lee et al. | Jul 2014 | B2 |
8776390 | Hanaoka et al. | Jul 2014 | B2 |
8790477 | Tenra et al. | Jul 2014 | B2 |
8840204 | Bauer et al. | Sep 2014 | B2 |
8852708 | Kim et al. | Oct 2014 | B2 |
8871323 | Kim et al. | Oct 2014 | B2 |
8881398 | Hanley et al. | Nov 2014 | B2 |
8899068 | Jung et al. | Dec 2014 | B2 |
8905503 | Sahasrabudhe et al. | Dec 2014 | B2 |
8927084 | Jeon et al. | Jan 2015 | B2 |
8943770 | Sanders et al. | Feb 2015 | B2 |
8944541 | Allard et al. | Feb 2015 | B2 |
8986483 | Cur et al. | Mar 2015 | B2 |
9009969 | Choi et al. | Apr 2015 | B2 |
RE45501 | Maguire | May 2015 | E |
9038403 | Cur et al. | May 2015 | B2 |
9056952 | Eilbracht et al. | Jun 2015 | B2 |
9071907 | Kuehl et al. | Jun 2015 | B2 |
9074811 | Korkmaz | Jul 2015 | B2 |
9080808 | Choi et al. | Jul 2015 | B2 |
9102076 | Doshi et al. | Aug 2015 | B2 |
9103482 | Fujimori et al. | Aug 2015 | B2 |
9125546 | Kleemann et al. | Sep 2015 | B2 |
9140480 | Kuehl et al. | Sep 2015 | B2 |
9140481 | Cur et al. | Sep 2015 | B2 |
9170045 | Oh et al. | Oct 2015 | B2 |
9170046 | Jung et al. | Oct 2015 | B2 |
9182158 | Wu | Nov 2015 | B2 |
9188382 | Kim et al. | Nov 2015 | B2 |
8955352 | Lee et al. | Dec 2015 | B2 |
9221210 | Wu et al. | Dec 2015 | B2 |
9228386 | Thielmann et al. | Jan 2016 | B2 |
9252570 | Allard et al. | Feb 2016 | B2 |
9267727 | Lim et al. | Feb 2016 | B2 |
9303915 | Kim et al. | Apr 2016 | B2 |
9328951 | Shin et al. | May 2016 | B2 |
9353984 | Kim et al. | May 2016 | B2 |
9410732 | Choi et al. | Aug 2016 | B2 |
9423171 | Betto et al. | Aug 2016 | B2 |
9429356 | Kim et al. | Aug 2016 | B2 |
9448004 | Kim et al. | Sep 2016 | B2 |
9463917 | Wu et al. | Oct 2016 | B2 |
9482463 | Choi et al. | Nov 2016 | B2 |
9506689 | Carbajal et al. | Nov 2016 | B2 |
9518777 | Lee et al. | Dec 2016 | B2 |
9568238 | Kim et al. | Feb 2017 | B2 |
D781641 | Incukur | Mar 2017 | S |
D781642 | Incukur | Mar 2017 | S |
9605891 | Lee et al. | Mar 2017 | B2 |
9696085 | Seo et al. | Jul 2017 | B2 |
9702621 | Cho et al. | Jul 2017 | B2 |
9759479 | Ramm et al. | Sep 2017 | B2 |
9777958 | Choi et al. | Oct 2017 | B2 |
9791204 | Kim et al. | Oct 2017 | B2 |
9833942 | Wu et al. | Dec 2017 | B2 |
20020004111 | Matsubara et al. | Jan 2002 | A1 |
20020114937 | Albert et al. | Aug 2002 | A1 |
20020144482 | Henson et al. | Oct 2002 | A1 |
20020168496 | Morimoto et al. | Nov 2002 | A1 |
20030008100 | Horn | Jan 2003 | A1 |
20030041612 | Piloni et al. | Mar 2003 | A1 |
20030056334 | Finkelstein | Mar 2003 | A1 |
20030157284 | Tanimoto et al. | Aug 2003 | A1 |
20030167789 | Tanimoto et al. | Sep 2003 | A1 |
20030173883 | Koons | Sep 2003 | A1 |
20040144130 | Jung | Jul 2004 | A1 |
20040178707 | Avendano | Sep 2004 | A1 |
20040180176 | Rusek | Sep 2004 | A1 |
20040226141 | Yates et al. | Nov 2004 | A1 |
20040253406 | Hayashi et al. | Dec 2004 | A1 |
20050042247 | Gomoll et al. | Feb 2005 | A1 |
20050229614 | Ansted | Oct 2005 | A1 |
20050235682 | Hirai et al. | Oct 2005 | A1 |
20060064846 | Espindola et al. | Mar 2006 | A1 |
20060076863 | Echigoya et al. | Apr 2006 | A1 |
20060201189 | Adamski et al. | Sep 2006 | A1 |
20060261718 | Miseki et al. | Nov 2006 | A1 |
20060263571 | Tsunetsugu et al. | Nov 2006 | A1 |
20060266075 | Itsuki et al. | Nov 2006 | A1 |
20070001563 | Park et al. | Jan 2007 | A1 |
20070099502 | Ferinauer | May 2007 | A1 |
20070176526 | Gomoll et al. | Aug 2007 | A1 |
20070266654 | Noale | Nov 2007 | A1 |
20080044488 | Zimmer et al. | Feb 2008 | A1 |
20080048540 | Kim | Feb 2008 | A1 |
20080138458 | Ozasa et al. | Jun 2008 | A1 |
20080196441 | Ferreira | Aug 2008 | A1 |
20080300356 | Meyer et al. | Dec 2008 | A1 |
20080309210 | Luisi et al. | Dec 2008 | A1 |
20090032541 | Rogala et al. | Feb 2009 | A1 |
20090056367 | Neumann | Mar 2009 | A1 |
20090058244 | Cho et al. | Mar 2009 | A1 |
20090113925 | Korkmaz | May 2009 | A1 |
20090131571 | Fraser et al. | May 2009 | A1 |
20090179541 | Smith et al. | Jul 2009 | A1 |
20090205357 | Lim et al. | Aug 2009 | A1 |
20090302728 | Rotter et al. | Dec 2009 | A1 |
20090322470 | Yoo et al. | Dec 2009 | A1 |
20090324871 | Henn | Dec 2009 | A1 |
20100206464 | Heo et al. | Aug 2010 | A1 |
20100218543 | Duchame | Sep 2010 | A1 |
20100231109 | Matzke et al. | Sep 2010 | A1 |
20100287843 | Oh | Nov 2010 | A1 |
20100287974 | Cur et al. | Nov 2010 | A1 |
20100293984 | Adamski et al. | Nov 2010 | A1 |
20100295435 | Kendall et al. | Nov 2010 | A1 |
20110011119 | Kuehl et al. | Jan 2011 | A1 |
20110023527 | Kwon et al. | Feb 2011 | A1 |
20110030894 | Tenra et al. | Feb 2011 | A1 |
20110095669 | Moon et al. | Apr 2011 | A1 |
20110146325 | Lee | Jun 2011 | A1 |
20110146335 | Jung et al. | Jun 2011 | A1 |
20110165367 | Kojima et al. | Jul 2011 | A1 |
20110215694 | Fink et al. | Sep 2011 | A1 |
20110220662 | Kim et al. | Sep 2011 | A1 |
20110241513 | Nomura et al. | Oct 2011 | A1 |
20110241514 | Nomura et al. | Oct 2011 | A1 |
20110260351 | Corradi et al. | Oct 2011 | A1 |
20110290808 | Bai et al. | Dec 2011 | A1 |
20110309732 | Horil et al. | Dec 2011 | A1 |
20110315693 | Cur et al. | Dec 2011 | A1 |
20120000234 | Adamski et al. | Jan 2012 | A1 |
20120011879 | Gu | Jan 2012 | A1 |
20120060544 | Lee et al. | Mar 2012 | A1 |
20120099255 | Lee et al. | Apr 2012 | A1 |
20120103006 | Jung et al. | May 2012 | A1 |
20120104923 | Jung et al. | May 2012 | A1 |
20120118002 | Kim et al. | May 2012 | A1 |
20120137501 | Allard et al. | Jun 2012 | A1 |
20120152151 | Meyer et al. | Jun 2012 | A1 |
20120196059 | Fujimori et al. | Aug 2012 | A1 |
20120231204 | Jeon et al. | Sep 2012 | A1 |
20120237715 | McCracken | Sep 2012 | A1 |
20120240612 | Wuesthoff et al. | Sep 2012 | A1 |
20120273111 | Nomura et al. | Nov 2012 | A1 |
20120279247 | Katu et al. | Nov 2012 | A1 |
20120280608 | Park et al. | Nov 2012 | A1 |
20120285971 | Junge et al. | Nov 2012 | A1 |
20120297813 | Hanley et al. | Nov 2012 | A1 |
20120324937 | Adamski et al. | Dec 2012 | A1 |
20130026900 | Oh et al. | Jan 2013 | A1 |
20130033163 | Kang | Feb 2013 | A1 |
20130043780 | Ootsuka et al. | Feb 2013 | A1 |
20130068990 | Eilbracht et al. | Mar 2013 | A1 |
20130111941 | Yu et al. | May 2013 | A1 |
20130221819 | Wing | Aug 2013 | A1 |
20130255304 | Cur et al. | Oct 2013 | A1 |
20130256318 | Kuehl et al. | Oct 2013 | A1 |
20130256319 | Kuehl et al. | Oct 2013 | A1 |
20130257256 | Allard et al. | Oct 2013 | A1 |
20130257257 | Cur et al. | Oct 2013 | A1 |
20130264439 | Allard et al. | Oct 2013 | A1 |
20130270732 | Wu et al. | Oct 2013 | A1 |
20130285527 | Choi et al. | Oct 2013 | A1 |
20130293080 | Kim et al. | Nov 2013 | A1 |
20130305535 | Cur et al. | Nov 2013 | A1 |
20130328472 | Shim et al. | Dec 2013 | A1 |
20140009055 | Cho et al. | Jan 2014 | A1 |
20140097733 | Seo et al. | Apr 2014 | A1 |
20140132144 | Kim et al. | May 2014 | A1 |
20140166926 | Lee et al. | Jun 2014 | A1 |
20140171578 | Meyer et al. | Jun 2014 | A1 |
20140190978 | Bowman et al. | Jul 2014 | A1 |
20140196305 | Smith | Jul 2014 | A1 |
20140216706 | Melton et al. | Aug 2014 | A1 |
20140232250 | Kim et al. | Aug 2014 | A1 |
20140260332 | Wu | Sep 2014 | A1 |
20140346942 | Kim et al. | Nov 2014 | A1 |
20140364527 | Matthias et al. | Dec 2014 | A1 |
20150011668 | Kolb et al. | Jan 2015 | A1 |
20150015133 | Carbajal et al. | Jan 2015 | A1 |
20150017386 | Kolb et al. | Jan 2015 | A1 |
20150027628 | Cravens et al. | Jan 2015 | A1 |
20150059399 | Hwang et al. | Mar 2015 | A1 |
20150115790 | Ogg | Apr 2015 | A1 |
20150147514 | Shinohara et al. | May 2015 | A1 |
20150159936 | Oh et al. | Jun 2015 | A1 |
20150176888 | Cur et al. | Jun 2015 | A1 |
20150184923 | Jeon | Jul 2015 | A1 |
20150190840 | Muto et al. | Jul 2015 | A1 |
20150224685 | Amstutz | Aug 2015 | A1 |
20150241115 | Strauss et al. | Aug 2015 | A1 |
20150241118 | Wu | Aug 2015 | A1 |
20150285551 | Aiken et al. | Oct 2015 | A1 |
20160084567 | Fernandez et al. | Mar 2016 | A1 |
20160116100 | Thiery et al. | Apr 2016 | A1 |
20160123055 | Ueyama | May 2016 | A1 |
20160161175 | Benold et al. | Jun 2016 | A1 |
20160178267 | Hao et al. | Jun 2016 | A1 |
20160178269 | Niemeyer et al. | Jun 2016 | A1 |
20160235201 | Soot | Aug 2016 | A1 |
20160240839 | Umeyama et al. | Aug 2016 | A1 |
20160258671 | Allard et al. | Sep 2016 | A1 |
20160290702 | Sexton et al. | Oct 2016 | A1 |
20160348957 | Hitzelberger et al. | Dec 2016 | A1 |
20170038126 | Lee et al. | Feb 2017 | A1 |
20170157809 | Deka et al. | Jun 2017 | A1 |
20170176086 | Kang | Jun 2017 | A1 |
20170184339 | Liu et al. | Jun 2017 | A1 |
20170191746 | Seo | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
626838 | May 1961 | CA |
1320631 | Jul 1993 | CA |
2259665 | Jan 1998 | CA |
2640006 | Aug 2007 | CA |
1158509 | Jul 2004 | CN |
1970185 | May 2007 | CN |
100359272 | Jan 2008 | CN |
101437756 | May 2009 | CN |
201680116 | Dec 2010 | CN |
201748744 | Feb 2011 | CN |
102296714 | May 2012 | CN |
102452522 | May 2012 | CN |
102717578 | Oct 2012 | CN |
102720277 | Oct 2012 | CN |
103072321 | May 2013 | CN |
202973713 | Jun 2013 | CN |
203331442 | Dec 2013 | CN |
104816478 | Aug 2015 | CN |
105115221 | Dec 2015 | CN |
2014963379 | Jan 2016 | CN |
1150190 | Jun 1963 | DE |
4110292 | Oct 1992 | DE |
4409091 | Sep 1995 | DE |
69401889 | Sep 1997 | DE |
19818890 | Nov 1999 | DE |
19914105 | Sep 2000 | DE |
19915311 | Oct 2000 | DE |
102008026528 | Dec 2009 | DE |
102009046810 | May 2011 | DE |
102010024951 | Dec 2011 | DE |
102011051178 | Dec 2012 | DE |
102012223536 | Jun 2014 | DE |
102012223541 | Jun 2014 | DE |
0260699 | Mar 1988 | EP |
0480451 | Apr 1992 | EP |
0645576 | Mar 1995 | EP |
0691518 | Jan 1996 | EP |
0860669 | Aug 1998 | EP |
1087186 | Mar 2001 | EP |
1200785 | May 2002 | EP |
1243880 | Sep 2002 | EP |
1496322 | Jan 2005 | EP |
1505359 | Feb 2005 | EP |
1602425 | Dec 2005 | EP |
1624263 | Aug 2006 | EP |
1484563 | Oct 2008 | EP |
2342511 | Aug 2012 | EP |
2543942 | Jan 2013 | EP |
2607073 | Jun 2013 | EP |
2789951 | Oct 2014 | EP |
2878427 | Jun 2015 | EP |
2980963 | Apr 2013 | FR |
2991698 | Dec 2013 | FR |
837929 | Jun 1960 | GB |
1214548 | Jun 1960 | GB |
4828353 | Aug 1973 | JP |
51057777 | May 1976 | JP |
59191588 | Dec 1984 | JP |
S61168400 | Oct 1986 | JP |
03013779 | Jan 1991 | JP |
404165197 | Jun 1992 | JP |
04165197 | Oct 1992 | JP |
04309778 | Nov 1992 | JP |
06159922 | Jun 1994 | JP |
7001479 | Jan 1995 | JP |
H07167377 | Jul 1995 | JP |
08300052 | Nov 1996 | JP |
H08303686 | Nov 1996 | JP |
H09166271 | Jun 1997 | JP |
10113983 | May 1998 | JP |
11159693 | Jun 1999 | JP |
11311395 | Nov 1999 | JP |
11336990 | Dec 1999 | JP |
2000097390 | Apr 2000 | JP |
2000117334 | Apr 2000 | JP |
2000320958 | Nov 2000 | JP |
2001038188 | Feb 2001 | JP |
2001116437 | Apr 2001 | JP |
2001336691 | Dec 2001 | JP |
2001343176 | Dec 2001 | JP |
2002068853 | Mar 2002 | JP |
3438948 | Aug 2003 | JP |
03478771 | Dec 2003 | JP |
2004303695 | Oct 2004 | JP |
2005069596 | Mar 2005 | JP |
2005098637 | Apr 2005 | JP |
2005114015 | Apr 2005 | JP |
2005164193 | Jun 2005 | JP |
2005256849 | Sep 2005 | JP |
2006077792 | Mar 2006 | JP |
2006161832 | Jun 2006 | JP |
2006161834 | Jun 2006 | JP |
2006161945 | Jun 2006 | JP |
037928010 | Jul 2006 | JP |
2006200685 | Aug 2006 | JP |
2007263186 | Oct 2007 | JP |
4111096 | Jul 2008 | JP |
2008157431 | Jul 2008 | JP |
2008190815 | Aug 2008 | JP |
2009063064 | Mar 2009 | JP |
2009162402 | Jul 2009 | JP |
2009524570 | Jul 2009 | JP |
2010017437 | Jan 2010 | JP |
2010071565 | Apr 2010 | JP |
2010108199 | May 2010 | JP |
2010145002 | Jul 2010 | JP |
045451286 | Sep 2010 | JP |
2010236770 | Oct 2010 | JP |
2010276309 | Dec 2010 | JP |
2011002033 | Jan 2011 | JP |
2011069612 | Apr 2011 | JP |
04779684 | Sep 2011 | JP |
2011196644 | Oct 2011 | JP |
2012026493 | Feb 2012 | JP |
04897473 | Mar 2012 | JP |
2012063029 | Mar 2012 | JP |
2012087993 | May 2012 | JP |
2012163258 | Aug 2012 | JP |
2012242075 | Dec 2012 | JP |
2013002484 | Jan 2013 | JP |
2013050242 | Mar 2013 | JP |
2013050267 | Mar 2013 | JP |
2013076471 | Apr 2013 | JP |
2013088036 | May 2013 | JP |
2013195009 | Sep 2013 | JP |
20020057547 | Jul 2002 | KR |
20020080938 | Oct 2002 | KR |
20030083812 | Nov 2003 | KR |
20040000126 | Jan 2004 | KR |
20050095357 | Sep 2005 | KR |
100620025 | Sep 2006 | KR |
20070044024 | Apr 2007 | KR |
1020070065743 | Jun 2007 | KR |
1020080103845 | Nov 2008 | KR |
20090026045 | Mar 2009 | KR |
1017776 | Feb 2011 | KR |
20120007241 | Jan 2012 | KR |
2012046621 | May 2012 | KR |
2012051305 | May 2012 | KR |
20150089495 | Aug 2015 | KR |
547614 | May 1977 | RU |
2061925 | Jun 1996 | RU |
2077411 | Apr 1997 | RU |
2081858 | Jun 1997 | RU |
2132522 | Jun 1999 | RU |
2132522 | Jun 1999 | RU |
2162576 | Jan 2001 | RU |
2166158 | Apr 2001 | RU |
2187433 | Aug 2002 | RU |
2234645 | Aug 2004 | RU |
2252377 | May 2005 | RU |
2253792 | Jun 2005 | RU |
2349618 | Mar 2009 | RU |
2414288 | Mar 2011 | RU |
2422598 | Jun 2011 | RU |
142892 | Jul 2014 | RU |
2529525 | Sep 2014 | RU |
2571031 | Dec 2015 | RU |
203707 | Dec 1967 | SU |
00476407 | Jul 1975 | SU |
648780 | Feb 1979 | SU |
01307186 | Apr 1987 | SU |
9614207 | May 1996 | WO |
9721767 | Jun 1997 | WO |
1998049506 | Nov 1998 | WO |
02060576 | Apr 1999 | WO |
9614207 | Apr 1999 | WO |
9920961 | Apr 1999 | WO |
9920964 | Apr 1999 | WO |
199920964 | Apr 1999 | WO |
200160598 | Aug 2001 | WO |
200202987 | Jan 2002 | WO |
2002052208 | Apr 2002 | WO |
02060576 | Aug 2002 | WO |
03072684 | Sep 2003 | WO |
03089729 | Oct 2003 | WO |
2004010042 | Jan 2004 | WO |
2006045694 | May 2006 | WO |
2006073540 | Jul 2006 | WO |
2007033836 | Mar 2007 | WO |
2007085511 | Aug 2007 | WO |
2007106067 | Sep 2007 | WO |
2008065453 | Jun 2008 | WO |
2008077741 | Jul 2008 | WO |
2008118536 | Oct 2008 | WO |
2008122483 | Oct 2008 | WO |
2009013106 | Jan 2009 | WO |
2009013106 | Jan 2009 | WO |
2009112433 | Sep 2009 | WO |
2009147106 | Dec 2009 | WO |
2010007783 | Jan 2010 | WO |
2010029730 | Mar 2010 | WO |
2010043009 | Apr 2010 | WO |
2010092627 | Aug 2010 | WO |
2010127947 | Nov 2010 | WO |
2010127947 | Nov 2010 | WO |
2011003711 | Jan 2011 | WO |
2011058678 | May 2011 | WO |
2011058678 | May 2011 | WO |
2011081498 | Jul 2011 | WO |
2010007783 | Jan 2012 | WO |
2012023705 | Feb 2012 | WO |
2012026715 | Mar 2012 | WO |
2012031885 | Mar 2012 | WO |
2012044001 | Apr 2012 | WO |
2012043990 | May 2012 | WO |
2012085212 | Jun 2012 | WO |
2012119892 | Sep 2012 | WO |
2012152646 | Nov 2012 | WO |
2013116103 | Aug 2013 | WO |
2013116302 | Aug 2013 | WO |
2014038150 | Mar 2014 | WO |
2014038150 | Mar 2014 | WO |
2014095542 | Jun 2014 | WO |
2014121893 | Aug 2014 | WO |
2014184393 | Nov 2014 | WO |
2014184393 | Nov 2014 | WO |
2013140816 | Aug 2015 | WO |
2016082907 | Jun 2016 | WO |
2017029782 | Feb 2017 | WO |
Entry |
---|
Kitchen Aid, “Refrigerator User Instructions,” 120 pages, published Sep. 5, 2015. |
Cai et al., “Generation of Metal Nanoparticles by Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636. |
Raszewski et al., “Methods for Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages. |
BASF, “Balindur™ Solutions for fixing Vaccum Insulated Panels,” web page, 4 pages, date unknown, http://performance-materials.basf.us/products/view/family/balindur, at least as early as Dec. 21, 2015. |
BASF, “Balindur™,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/brand/BALINDUR, at least as early as Dec. 21, 2015. |
PU Solutions Elastogram, “Balindur™ masters the challenge,” web page, 2 pages, http://product-finder.basf.com/group/corporate/product-finder/en/literature-document:/Brand+Balindur-Flyer--Balindur+The+new+VIP+fixation+technology-English.pdf, Dec. 21, 2014. |
Number | Date | Country | |
---|---|---|---|
20190360743 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14961939 | Dec 2015 | US |
Child | 16534384 | US |