1. Field of the Disclosure
The disclosure relates in general to building products, and, more particularly, to a bracket and insulation system for use and positioning on a building substrate.
2. Background Art
In the past, in order to provide a highly thermally efficient (metal) wall or (metal) roof assembly for a building enclosure, it has been necessary for metal materials, typically an exterior and interior metal skin, to be bonded to either side of an insulated panel core inside a factory thereby creating a foam panel. These metal skins are typically profiled and have offsets in them to prevent the exterior metal skin from contacting the interior metal skin. This is done in an effort to prevent metal to metal contact thereby reducing thermal conductivity from the outside of the building. Heat travels in the path of least resistance such that heat can invade a system and affect an interior atmosphere through relatively finite pathways such as fasteners and the like that have metal to metal contact with exterior conditions. Similarly, exterior exposure to cold temperatures can allow for infusion of cold temperatures into a wall construction along highly thermally conductive components.
Most applications of metal roof and wall assemblies retain at least some form of metal to metal contact through metal anchors, fasteners, or sill, transition, and window trim. Products of this type are subject to shorter warranties and life cycles due to the fact that the product is glued or otherwise bonded and is subject to damage and shortened life spans from thermal cycling which causes varying rates of contraction and expansion of the different materials and therefore wears significantly on any given system. Furthermore, these systems often require dissimilar materials to be in contact with each other which can lead to reactions such as oxidation which can corrode these materials over time. A metal wall, roof or deck system that creates a thermal break in the heat conductivity path thereby effectively eliminating or greatly reducing thermal bridging from exterior conditions to interior conditions that keeps like materials separate is desired.
Additionally, it is often necessary to provide, in addition to insulation, caulk, tape, spray membrane, sealer and/or wrap. These additional steps are often compromised during construction, and are difficult to control properly. Indeed, improperly applied wrap or tape or caulk provide passageways that disrupt the insulative properties of the building.
Certain systems have been developed that utilize bracket members between the interior building and outer cladding that are configured from a polymer based material (such as a fiber reinforced polymer). Some such solutions are disclosed in, for example, U.S. patent application Ser. No. 14/281,949, filed May 20, 2014, entitled INSULATION SYSTEM FOR BUILDINGS; U.S. patent application Ser. No. 13/763,915, filed on Feb. 11, 2013, entitled POLYMER-BASED BRACKET SYSTEM FOR EXTERIOR CLADDING; U.S. patent application Ser. No. 12/984,051, filed on Jan. 4, 2011, entitled POLYMER-BASED BRACKET SYSTEM FOR METAL PANELS; and U.S. Prov. Patent Application No. 61/876,731 filed Sep. 11, 2013. The entire contents of each of which are incorporated herein by reference.
Problematically, in severe fire situations, the bracket members can become compromised. In such situations, it may be the case that the outer cladding separates from the compromised bracket members. It would be advantageous to provide a system by which to secure the cladding and to maintain the cladding in position, even where there is a compromise in the bracket members.
The disclosure is directed to a bracket system. The bracket system comprises at least one bracket member and a first insert rigidity member. Each bracket member has a polymer and includes an elongated body having a body wall. The body wall has a top surface and a bottom surface, a first end wall extending from a first end of the body wall and a second end wall extending from the second end of the body wall opposite the first end wall. The first and second walls are structurally configured to extend along one of a front and a back face of adjoining of an insulation panel. The first end wall includes a first reinforcement channel extending along one of an outer surface and an inner surface thereof.
The first insert rigidity member is slidably positioned within the first reinforcement channel. The first insert rigidity member comprising a strap system having at least a first strap and a second strap. Each of the first and second straps comprising a central body configured to extend within the first reinforcement channel, an outward jog at an upper end of the central body with an upper offset body extending therefrom, and a lower overlap portion extending from the central body opposite of the upper offset body.
The lower overlap portion positionable within the first reinforcement channel, while the upper offset body extends along the first end wall overlying the first reinforcement channel. Upon positioning the first reinforcement channel in operable position relative to the second reinforcement channel, the upper offset body is directed into overlying position relative to the lower overlap portion of the second reinforcement channel, to, in turn, provide for the coupling therebetween by a fastener directed therethrough.
In some configurations, the first strap comprises an uppermost strap. The upper offset body of the first strap is coupled to an outside structure.
In some configurations, each strap includes a lower capture flange that extends away from the lower overlap portion, and extends over at least a portion thereof. The upper offset body of the second strap is configured to extend between the lower capture flange and the lower overlap portion of the first strap to be sandwiched therebetween.
In some configurations, the lower capture flange includes an outward portion and a downward portion. The outward portion extends from one of a lower end of the central body portion and the lower overlap portion. The downward portion extends from the outward portion so as to overly a portion of the lower overlap portion in a spaced apart configuration.
In some configurations, an uppermost strap is coupled to a building to which the bracket system is associated. A lowermost strap is coupled to a building to which the bracket system is associated.
In some configurations, a plurality of bracket members and greater than two strap members forming the strap system.
In another aspect of the disclosure, the disclosure is directed to an insulation system for coupling to a building substrate. The system comprises a plurality of insulation panels, a plurality of bracket members, a plurality of splice members and a strap system. Each insulation panel includes a front face, a back face and a plurality of side surfaces extending therebetween. The side surfaces include a longitudinal slot extending along at least a portion thereof.
Each bracket member comprises a polymer? and includes an elongated body having a body wall, a first end wall extending from a first end of the body wall and a second end wall extending from the second end of the body wall opposite the first end wall. The body wall has a top surface and a bottom surface, and an upper rib extending upwardly from the top surface of the body wall spaced apart from each of the first end wall and the second end wall, and a lower rib extending downwardly from the bottom surface of the body wall spaced apart from each of the first end wall and the second end wall. Each of the upper rib and the lower rib are structurally configured to extend into the longitudinal slot of each of the plurality of insulation panels. The insertion of the respective upper rib and lower rib at least elastically deforms the longitudinal slot into which inserted so as to effectively seal along a length thereof, thereby defining a vapor barrier therebetween.
Each of the plurality of splice members including a first rib portion and a second rib portion extending in opposite directions from a meeting region therebetween. The first rib portion and the second rib portion are structurally configured to extend into the longitudinal slot of each of the plurality of insulation panels. The insertion of the respective first rib portion and second rib portion at least elastically deforms the longitudinal slot into which inserted so as to effectively seal along a length thereof, thereby defining a vapor barrier therebetween.
The insulation system is formed by positioning a plurality of bracket members in a spaced apart relationship and extending insulation panels therebetween. The upper and lower ribs extend into corresponding ones of the longitudinal slots of the insulation panels, with splice members extending between adjacently abutting ones of the plurality of insulation panels that extend between adjoining ones of the plurality of bracket members.
The first end wall includes a first reinforcement channel extending along one of an outer surface and an inner surface thereof. A first insert rigidity member is slidably positioned within the first reinforcement channel.
The strap system has at least a first strap and a second strap. Each of the first and second straps comprising a central body configured to extend within the first reinforcement channel, an outward jog at an upper end of the central body with an upper offset body extending therefrom, and a lower overlap portion extending from the central body opposite of the upper offset body. The lower overlap portion positionable within the first reinforcement channel, while the upper offset body extends along the first end wall overlying the first reinforcement channel. Positioning the first reinforcement channel in operable position relative to the second reinforcement channel directs the upper offset body into overlying position relative to the lower overlap portion of the second reinforcement channel, to, in turn, provide for the coupling therebetween by a fastener directed therethrough.
In some configurations, the second end wall includes a second reinforcement channel extending along one of an outer surface and an inner surface thereof. A second rigidity member is slidably positioned within the second reinforcement channel.
In some configurations, the second rigidity member comprises a plurality of strap members configured to be joined in an end to end configuration.
In some configurations, the strap of the first rigidity member and the strap of the second rigidity member are substantially identical.
In some configurations, the first reinforcement channel extends along the outer surface of the first end wall and the second reinforcement channel extends along the inner surface of the second end wall. The insulation panel has at least one surface which is covered with one of a foil or a coating.
In yet another aspect of the disclosure, the disclosure is directed to a strap system comprising a plurality of straps. Each strap comprises a central body configured to extend within the first reinforcement channel, an outward jog at an upper end of the central body with an upper offset body extending therefrom, and a lower overlap portion extending from the central body opposite of the upper offset body. The lower overlap portion is positionable within the first reinforcement channel, while the upper offset body extends along the first end wall overlying the first reinforcement channel, whereupon positioning the first strap in operable position relative to the second strap directs the upper offset body into overlying position relative to the lower overlap portion of the second reinforcement channel, to, in turn, provide for the coupling therebetween by a fastener directed therethrough.
In some configurations, each strap includes a lower capture flange that extends away from the lower overlap portion, and extends over at least a portion thereof. The upper offset body of the second strap is configured to extend between the lower capture flange and the lower overlap portion of the first strap to be sandwiched therebetween.
In some configurations, the lower capture flange includes an outward portion and a downward portion. The outward portion extends from one of a lower end of the central body portion and the lower overlap portion. The downward portion extends from the outward portion so as to overly a portion of the lower overlap portion in a spaced apart configuration.
The disclosure will now be described with reference to the drawings wherein:
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and described herein in detail a specific embodiment with the understanding that the present disclosure is to be considered as an exemplification and is not intended to be limited to the embodiment illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings by like reference characters. In addition, it will be understood that the drawings are merely schematic representations of the invention, and some of the components may have been distorted from actual scale for purposes of pictorial clarity.
Referring now to the drawings and in particular to
The insulation system is shown as comprising a plurality of insulation panels 12 which are retained in position through a plurality of bracket members, such as bracket member 14 having insert rigidity members 16 extending therethrough and a plurality of splice members, such as splice member 18. While not required, a system of the type describe hereinbelow has been tested so as to meet or exceed ASHRAE 90.1 and ASHRAE 160.
The insulation panels 12 are shown in more detail in
In more detail, the insulating panel can also be fire retardant panels, sound dampening panels or any other type of insulating material or panel known in the art for providing an interior or exterior wall with a quality for which the panel is known. Other such insulating materials or panels include materials having additives like insecticides, fungicides or colorants for example. Though many types of insulating materials are known in the art. For the purposes of the description below, as depicted in the accompanying figures, they are exemplified as panels, which may be sealed or unsealed, designed to insulate the building structure. Sealed panels provide a vapor barrier in the wall construction of the present disclosure. Other insulating materials suitable for use with the present disclosure include, but not be limited to, foam, fiberglass insulation, rigid insulation, semi rigid insulation, blanket insulation, loose fill insulation, spray foam in either fiberglass, rock wool, cellulose based, polystyrene, polyisocyanurate, polyurethane or other polymeric insulation formulations.
A typical one of the insulation panels 12 comprises a foam material which includes front face 102, back face 104, and side surfaces 106. The front face and the back face in the embodiment shown are generally planar surfaces which are substantially parallel to each other. In the embodiment shown, the front face 102 and the back face 104 are the same size and are generally square or rectangular. It is contemplated that other shapes and configurations are likewise contemplated. The front face 102 includes front notch portion 108. The front notch portion extends across the front face along one of the edges (that is, the edge proximate the intersection with the first end wall 112). The back face 104 includes back notch portion 110. The back notch portion extends across the back face along one of the edges (that is, the edge proximate the intersection with the second end wall 114). It will be understood that the front and back notch portions are generally of corresponding shape and on opposite ends and sides of the insulation panel 12.
The side surfaces 106 of the insulation panel 12 include first end wall 112, second end wall 114, first side wall 116 and second sidewall 118. The two end walls 112, 114 are generally parallel to each other and spaced apart from each other. The two end walls have generally the same shape. Of course, other configurations and shapes are contemplated. The two sidewalls 116, 118 are generally parallel to each other and spaced apart from each other, and, other configurations and shapes of these are likewise contemplated. In the configuration shown, the two end walls are perpendicular to the two sidewalls, forming a generally square or rectangular configuration, depending on the relative length of the end walls and the sidewalls, respectively.
Longitudinal slot 120 extends along the side surfaces 106 in an orientation substantially parallel to the front face 102 and the back face 104 spaced apart from each of these surfaces so as to be between the same. In the embodiment shown, the longitudinal slot 120 extends generally midway between the front face 102 and the back face 104, however variations are contemplated, wherein the longitudinal slot is positioned closer to either one of the front face 102 or the back face 104. It will be understood, and explained in greater detail below, that the longitudinal slot cooperates with the ribs of the bracket member 14 or the splice 18 to form a vapor barrier, and depending on the climate in which the building is located, it may be desirable to move this vapor barrier closer to either the front face or the back face of the insulation panel.
The longitudinal slot 120 includes first end wall slot portion 122 positioned along the first end wall 112, second end wall slot portion 124 positioned along the second end wall 114, first sidewall slot portion 126 positioned along the first sidewall 116, and second sidewall slot portion 128 positioned along the second sidewall 118. With reference to
The insulation panel further includes adhesive system 140 (
Bracket member 14 (also known in the industry as a “girt”) is shown in
Typically, such bracket members may be provided in any number of standard sizes that may be from only a couple of feet long to spans that are forty to fifty feet long. It is most preferred that the bracket members comprise a pulltruded profile that includes both stranded members and woven members within a resin matrix. It will be understood that the shape can be formed through one or more pulltrusion dies to achieve the final desired configuration. It is contemplated that a single resin system may be utilized, or that multiple resin systems may be utilized. Of course, the particular configuration and application may dictate changes to the relative thicknesses and dimensions of the different components. Among other fibers, it is contemplated that the fibers may comprise glass fibers (fiberglass), carbon fibers, cellulose fibers, nylon fibers, aramid fibers, and other such reinforcing fibers.
The bracket members provide a thermal break. As used herein, the term “thermal break” refers to a break in like materials wherein the material disposed between like materials is comprised of a material having low thermal conductivity such as a polymeric material having a high R-value as further described below. R-values are measurements of the thermal resistance of different materials. R-values are well known by those skilled in the art of the construction and insulation industries. A high R-value indicates a highly insulative material, such as an R-value of R.2 per inch and higher. Conductive materials have a very low R-value, such as steel which exhibits a negligible or nearly non-existent R-value. In the configuration of the present disclosure, there are no like materials in contact with one another, nor is there any metal to metal contact creating a pathway for heat to transfer from the exterior to the interior and vice versa.
It is also contemplated that the bracket members may comprise anticorrosive polymeric materials that exhibit high insulative qualities or rather, demonstrate high R-value properties such as an R-value in the range of about R.2 to about R8 per inch. Polymeric materials suitable for the present disclosure include thermoplastics or thermoset resin materials including for example: acrylonitrile-butadiene-styrene (ABS) copolymers, vinylesters epoxies, phenolic resins, polyvinyl chlorides (PVC), polyesters, polyurethanes, polyphenylsufone resin, polyarylsulfones, polyphthalimide, polyamides, aliphatic polyketones, acrylics, polyxylenes, polypropylenes, polycarbonates, polyphthalamides, polystyrenes, polyphenylsulfones, polyethersulfones, polyfluorocarbons, bio-resins and blends thereof. Other such thermoplastics and thermoplastic resins suitable for the present disclosure are known in the art which demonstrate high R-values and are thereby heat resistant as well as anticorrosive. Thermoplastics of the present disclosure are also contemplated using a recyclable polymer or are made of a polymeric material which is partially comprised of a renewable resource such as vegetable oil or the like in its composition when an eco-friendly or “green” bracket member is desired. The polymeric material of the present disclosure can also be reinforced with a reinforcing fiber as detailed below. Bracket members composed of the materials discussed above form a thermal break between exterior panels and building substrates in an effort to control the temperature within a building structure by reducing or eliminating thermal conductivity from the exterior panel to the building substrate and vice versa. In assembly, the R-value of an exterior wall panel system of the present disclosure can typically exhibit a R-value from about R.2 to about R30 per inch depending on the thickness of the overall system, the insulation materials used and the composition of the bracket members. Further, microspheres, such as polymeric or glass nanospheres, can be added to the makeup of the brackets to provide further insulative properties and increased R-value expression.
There are several different types of measurements that relate to a materials ability to insulate, resist, transmit or conduct heat across a material. Particularly, a material's K-value relates to a specific material's thermal conductivity, a material's C-value correlates to the material's thermal conductance, a material's R-value relates to a material's thermal resistance, and a U-value relates to the thermal transmittance of an overall system. In designing a wall, roof or deck bracket and panel system providing adequate insulative properties for a building structure, materials with low K-values and C-values are desired while materials with high R-values are desired. When this set of conditions is met, the overall thermal transmittance, or U-value, of the system is low. Thus, the lower the U-value, the lower the rate heat thermally bridges from one material to another. A building structure having a well insulated system will have a much lower U-value than an uninsulated or poorly insulated system exhibiting high thermal transmittance.
Regarding the R-value of the bracket members of the present disclosure, a relatively high R-value is desired to ensure adequate insulation of a building structure from outside elements by making a bracket that creates a thermal break in a wall panel system. A range of R-values for the polymeric materials used to construct the bracket members described above would be a range of about R.2 to about R8 per inch in order to create a thermal break that effectively reduces or eliminates thermal bridging. The thermal conductivity, or K-value, is the reciprocal of the material's R-value, such that for a polymeric material exhibiting an R-value of about R.2 to R8 per inch, the correlating K-value for that material would be from about K5 to about K0.125 per inch. Thus, in comparison to present day metal brackets used in other bracket and panel systems made of iron or steel, a polymeric bracket member of the present disclosure will exhibit a K-value of approximately about K.5 to about K0.125 per inch at a given set of conditions as compared to a bracket made from a metallic material such as iron or steel which would have an approximate K-value as high as K32 to K60 per inch at the same conditions. This is because metallic materials, such as iron and steel, have low or negligible R-values and are well known conductors of heat. Steel is known to have an R-value of about 0.003R per inch. Thus, for example, a steel bracket compared to a polymeric bracket of the present disclosure having an R-value of R.55 would be 183 times more thermally conductive.
The body wall 202 includes top surface 210 and bottom surface 212 which extend from first end 214 to second end 216, upper rib 218 and lower rib 220. The upper rib extends outwardly from the top surface 210 between the first and second ends, bisecting the top surface into a top first end portion 222 and a top second end portion 224. The upper rib 218 preferably extends substantially perpendicularly to the top surface 210, and, includes first side 236, second side 238 and tip region 240 spanning therebetween. The first side 236 and the second side 238 are generally parallel to each other for at least a portion of the length. The size of the upper rib 218 is that it substantially matches that of the longitudinal slots 120 of the insulation panel 12, while being slightly oversized in a number of the dimensions, if not in virtually all dimensions or all dimensions. That is, preferably, the upper rib 218 has the same shape as the longitudinal slots 120 except that it is larger dimensionally than the longitudinal slots by an amount that allows for at least elastic deformation of the longitudinal slot 120 upon insertion of the upper rib 218 therein.
The lower rib 220 preferably extends substantially perpendicularly to the bottom surface 212 of the body wall 202, and, includes first side 230, second side 232 and tip region 234. The lower rib 220 is preferably positioned on the opposite side of the upper rib 218, and has the same dimensions as the upper rib. As with the upper rib, the lower rib bisects the bottom surface 212 into a bottom first end portion 226 and a bottom second end portion 228. It will be understood that the shapes of the upper and lower rib may be varied, but where the longitudinal slots 120 are substantially uniform, the upper and lower rib are each configured to facilitate at least elastic deformation of the longitudinal slot 120 upon insertion of the upper or lower rib thereinto. It is this intimate engagement along the length thereof through the elastic deformation that provides for the sealing and, in turn, the vapor barrier on opposing sides of the rib.
The first end wall 204 is positioned at the first end of the body wall 202 and, as set forth above, is preferably perpendicular to the body wall 202. In the embodiment shown, the first end wall extends downwardly from the bottom surface 212, and projects downwardly beyond the bottom surface 212 to define a lower flange portion 262. In certain embodiments, it is helpful to line an inside surface of the lower flange portion 262 with an adhesive or sealant (such as butyl rubber). The first end wall 204 includes inside surface 250, outside surface 252, and extends from lower end 254 to upper end 256. The upper end 256 includes lower flange portion 262. It is contemplated that the lower flange portion 262 extends upwardly a distance sufficient to provide an effective surface for the application and retention of an adhesive or sealant.
The lower flange portion 262 at a lower end on the outside surface 252 thereof includes a capillary break 260 (in the form of a relief portion which tapers toward the upper edge). As set forth in the incorporated references, the capillary breaks the water tension between it and the cladding or building substrate with which it is in contact so as to act as anti-capillary action grooves for water trapped therebetween or drawn into the joints.
A first reinforcement channel 258 is defined on one of the inside surface and the outside surface of the first end wall, and preferably on the inside surface thereof. The first reinforcement channel 258 includes upper clip portion 264 and lower clip portion 266 spanned on one side by surface 268 and open to the other side defining slot 269. The channel is generally parallel to the outside surface 252 and generally extends the entirety of the inside surface 250 below the bottom surface 212 of the body wall 202.
As will be explained below, first end wall strip 302 is slidably introduced into the first reinforcement channel 258. In certain embodiments, the first end wall strip 302 is relatively snug within the first reinforcement channel 258. Preferably, the first end wall strip 302 comprises a metal member, such as an aluminum, magnesium, steel, galvanized steel or another material. Of course, it is contemplated that the first end wall strip 302 comprises a composite member of a configuration that is the same or different than that of the bracket member. It is preferred that the first end wall strip 302 comprises a member of ductility sufficient so as to receive and be pierced by a fastener or the like, while retaining the fastener therein.
It will further be understood that a guide notch 267 extends on the outside surface 252 and along the length thereof. The guide notch 267 is provided so as to provide a user with a tactile feel for where to begin the insertion of a fastener. By initiating a fastener at the guide notch, it is such that the fastener will be directed into contact at an appropriate portion of the first end wall strip 302 positioned within the first reinforcement channel 258.
The second end wall 206 as shown in
The second end wall includes inside surface 270 and outside surface 272 which extend from inner end 274 (which is at the junction with the body wall 202), to outer end 276. A capillary break 286 having a configuration that matches the capillary break 260 of the first end wall 204.
A second reinforcement channel 278 is defined in one of the inside surface and the outside surface of the second end wall, and preferably on the inside surface thereof. The second reinforcement channel includes outer clip portion 280 and inner clip portion 282 which are spanned on one side by surface 284 and which define slot 281 on the other side thereof. The channel is generally parallel to the outside surface 272 of the second end wall, and generally extends the entirety of the inside surface below the lower surface 212 of the body wall 202.
As with the first end wall 204 above, second end wall strip 304 is slidably introduced into the second reinforcement channel 278, preferably, relatively snug therewithin. Preferably, the same materials are utilized for the second end wall strip 304 as with the first end wall strip 302.
Splice member 18 is shown in
As with the ribs of the body wall, the first rib portion and the second rib portion provide a means by which to seal two adjoining insulation panels by being oversized, at least in some respect to the relevant longitudinal slot. In turn, at least a portion of the slot, along substantially entirely the length thereof is at least elastically deformed so as to form a substantially fluid tight configuration. Thereby, the necessary vapor barrier is formed by the combination of the splice member and the adjoining insulation panels. It will be understood that in certain embodiments, such as the embodiment of
The assembly of an insulation system will be described with the understanding that it is merely exemplary, and that a number of variations are contemplated. Initially, a building structure 20 is provided to which the insulation system and cladding is to be applied. And, such a building structure 20 includes a plurality of sidewalls.
The installer is provided the insulation system 10 (as is shown in
For example, a first bracket member may be positioned at the very lowest position on the sidewall of the building structure. In the embodiment shown, sidewall comprises a plurality of substantially vertical beam members (i.e., building studs). Additionally, in the embodiment shown, the studs are bare in that there is no sheeting material positioned outside of the vertical beam members. That is, the bracket members are attached directly to these underlying vertical beam members. It will be understood that these vertical beam members may comprise what is commonly known as a metal stud, or a conventional wood stud. In commercial buildings, it is more common to find a metal stud configuration, although the disclosure is not limited thereto.
In other embodiments, it will be understood that a plywood, insulation, encapsulation material among other materials may be applied to the underlying vertical beam members prior to installation of the insulation system. That is, the insulation system may be placed over a number of different building structure surfaces and compositions.
To install the first bracket member, the bracket member 14 is coupled to the building structure. It will be understood that, depending on the climate, either the first end wall 204 or the second end wall 206 can be coupled to the sidewall of the building structure. Typically, the desired orientation depends on the climate. In exceedingly cold climates, it is desirable to use a sealant in association with the upper flange portion of the first end wall 204, and, it is also desirable to place this upper flange portion as close to the building substrate (the higher heat) as practicable. As such, in such climates, the first end wall 204 is coupled to the building substrate.
In other configurations, such as in exceedingly warm climates, it is desirable to flip the bracket so that the second end wall 206 is coupled to the bracket member with the first end wall 204 coupled to the cladding. This is less significant where there will not be a sealant applied to the lower flange portion 262 of the first end wall 204. Where there is no sealant utilized with the upper flange portion, the bracket member may be installed in either direction, with a preference of coupling the first end wall 204 to the building substrate.
Referring again to the Figures, in the installation disclosed, the first end wall 204 is coupled to the building substrate. A fastener, such as a screw or the like can be utilized to couple the two components. Specifically, the screw is first pressed against the first end wall strip 302 at which time the screw pierces the strip and contacts the underlying surface 268 of the reinforcement channel 258. Further threading of the screw drives the screw through the first end wall and into the underlying building substrate. It will be understood that the first end wall strip 302 provides the necessary ductility to spread the load of the screw.
In the embodiment shown, a single bracket member is of sufficient length to span the entirety of the sidewall. In other embodiments, multiple bracket members may be required. They may be positioned in a butting configuration, side by side. In other embodiments, an adhesive or a sealant may be utilized to seal these joints. In other embodiments, such a sealant is not necessary or required.
Once a first bracket member is positioned, a plurality of insulation panels can be installed in a side by side orientation with splice members therebetween. In particular, a first insulation panel 12 is positioned as desired. In the embodiment shown, the first insulation panel 12 is positioned such that the front face 102 faces outwardly with the back face facing the building substrate. When inserted into position, the first end wall 112 extends into the slot formed by the second end wall and the building substrate. The front notch portion of the back face 104 is configured to receive the first end wall of the bracket member. As such, once positioned, the first insulation panel 12 is generally following the orientation of the bracket member.
A next step may be to add a second insulation panel next to the first in an abutting configuration. To install the second insulation panel, a preferable prerequisite is to install the splice member 18 so as to seal between the two insulation panels. To install the splice member, the first rib portion 400 is inserted into position within the first sidewall slot portion 126 so that the lower portion thereof abuts the tip region 240 of the upper rib 218. As set forth above, an adhesive or a sealant bead is positioned proximate this interface so as to achieve a seal at the abutment between the splice member 18 and the upper rib 218 of the bracket member 14. As the first rib portion 400 is sized so as to cause at least elastic deformation of the slot portion (i.e., it is undersized in at least some dimension along the length thereof), insertion requires an application of force that corresponds to the force necessary to incur the elastic deformation. Once, preferably, fully seated, the second insulation panel is installed in a manner as the first. It will be understood that the insulation panels may end at studs or may end spaced apart from studs.
Additionally, the second insulation panel is pushed toward the first insulation panel so that the second rib portion 402 extends into the corresponding longitudinal slot of the second insulation panel. As with the first rib portion 400, the second insulation panel is pushed into closer abutment with the first insulation panel 12 so as to push the second rib 402 into the proper orientation. As with the first insulation panel 12, the second insulation panel includes a bead or adhesive or sealant at the location within the slot that the upper rib 218 meets with the tip region 424 of the second rib portion 402. It will also be understood that a bead of sealant is likewise positioned proximate the distal end of each of the first rib portion 400 and the second rib portion 402 at the upper end thereof (where the splice member 18 will meet the subsequent bracket member).
Subsequent insulation panels can be installed sequentially with the splice member positioned therebetween. Once the insulation panels are installed across the bracket member, the subsequent bracket member can be coupled to the installed insulation panels and also to the building substrate. In particular, to install the subsequent bracket member, the lower rib 220 of the second bracket member 14′ is inserted into the longitudinal slots of the second end wall of each of the insulation panels. Once firmly seated within the bracket member a seal is created (generally elastic deformation to at least portions of the longitudinal slot insures a substantially fluid tight seal therebetween).
Where additional sealing is desired, a sealant or adhesive may be introduced into the lower flange portion 262 of the first end wall 204 such that it fills any area and essentially seals the insulation panel and the bracket member proximate the lower flange portion 262. In certain embodiments, it may be omitted.
Subsequent insulation panels are installed in the same manner as the insulation panels described above. Successive bracket members and splices are introduced sequentially as set forth above. It will be understood that the brackets, splices and insulation panels may need to be trimmed and cut so as to be properly sized for the building and the particular location where they are installed.
Once the wall of insulation panels and bracket members is fully installed, the installer can install the cladding thereover. In particular, the cladding can be fastened with, for example, screws and the like to the bracket members, and more particularly to the first or second end wall to which the cladding is abuttingly positioned. In this manner, the fasteners that couple the cladding to the bracket member do not contact the building substrate, and the fasteners that couple the bracket member to the building substrate likewise do not contact the cladding. In this manner, the bracket members (being insulative as non-heat conducting materials) and the insulation panels form a thermal break between the cladding and the building substrate as well as insulation and vapor barrier therefor.
It will also be understood that in certain embodiments, the bracket members can be utilized in the opposite configuration (where the installation is in an excessively warm climate). In such a manner, the vapor barrier can be moved to the outside as close as possible to the cladding (especially where a bead of adhesive or sealant is utilized in conjunction with the upper flange portion 26). In other embodiments it will be understood that the splice members and the insulation panels may be omitted, and in its place a sprayed foam insulation may be applied. The bracket members provide a framework upon which the building substrate and cladding can be coupled. It will be understood that the spacing may be varied between the bracket members as can the orientation in any of the foregoing embodiments (i.e., vertical, angled, variably spaced, etc.).
In still other embodiments, the bracket members may be oriented vertically (or even at an angle). It will further be understood that such a configuration, through the use of the insert members provides a distribution of the loading throughout the bracket member that may be 3 to 5 times greater than without such an insert member. Additionally, the insert members provide an exterior metal fastening grid that is thermally isolated. It is contemplated that the system is air/water/vapor tight at a pressure of 20 pounds per square foot, and structurally wind resistant to more than 20 pounds per square foot. It is further contemplated that multiple vapor barriers of graduated permeability can be utilized.
In the above configurations, it will be understood that the end wall strips may comprise separate components which are positioned in an end to end configuration, so that they parallel the segments of the bracket members, or so that they straddle the different bracket members. In other configurations, it will be understood that the end wall straps may form a strap system, wherein the straps are coupled to each other and also coupled to the underlying structure. Such a configuration provides a retention of the overall shape and the components attached to the straps in the event of fire or the like that will consume the bracket members and insulation prior? but not the strap system.
Such a configuration is shown in an arrangement with the bracket members being oriented vertically in
The strap system 500 relies upon a network of straps, such as strap 510, which are coupled in an end to end fashion with the uppermost strap coupled to the existing building structure, and with the lowermost strap (not shown) coupled to the base of the building structure, preferably. As set forth above, the straps generally comprise a metal member, although variations are contemplated.
With reference to
The outward jog 514 is positioned at the upper end 537 of the central body portion and comprises a narrowed portion that extends outwardly from the central body portion. The width of the outward jog 514 narrows so as not to interfere with the upper clip portion and lower clip portion of the reinforcement channel. Generally, the outward jog is integrally formed with the central body portion and generally extends perpendicularly from the central body portion at the upper end thereof.
The upper offset body 516 includes lower end 540, upper end 542, first side edge 544 and second side edge 546. The upper offset body is generally substantially parallel to the central body portion and offset therefrom by the outward jog. The lower end 540 mates with the outward jog and the upper end 542 extends therefrom. It will be understood that the offset body is slightly narrower than the central body portion, again, to limit the interference with the associated reinforcement channel (so that it may overlie the lower overlap portion without interfering with the associated reinforcement channel).
The lower overlap portion 518 extends below the central body portion 512 and generally dimensionally matches the central body portion in thickness and width. In the configuration shown, the central body portion and the lower overlap portion are substantially dimensionally identical, and delineated by the position of the lower capture flange 520. In addition, in the embodiment shown, the two structures are substantially co-planar. In other configurations, the lower overlap portion 518 may be different dimensionally than the central body portion.
The lower capture flange 520 is shown as comprising outward portion 550, downward portion 552, first side edge 554 and second side edge 556. The outward portion and the downward portion together along with the lower overlap portion define a slot configured to receive a upper offset body of an adjacently positioned strap. In the configuration shown, the lower capture portion is formed by stamping the same from the lower overlap portion, thus, the lower overlap portion 518 includes the opening 519 from which the lower capture flange is formed. It will be understood that in other configurations, the lower capture flange may comprise a separate component that is attached to the lower overlap portion or to the central body portion. Essentially, the outward portion of the lower capture flange provides a positive stop to provide confirmation that full overlap and proper positioning has been achieved. The downward portion thereof provides a surface to which to couple the fastener therethrough.
To assemble the configuration, a first strap is provided and positioned within the reinforcement channel of the bracket member. Once positioned, a subsequent strap can be provided and positioned with a reinforcement channel of the same or an adjacent bracket member. The second strap is positioned so that the upper offset body 516 of the second strap is positioned over the lower overlap portion 518 of the first strap so that the upper end of the upper offset body is positioned into the cavity 557 and retained between the downward portion of the lower capture flange and the lower body overlap portion. Once positioned, a fastener can be extended through the downward portion of the lower capture flange and the upper overlap portion of the two adjacent straps.
Additional straps may be coupled to the second strap and each subsequent strap in the same manner. That is, each upper offset body of each successive strap can be inserted into the cavity between the lower capture flange and the lower overlap portion and fastened thereto.
It will be understood that the upper most strap can be coupled to the building, such as to the beam 600 shown in
In such a configuration, the adjacent and coupled straps form a strap system to which outer cladding is coupled. Essentially, the strap system forms a grid of sorts which forms a construction that provides a skeleton in the event of a fire or other issue which may compromise the bracket members or the like. It will be understood that each strap can be formed in a stamping operation from a sheet metal member, wherein the lower capture flange is formed by a press as is the outward jog.
It will be understood that variations are contemplated. In particular, different overlapping configurations are contemplated, where portions of adjacent strap members overlap each other, and are then fastened to each other in a sequential manner. For example, a nub or other configuration may be provided in the place of the outward portion of the lower capture flange to provide the necessary confirmation of the proper overlapping position of the adjacent straps. Subsequently, a fastener can be extended through the upper offset body of a first strap and the lower overlap portion of the adjacent strap. In still other configurations, other overlapping mating engagements are contemplated to achieve the desired formation of the strap system.
The foregoing description merely explains and illustrates the invention and the invention is not limited thereto except insofar as the appended claims are so limited, as those skilled in the art who have the disclosure before them will be able to make modifications without departing from the scope of the invention.
This application claims priority from U.S. Prov. Patent Application No. 62/347,922 filed Jun. 9, 2016, entitled INSULATION SYSTEM FOR BUILDINGS, the entire specification of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2245785 | Jentzer, Jr. | Jun 1941 | A |
4044521 | Fischer et al. | Aug 1977 | A |
4151697 | Stilts | May 1979 | A |
4346543 | Wilson et al. | Aug 1982 | A |
4483122 | Crandell | Nov 1984 | A |
4691491 | Lilley et al. | Sep 1987 | A |
4860508 | Jackson | Aug 1989 | A |
4920719 | Shaub et al. | May 1990 | A |
5022211 | Scott | Jun 1991 | A |
5444945 | Goodwin | Aug 1995 | A |
5544461 | Sommerstein | Aug 1996 | A |
5709058 | Shaw et al. | Jan 1998 | A |
5715634 | Schultz | Feb 1998 | A |
5765324 | Schultz | Jun 1998 | A |
5799461 | Dittemore | Sep 1998 | A |
5848512 | Conn | Dec 1998 | A |
5860257 | Gerhaher et al. | Jan 1999 | A |
5901518 | Harkins | May 1999 | A |
5930968 | Pullam | Aug 1999 | A |
6029418 | Wright et al. | Feb 2000 | A |
6055787 | Gerhaher et al. | May 2000 | A |
6098364 | Liu | Aug 2000 | A |
6170214 | Treister et al. | Jan 2001 | B1 |
6205731 | Gerhaher | Mar 2001 | B1 |
6289646 | Watanabe | Sep 2001 | B1 |
6327828 | Carroll | Dec 2001 | B1 |
6357193 | Morris | Mar 2002 | B1 |
6367219 | Quinlan | Apr 2002 | B1 |
6393796 | Goettl et al. | May 2002 | B1 |
6401412 | Cooper | Jun 2002 | B1 |
6425218 | Doyon et al. | Jul 2002 | B1 |
6718719 | Hagerty | Apr 2004 | B1 |
6857238 | Alderman | Feb 2005 | B2 |
6910311 | Lindberg et al. | Jun 2005 | B2 |
6945414 | Stevens et al. | Sep 2005 | B1 |
7017317 | Capozzo | Mar 2006 | B2 |
7043884 | Moreno | May 2006 | B2 |
7174686 | Legband | Feb 2007 | B1 |
7404273 | Burg et al. | Jul 2008 | B2 |
7726083 | Wagner | Jun 2010 | B2 |
7849651 | Fujito et al. | Dec 2010 | B2 |
7891146 | Sherwin | Feb 2011 | B1 |
8127507 | Bilge | Mar 2012 | B1 |
8186119 | Huff et al. | May 2012 | B1 |
8464487 | Kenda et al. | Jun 2013 | B2 |
8826620 | Krause | Sep 2014 | B2 |
8833025 | Krause | Sep 2014 | B2 |
9151052 | Krause | Oct 2015 | B2 |
9580904 | Krause | Feb 2017 | B2 |
9617739 | Krause | Apr 2017 | B2 |
20010011443 | Watanabe et al. | Aug 2001 | A1 |
20030172606 | Anderson | Sep 2003 | A1 |
20040049999 | Krieger | Mar 2004 | A1 |
20050011154 | Kim | Jan 2005 | A1 |
20070220821 | Omiya | Sep 2007 | A1 |
20080010922 | Wagner | Jan 2008 | A1 |
20080104918 | Gleeson et al. | May 2008 | A1 |
20080178538 | Green et al. | Jul 2008 | A1 |
20090165410 | Wuts | Jul 2009 | A1 |
20100192495 | Huff et al. | Aug 2010 | A1 |
20120137609 | Loyd | Jun 2012 | A1 |
20120167505 | Krause | Jul 2012 | A1 |
20130152498 | Krause | Jun 2013 | A1 |
20140250811 | Krause | Sep 2014 | A1 |
20150121787 | Krause | May 2015 | A1 |
20170356181 | Krause | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2924064 | Mar 2015 | CA |
2354368 | Aug 2011 | EP |
2188658 | Oct 1987 | GB |
2002339473 | Nov 2002 | JP |
2112114 | May 1998 | RU |
2229573 | May 2004 | RU |
51060 | Jan 2006 | RU |
2009094894 | Aug 2009 | WO |
2009127032 | Oct 2009 | WO |
2010057273 | May 2010 | WO |
2015038727 | Mar 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20170356181 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62347922 | Jun 2016 | US |