Insulative container

Information

  • Patent Grant
  • 9346605
  • Patent Number
    9,346,605
  • Date Filed
    Tuesday, June 30, 2015
    9 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
An insulative container includes a wall and a floor. The wall is formed from an insulative cellular non-aromatic polymeric material having an area of plastic deformation. There are no fractures in the insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in the material.
Description
BACKGROUND

The present disclosure relates to containers, such as cups, and particularly to thermoformed containers. More particularly, the present disclosure relates to insulated sleeves for cups.


SUMMARY

A vessel in accordance with the present disclosure is configured to hold a product in an interior region formed in the container. In illustrative embodiments, the container is a cup.


In illustrative embodiments, an insulative container includes a cup and an insulative sleeve. The insulative sleeve is coupled to an exterior surface of the cup to insulate a consumer holding the cup from hot or cold temperatures associated with materials or beverages stored in the cup.


In illustrative embodiments, the insulative sleeve is made of a sheet comprising an insulative cellular non-aromatic polymeric material. In some embodiments of the present disclosure, the sheet includes a strip of insulative cellular non-aromatic polymeric material and a skin coupled to the strip and configured to display artwork and text. In other embodiments of the present disclosure, such text and artwork are printed directly on an exterior surface of the strip of insulative cellular non-aromatic polymeric material. In illustrative embodiments, the floor also comprises insulative cellular non-aromatic polymeric material.


In illustrative embodiments, the insulative sleeve is arranged to surround and embrace an exterior surface of a hot-beverage drink cup to provide a grippable low-temperature thermal barrier that can be gripped by a consumer. The sleeve comprises a sheet comprising insulative cellular non-aromatic polymeric material configured to provide means for enabling localized plastic deformation in the sheet to provide a plastically deformed first material segment having a first density located in a first portion of the sheet and a second material segment having a second density lower than the first density located in an adjacent second portion of the sheet without fracturing the insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in the sheet.


The insulative cellular non-aromatic polymeric material included in the insulative sleeve is configured in accordance with the present disclosure to provide means for enabling localized plastic deformation in the insulative sleeve to provide (1) a plastically deformed first material segment having a first density in a first portion of the insulative sleeve and (2) a second material segment having a relatively lower second density in an adjacent second portion of the insulative sleeve. In illustrative embodiments, the more dense first material segment is thinner than the second material segment.


Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.





BRIEF DESCRIPTIONS OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures in which:



FIG. 1 is a perspective view of a first embodiment of an insulative container in accordance with the present disclosure showing that the insulative container includes a cup including a rolled brim and a base including a sleeve-shaped side wall and a floor and an insulative sleeve coupled to exterior surface of the side wall to extend around the side wall of the cup;



FIG. 2 is a partial sectional view taken along line 8-8 of FIG. 6 showing an upper portion of another embodiment of the insulative sleeve that is coupled to the side wall and that is shown in more detail in FIGS. 6-8;



FIG. 3 is a sectional view taken along line 3-3 of FIG. 1 showing that the insulative sleeve is coupled to the side wall included in the base of the cup and positioned to lie between and in spaced-apart relation from each of the rolled brim and the floor;



FIG. 3A is an enlarged sectional view of a portion of the side wall included in the body of the insulative cup of FIG. 3 and a portion of the insulative sleeve and showing that the side wall is made from a sheet that includes, from left to right, a skin including a film, an ink layer, and an adhesive layer, and a strip of insulative cellular non-aromatic polymer material;



FIG. 3B is a sectional view taken along line 3B-3B of FIG. 1 showing that the insulative sleeve is formed from an insulative cellular non-aromatic polymeric material that has been plastically deformed in a localized region along overlapping first and second upright tabs included in the sleeve to provide a bridge having a reduced thickness that is similar to a thickness of the rest of the insulative sleeve;



FIG. 4 is a perspective and diagrammatic view of a sleeve-forming process in accordance with the present disclosure showing that the sleeve-forming process includes the steps of loading a laminated roll to provide a sheet including insulative cellular non-aromatic polymeric material, plastically deforming the sheet to form a deformed sheet, cutting the deformed sheet to form sleeve blanks and scrap, collecting scrap, and accumulating the sleeve blanks to form sleeve-blank stacks, storing sleeve-blank stacks for transportation or storage, loading the sleeve blanks, heating the sleeve blank, wrapping the sleeve blank around a mandrel of a sleeve-forming machine, forming the insulative sleeve by overlapping and joining the upright tabs included in the sleeve blank, accumulating insulative sleeves to form stacks of insulative sleeves, and storing stacks of insulative sleeves for use at a later time in an illustrative container-forming process suggested in FIG. 5;



FIG. 5 is a perspective and diagrammatic view of the container-forming process suggested in FIG. 4 showing that that the container-forming process includes the steps of loading stacks of cups into a container-forming machine, loading stacks of insulative sleeves into the container-forming machine, positioning the insulative sleeve on the cup, coupling the insulative sleeve to the cup to form an insulative container, and inspecting the insulative container for defects;



FIG. 6 is a perspective view of another embodiment of an insulative container in accordance with the present disclosure showing that the insulative container includes the cup and an insulative sleeve that is coupled to the side wall of the cup and arranged to extend from the rolled brim to the floor of the cup;



FIG. 7 is a partial sectional view taken along line 8-8 of FIG. 6;



FIG. 8 is a partial sectional view taken along line 8-8 of FIG. 6 showing that the insulative sleeve extends between the rolled brim and the floor of the container and that the insulative sleeve includes upright inner and outer tabs (visible on the right side of FIG. 8) arranged to overlap one another and form a bridge along a right side of the insulative container and a fence extending around the side wall and interconnecting the upright inner and outer tabs;



FIG. 8′ is a dead section view taken along line 8′-8′ of FIG. 1 (omitting the side wall of the insulative cup) and showing that the insulative sleeve includes a C-shaped fence, an upright outer tab coupled to one end of the C-shaped fence, and an upright inner tab coupled to an opposite end of the C-shaped fence and suggested that the first and second tabs are arranged to overlap one another to establish a bridge extending between the ends of the C-shaped fence to define the interior region therebetween.



FIG. 8A is an enlarged dead section view of a bridge in accordance with the present disclosure showing how the insulative cellular non-aromatic polymer material has been compressed in both the first and second tabs to produce a bridge having a reduced the thickness that is similar to a thickness of the side wall in the C-shaped fence opposite the bridge;



FIG. 8B is an enlarged dead section view of a portion of the C-shaped fence of FIG. 8A showing that the insulative cellular non-aromatic polymer material has not been compressed;



FIG. 8C is an enlarged dead section view of the first and second tabs prior to mating to one another to establish the bridge;



FIG. 9 is a plan view of a sleeve blank used during a sleeve-forming process to form the sleeve of FIG. 6;



FIG. 10 is an exploded assembly view of the insulative container of FIG. 6 showing that the insulative container includes, from top to bottom, the cup including the rolled brim, sleeve-shaped side wall, and floor and the insulative sleeve having a height which is about equal to a height of the sleeve-shaped side wall;



FIG. 11 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a series of generally horizontal ribs formed on an inner surface of the sleeve;



FIG. 12 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 11;



FIG. 13 is a sectional view taken along line 13-13 of FIG. 12;



FIG. 14 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a series of generally vertical ribs formed on an inner surface of the sleeve;



FIG. 15 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 14;



FIG. 16 is a sectional view taken along an arc line 16-16 of FIG. 15;



FIG. 17 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a series of ribs formed on an inner surface of the insulative sleeve and arranged in a spiral to slope downwardly;



FIG. 18 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 17;



FIG. 19 is a sectional view taken along line 19-19 of FIG. 18;



FIG. 20 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a series of nubs formed on an inner surface of the insulative sleeve;



FIG. 21 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 20;



FIG. 22 is a sectional view taken along line 22-22 of FIG. 20;



FIG. 23 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a number of protruding ribs formed in the sleeve as a result of displacing portions of the sleeve;



FIG. 24 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 23;



FIG. 25 is a sectional view taken along line 25-25 of FIG. 23;



FIG. 26 is an enlarged portion of FIG. 25 showing that material has been displaced in the sleeve to form the protruding ribs;



FIG. 27 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a sleeve wall and a sleeve floor coupled to the sleeve wall to define a cup-receiving space therebetween;



FIG. 28 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 27;



FIG. 29 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a sleeve wall and a sleeve floor coupled to the sleeve wall to define a cup-receiving space therebetween;



FIG. 30 is a plan view of a sleeve-wall blank used during a sleeve-forming process to form the sleeve wall;



FIG. 31 is a plan view of a sleeve-floor blank used during the sleeve-forming process to form the sleeve floor which is coupled to the sleeve wall to establish the insulative sleeve;



FIG. 32 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve includes a sleeve wall having a first bridge on a left side of the insulative sleeve and a second bridge opposite the first bridge on a right side of the insulative sleeve and a sleeve floor coupled to the sleeve wall to define a cup-receiving space therebetween;



FIG. 33 is a plan view of a sleeve blank used during a sleeve-forming process to form the insulative sleeve of FIG. 27 showing that the sleeve blank includes, from left to right, a first wall panel, a sleeve floor, and a second wall panel;



FIG. 34 is a perspective view of another embodiment of an insulative container in accordance with the present disclosure showing that the insulative container includes a cup and an insulative sleeve that includes a fence having a fence thickness and a bridge having a bridge thickness that is about twice the fence thickness;



FIG. 35 is a sectional view taken along line 35-35 of FIG. 34;



FIGS. 36-40 are a series of views showing another embodiment of an insulative sleeve in accordance with the present disclosure and showing assembly of the insulative sleeve in the field;



FIG. 36 is a perspective view of another embodiment of an insulative sleeve in accordance with the present disclosure showing that the insulative sleeve is in a dis-assembled state that includes a sleeve wall having first and second panels connected together by a connecting web along a fold line and a sleeve-wall retainer including an upright tab, an adhesive layer applied to the upright tab, and a release liner coupled to the adhesive layer;



FIGS. 37-40 are a series of views showing an illustrative method of applying the insulative sleeve of FIG. 36 to a cup in the field;



FIG. 37 is a perspective view showing a cup and the insulative sleeve of FIG. 36 in the disassembled state;



FIG. 38 is a view similar to FIG. 37 with the second panel of the sleeve wall folded back away from the first panel of the sleeve wall along the connecting web to expose the sleeve-wall retainer and suggesting that the release liner is peeled away from the adhesive layer to expose the adhesive layer;



FIG. 39 is a view similar to FIG. 38 showing the release liner removed from the adhesive layer and suggesting that the sleeve-wall retainer is arranged to overlap a distal end of the second panel as suggested in FIG. 40; and



FIG. 40 is a view similar to FIG. 39 showing that the sleeve-wall retainer has been arranged to overlap the distal end of the second panel to cause the insulative sleeve to be established with a cup-receiving space formed therebetween.





DETAILED DESCRIPTION

An insulative container 110 in accordance with a first embodiment of the present disclosure is shown, for example, in FIGS. 1-3. As an example, insulative container 110 includes a cup 11 and a first embodiment of an insulative sleeve 113 as shown in FIGS. 1-3. A container-forming process 46, 47 used to make the insulative container 110 is shown in FIGS. 4 and 5. Another embodiment of an insulative container 210 in accordance with the present disclosure is illustrated in FIGS. 6-10. Other embodiments of insulative sleeves 313, 413, 513, 613, 713, 813, 913, 1013, 1113, 1213, and 1313 that are in accordance with the present disclosure are shown in FIGS. 11-36.


An insulative container 110 in accordance with the present disclosure includes a cup 11 and an insulative sleeve 113 as shown in FIGS. 1, 3, and 4. Cup 11 includes body 12 formed to include an interior region 14 and a rolled brim 16 coupled to body 12 as shown, for example, in FIG. 1. Body 12 includes a side wall 18 and a floor 20 coupled to side wall 18 to define an interior region 14 therebetween. In one illustrative example, cup 11 may be formed of polypropylene using a thermoforming process.


Insulative sleeve 113 illustratively comprises a strip 82 of insulative cellular non-aromatic polymeric material. Strip 82 of insulative cellular non-aromatic polymeric material is configured to provide means for insulating a beverage, dessert or other substance placed in interior region 14 of cup 11 while providing resistance to deformation and puncture and for providing an exterior surface that is suitable for printing graphics and other information thereon.


Insulative sleeve 113 includes a region 101 having localized plastic deformation that provides segments of insulative sleeve 113 that exhibit higher material density than neighboring segments of insulative sleeve 113 in accordance with the present disclosure is shown in FIGS. 1 and 3. As an example, insulative sleeve 113 is made using an illustrative sleeve-forming process 46 suggested in FIG. 4. Insulative container 110 is made using an illustrative container-forming process 47 using a sleeve blank 300 as shown, for example, in FIG. 5. Strip 82 of insulative cellular non-aromatic polymeric material used to form insulative sleeve 113 is shown in FIGS. 3A and 3B.


Insulative sleeve 113 includes an upright inner tab 114, an upright outer tab 112, and an upright fence 111 extending between inner and outer tabs 114, 112 as suggested in FIG. 8′. Upright inner tab 114 is configured to provide the first material segment having the higher first density in the region 101 of sleeve 113. Upright outer tab 112 is arranged to mate with upright inner tab 114 along an interface I therebetween as suggested in FIG. 8′. Upright fence 111 is arranged to interconnect upright inner and outer tabs 114, 112 and surround interior region 14. Upright fence 111 is configured to provide the second material segment having the lower second density in the region 101 insulative sleeve 113 and cooperate with upright inner and outer tabs 114, 112 to form insulative sleeve 113 as suggested in FIG. 8′. Region 101 of insulative sleeve 113 in which localized plastic deformation is enabled by the insulative cellular non-aromatic polymeric material is where upright inner and outer tabs 114, 112 overlap along interface I as suggested in FIG. 8′.


Upright fence 111 of insulative sleeve 113 is C-shaped in a horizontal cross-section and each of upright inner and outer tabs 114, 112 has an arcuate shape in a horizontal cross-section as suggested in FIG. 8′. Upright fence 111 includes an upright left side edge 111L and an upright right side edge 111R that is arranged to lie in spaced-apart confronting relation to upright left side edge 111L. Upright outer tab 112 is configured to have the higher first density and mate with upright inner tab 114 also characterized by the higher first density to establish a bridge 112, 114 arranged to interconnect upright left and right side edges 111L, 111R of upright fence 111. Bridge 112, 114 is formed of plastically deformed material having the higher first density.


As shown, for example, in FIG. 1, upright fence 111 of insulative sleeve 113 has a sleeve height H1. Cup 11 has a cup height D1. As shown in FIG. 1, sleeve height H1 is less than cup height D1.


Insulative sleeve 113 includes a pair of tabs 114, 112 that mate to provide insulative sleeve 113 with a frustoconical shape in the illustrative embodiment shown in FIGS. 8′, 8A, and 8C. Upright inner tab 114 includes an inner surface 114i bounding a portion of interior region 14 and an outer surface 114o facing toward upright outer tab 112 as shown in FIGS. 8′ and 8C. Upright outer tab 112 includes an inner surface 112i facing toward interior region 14 and mating with outer surface 114o of upright inner tab 114 to define the interface I between upright inner and outer tabs 114, 112. Upright outer tab 112 further includes an outer face 112o facing away from upright inner tab 114. Each of inner and outer surfaces of upright inner and outer tabs 114, 112 has an arcuate shape in a horizontal cross-section as suggested in FIG. 8C and subtends an acute angle of less than 20° as suggested in FIG. 8′.


Upright fence 111 is C-shaped in a horizontal cross-section and each of upright inner and outer tabs 114, 112 has an arcuate shape in a horizontal cross-section as suggested in FIG. 8′. Upright fence 111 includes an upright left side edge 111L and an upright right side edge 111R that is arranged to lie in spaced-apart confronting relation to upright left side edge 111L in FIG. 8C. Upright outer tab 112 is configured to have the higher first density and mate with upright inner tab 114 also characterized by the higher first density to establish a bridge 112, 114 arranged to interconnect upright left and right side edges 111L, 111R of upright fence 111. Bridge 112, 114 is formed of plastically deformed material having the higher first density.


Upright fence 111 has an inner surface 111i bounding a portion of interior region 14 and an outer surface 1110 facing away from interior region 14 and surrounding inner surface 111i of upright fence 113 as shown, or example, in FIG. 8′. Outer surface 1110 cooperates with inner surface 111i of upright fence 113 to define a first thickness T1 therebetween. Upright inner tab 114 includes an inner surface 114i bounding a portion of interior region 14 and an outer surface 114o facing toward upright outer tab 112. Upright outer tab 112 includes an inner surface 112i facing toward interior region 14 and mating with outer surface 114o of upright inner tab 114 to define the interface I between upright inner and outer tabs 114, 112. Upright outer tab 112 further includes an outer face 112o facing away from upright inner tab 114. Inner and outer surfaces of upright inner tab 114 cooperate to define a second thickness T2I therebetween that is less than the first thickness T1. Inner and outer surfaces of upright outer tab 112 cooperate to define a third thickness T2O that is less than the first thickness T1.


Insulative sleeve 113 is made from a strip 82 of insulative cellular non-aromatic polymeric material. Insulative cellular non-aromatic polymeric material comprises, for example, a polypropylene base resin having a high melt strength, one or both of a polypropylene copolymer and homopolymer resin, and one or more cell-forming agents. As an example, cell-forming agents may include a primary nucleation agent, a secondary nucleation agent, and a blowing agent defined by gas means for expanding the resins and to reduce density. In one example, the gas means comprises carbon dioxide. In another example, the base resin comprises broadly distributed molecular weight polypropylene characterized by a distribution that is unimodal and not bimodal. Reference is hereby made to U.S. application Ser. No. 13/491,327 filed Jun. 7, 2012 and titled POLYMERIC MATERIAL FOR AN INSULATIVE CONTAINER for disclosure relating to such insulative cellular non-aromatic polymeric material, which application is hereby incorporated in its entirety herein.


An insulating sleeve in accordance with the present disclosure may optionally include, as shown in FIGS. 12-26, vertical, horizontal, spiral or other configuration of ribs or rib segments, hoops, bumps, nubs, or other projections, or grooves, slots, channels, depressions or the like on the inner surface of the sleeve that creates an air gap between side wall 18 of cup 11 and the insulating sleeve. This air gap forms an insulating barrier to minimize transfer of heat from a hot beverage through cup 11 and/or the insulating sleeve to a user's hand (and, conversely, transfer of heat from a user's hand through insulative sleeve 113 and side wall 18 to the beverage). As shown in FIGS. 4 and 5, insulative container 110 is formed in an illustrative container-forming process 46, 47.


As shown in FIGS. 2 and 3, insulative sleeve 113 is formed during sleeve-forming process 46. Upright fence 111 has a first thickness T1 and first and second upright tabs 114, 112 each have a second thickness 11T2. As suggested in FIG. 1, second thickness T2 is about half to first thickness T1. As a result, bridge 114, 112 formed by overlapping and coupling upright tabs 114, 112 has a third thickness T3 which about equal to first thickness T1. In one exemplary embodiment the insulative sleeve 113 may be formed in the forming apparatus and coupled with cup 11. Insulative sleeve 113 may be manufactured, stored, shipped, and/or sold separately with a self-locking die cut feature. The self-locking feature may have various shapes to promote retention.


Insulative sleeve 113 is made using sleeve-forming process 46 as shown, for example, in FIG. 4. Sleeve-forming process 46 includes a laminated-roll loading step 461A, a compressing step 462A, a cutting step 463A, an accumulating sleeve blanks step 464A, a storing sleeve blanks step 465A, a loading sleeve blank step 461B, heating sleeve blanks step 462B, wrapping sleeve blanks step 463B, forming sleeve step 464B, accumulating sleeves step 465B, and storing stacks of sleeves step 466B as shown in FIG. 4.


Laminated-roll loading step 461A loads laminated roll 86 onto a cutting machine such as a die cutting machine or metal-on-metal stamping machine. As a result, laminated sheet 80 is drawn into the cutting machine for processing. Compressing step 462A compresses portions of laminated sheet 80 to form a compressed sheet. Cutting step 463A cuts compressed sheet to cause sleeve blank 300 to be cut from a blank-carrier sheet 94. As an example, cutting step 463A and compressing step 462A may be combined such that they are performed generally at the same time on the same piece of equipment. Accumulating sleeve blanks step 464A accumulates sleeve blanks 300 into a stack 95 of sleeve blanks. Storing sleeve blanks step 465A stores stack 95 of sleeve blanks until ready for use in loading sleeve blanks step 461B. Loading sleeve blanks step 461B loads stack 95 of sleeve blanks for processing by a sleeve-forming machine. Heating sleeve blanks step 462B applies heat 102 to sleeve blank 300. Wrapping sleeve blanks step 463B wraps heated sleeve blank 300 around a mandrel included in sleeve-forming machine. Forming sleeve step 464B forms bridge 114, 112 by overlapping and compressing upright tabs 112, 114 with primary and auxiliary clamps included in sleeve-forming machine. Accumulating sleeves step 465B accumulates sleeves 113 into a stack 97 of sleeves. Storing stacks of sleeves step 466B stores stack 97 of sleeves for use in later container-forming process 47.


Insulative container 110 is made using a container-forming process 47 as shown in FIG. 5. Container-forming process 47 includes a loading cups step 471, a loading sleeves step 472, a positioning sleeve on cup step 473, a sleeve coupling step 474, and an inspecting step 475 as shown in FIG. 5. Loading containers step 471 loads container stack 124 onto a container-forming machine. Loading sleeves step 472 loads a stack 97 of sleeves onto the container-forming machine. Positioning sleeve on cup step 473 positions sleeve 113 on cup 11. Sleeve coupling step 474 couples sleeve 113 to cup 11 using heat for example to establish insulative container 110. However, sleeve 113 may be coupled by adhesive, friction fit, or any other suitable alternative. Inspecting step 475 inspects insulative container 110 for defects before passing good containers onto container-packaging stage 48 as suggested in FIG. 5.


As shown in FIG. 3A, insulative sleeve 113 is made from a sheet 80. Sheet 80 includes a skin 81 and strip 82 of insulative cellular polymeric material. Skin 81, includes, for example, a film layer 811, an ink layer 812, and an adhesive layer 810 as shown in FIG. 3A. Adhesive layer 810 is used, for example, to laminate skin 81 to strip 82 so that ink layer 812 is trapped between film layer 811 and adhesive layer 810.


In another exemplary embodiment of a sleeve-forming process, sleeve-forming process 46 is modified by not laminating a skin 81 to strip 82 of insulative cellular non-aromatic polymeric material. As a result, the skin is entirely omitted and printing may done directly on strip 82 of insulative cellular non-aromatic polymeric material.


Side wall 18 of cup 11 extends between rolled brim 16 and floor 20 as shown in FIG. 3. Side wall 18 includes a top portion 22 of body 12 that is coupled to rolled brim 16 and a bottom portion 24 arranged to interconnect floor 20 and top portion 22. Top portion 22 is arranged to extend in a downward direction toward floor 20 and is coupled to bottom portion 24 that is arranged to extend in an opposite upward direction toward rolled brim 16. Top portion 22 and rolled brim 16 cooperate to form a mouth 32 that is arranged to open into interior region 14 as shown in FIG. 1.


Insulative sleeve 113 is arranged to surround and embrace an exterior surface of a hot-beverage drink cup 11 to provide a grippable low-temperature thermal barrier that can be gripped by a consumer. Insulative sleeve 113 comprises a sheet 80 comprising insulative cellular non-aromatic polymeric material configured to provide means for enabling localized plastic deformation in sheet 80 to provide a plastically deformed first material segment having a first density located in a first portion of sheet 80 and a second material segment having a second density lower than the first density located in an adjacent second portion of sheet 80 without fracturing the insulative cellular non-aromatic polymeric material so that a predetermined insulative characteristic is maintained in sheet 80.


Sheet 80 is arranged to surround a vertical central axis 113A as suggested in FIGS. 1 and 3. Sheet 80 includes an upright inner tab 114 arranged to extend upwardly along and in spaced-apart relation to vertical central axis 113A and configured to provide the first material segment having the first density. Sheet 80 also includes an upright outer tab 112 arranged to extend upwardly along and in spaced-apart relation to vertical central axis 113A and to mate with upright inner tab 114 along an interface I therebetween, and an upright fence 111 arranged to interconnect the upright inner and outer tabs 114, 112 and surround vertical central axis 113A and configured to provide the second material segment having the second density and cooperate with upright inner and outer tabs 114, 112 to form sleeve-shaped side wall 18. Fence 111 has a substantially frustoconical shape as suggested in FIGS. 1 and 3. Each of upright inner and outer tabs 114, 112 has an arcuate shape.


Upright inner tab 114 includes an inner surface providing means for mating with a hot-beverage drink cup 11 and an outer surface facing toward upright outer tab 112 as suggested in FIGS. 8′ and 8C. Upright outer tab 112 includes an inner surface mating with the outer surface of upright inner tab 114 to define the interface I between upright inner and outer tabs 114, 112. Upright outer tab 112 further includes an outer face facing away from upright inner tab 114. Each of the inner and outer surfaces of upright inner and outer tabs 114, 112 has an arcuate shape in a horizontal cross-section and subtends an acute angle of less than 20°. Upright fence 111 is C-shaped in a horizontal cross-section. Each of upright inner and outer tabs 114, 112 has an arcuate shape in a horizontal cross-section.


Upright fence 111 includes an upright left side edge 111L and an upright right side edge 111R arranged to lie in spaced-apart confronting relation to upright left side edge 111L. Upright outer tab 112 is configured to have the first density and mate with the upright inner tab to establish a bridge arranged to interconnect upright left and right side edges 111L, 111R of the upright fence and formed of plastically deformed material having the first density.


Upright fence 111 has an inner surface facing toward vertical central axis 113A and providing means for mating with a hot-beverage drink cup 11. Upright fence 111 also has an outer surface facing away from central vertical axis 113A from interior region 14 and surrounding the inner surface of upright fence 111 and cooperating with the inner surface of upright fence 111 to define a first thickness therebetween.


Upright inner tab 114 includes an inner surface facing toward vertical central axis 113A and providing means for mating with hot-beverage drink cup 11 and an outer surface facing toward upright outer tab 112. Upright outer tab 112 includes an inner surface facing toward vertical central axis 113A and mating with the outer surface of upright inner tab 114 to define interface I between upright inner and outer tabs 114, 112.


Upright outer tab 112 further includes an outer face facing away from the upright inner tab 114. The inner and outer surfaces of upright inner tab 114 cooperate to define a second thickness therebetween that is about half of the first thickness as suggested in FIG. 8′. Inner and outer surfaces of upright outer tab 112 cooperate to define a third thickness that is about half of the first thickness as suggested in FIG. 8′.


Another embodiment of an insulative container 210 in accordance with the present disclosure is shown in FIGS. 6-10. Insulative container 210 includes cup 11 and insulative sleeve 213 as shown in FIG. 6. Insulative sleeve 213 is similar to sleeve 113 except that insulative sleeve 213 has a sleeve height H1 that about equal to a cup height D1 as shown in FIG. 6.


As an example, insulative sleeve 213 is formed using sleeve blank 300 during sleeve-forming process 46 is shown, for example, in FIG. 4. Blank 300 includes a first side 302 and an opposite second side (not shown). Blank 300 has a first arcuate edge 306 that coincides with a radius 308 centered on an axis 310. A second arcuate edge 312 that coincides with a radius 314 centered on axis 310. A first linear edge 316 coincides with a first ray emanating from the axis 310 and a second linear edge 318 coincides with a second ray emanating from the axis 310. When the blank 300 is wrapped such that first linear edge 316 overlaps in juxtaposition with second linear edge 318, the insulative sleeve 113 defines a frustoconical surface 320 shown in FIG. 6. The overlapped linear edges 316 and 318 may be secured in any of a number of ways including a mechanical connection created by heating the edges 316 and 318 to bonding of the insulative cellular non-aromatic polymeric material. The edges 316 and 318 may be treated with an adhesive to secure the edges 316 and 318 to one another.


In yet another embodiment of an insulative sleeve 313 formed from a sleeve blank 322, insulative sleeve 313 includes a plurality of generally horizontal ribs 328 on an inner surface 326 of an assembled insulative sleeve 313 as shown in FIGS. 11-13. Sleeve blank 322 is formed with a first thickness 322T1 and in a compressing material sheet step of a sleeve forming process, depressions 324 are formed by reducing the thickness to 322T2 as shown in FIG. 13. Upon completion of the compressing material sheet step, blank 322 includes a number of areas of localized plastic deformation that form depression 324 with thickness 322T2 and ribs 328 which have no deformation and thickness 322T1. As shown diagramatically in FIG. 11, depressions 324 and ribs 328 cooperate to form an air gap 301 between inner surface 326 of insulative sleeve 313, an exterior surface 102 of cup 11, and a pair of neighboring ribs 328A, 328B.


Blank 322 is formed with a first linear edge 330 and a second linear edge 334. Ribs 328 are formed to abut second linear edge 334 at a first end and are spaced apart from first linear edge 330 by a distance 332 so that when first linear edge 330 overlaps second linear edge 334 during the wrapping sleeve blank step of the sleeve-forming process, the first and second ends of ribs 328 do not overlap. This reduces the amount of material that must be compressed during the wrapping sleeve blank step. Ribs 328 are positioned to engage an outer surface of a cup, such as cup 11, such that the inner surface 336 of depressions 324 are spaced apart from the outer surface of the cup to provide an air gap with only the ribs 328 engaging the outer surface of the cup. The air gap is insulative so that when a user grips an outer surface 338 of insulative sleeve 313, heat transfer from the cup to a user's hand is impeded.


In still yet another embodiment of an insulative sleeve 413 formed from a sleeve blank 422, insulative sleeve 413 includes a plurality of vertical ribs 428 on an inner surface 426 of an assembled insulative sleeve 413 as shown in FIGS. 14-16. Sleeve blank 422 is formed with a first thickness 422T1 and in a compressing material sheet step of a sleeve forming process, depressions 424 are formed by reducing the thickness to 422T2 as shown in FIG. 13. Upon completion of the compressing material sheet step, blank 422 includes a number of areas of localized plastic deformation that form depression 424 with thickness 422T2 and ribs 428 which have no deformation and thickness 422T1.


Blank 422 is formed with a first linear edge 430, a first arcuate edge 440, a second linear edge 434, and a second arcuate edge 442. Ribs 428 are formed to extend from first arcuate edge 440 to second arcuate edge 442. First linear edge 430 and second linear edge 434 each lie along a ray that emanates from a common axis that defines the center of curvature of both first arcuate edge 440 and second arcuate edge 442. Each rib 428 also lies along a ray that extends from the common axis 444. Ribs 428 are positioned to engage an outer surface of a cup, such as cup 11, such that the inner surface 436 of depressions 424 are spaced apart from the outer surface of the cup to provide an air gap with only the ribs 428 engaging the outer surface of the cup. The air gap is insulative so that when a user grips an outer surface 438 of insulative sleeve 413, heat transfer from the cup to a user's hand is impeded.


In yet another embodiment of an insulative sleeve 513 formed from a sleeve blank 522, insulative sleeve 513 includes a plurality of helical ribs 528 on an inner surface 526 of an assembled insulative sleeve 513 as shown in FIGS. 17-19. Sleeve blank 522 is extruded with a first thickness 522T1 and in a compressing material sheet step of a sleeve forming process, depressions 524 are formed by reducing the thickness to 522T2 as shown in FIG. 13. Upon completion of the compressing material sheet step, blank 522 includes a number of areas of localized plastic deformation that form depression 524 with thickness 522T2 and ribs 528 which have no deformation and thickness 522T1.


Blank 522 is formed with a first linear edge 530, a first arcuate edge 540, a second linear edge 534, and a second arcuate edge 542. Ribs 528 are formed to extend along axes that are perpendicular to second linear edge 534. Ribs 528 extend to abut either second arcuate edge 542 or first linear edge 530. Ribs 528 are positioned to engage an outer surface of a cup, such as cup 11, such that the inner surface 536 of depressions 524 are spaced apart from the outer surface of cup to provide an air gap with only the ribs 528 engaging the outer surface of cup 11. The air gap is insulative so that when a user grips an outer surface 538 of insulative sleeve 513, heat transfer from the cup to a user's hand is impeded.


In another embodiment of an insulative sleeve 613 formed from a sleeve blank 622, insulative sleeve 613 includes a plurality of nubs or protrusions 628 on an inner surface 626 of an assembled insulative sleeve 613 as shown in FIGS. 20-22. Sleeve blank 622 is extruded with a first thickness 622T1 and in a compressing material sheet step of a sleeve forming process, protrusions 628 remain after reducing the remainder of blank 622 to thickness to 622T2 as shown in FIG. 13. Upon completion of the compressing material sheet step, blank 622 includes a number of protrusions 628 which have no deformation and thickness 622T1.


Blank 622 is formed with a first linear edge 630, a first arcuate edge 640, a second linear edge 634, and a second arcuate edge 642. Protrusions 628 are spaced in rows 624 with each row 624 lying along an arc that is parallel to the first arcuate edge 640 and second arcuate edge 642. Protrusions 628 are positioned to engage an outer surface of a cup, such as cup 11, such that the inner surface 636 of insulative sleeve 613 is spaced apart from the outer surface of the cup to provide an air gap with only the protrusions 628 engaging the outer surface of the cup. The air gap is insulative so that when a user grips an outer surface 638 of insulative sleeve 613, heat transfer from the cup to a user's hand is impeded.


In yet another embodiment of an insulative sleeve 713 formed from a sleeve blank 722, insulative sleeve 713 includes a plurality of generally horizontal ribs 728 on an inner surface 726 of an assembled insulative sleeve 713 as shown in FIGS. 23-26. Sleeve blank 722 is extruded with a first thickness 722T1 and in a displacing material sheet step of a sleeve forming process, ribs 728 are formed by displacing material. Upon completion of the displacing material sheet step, blank 722 includes a number of areas of localized plastic deformation that form ribs 728 which have thickness 722T1, but with portions of the blank 722 offset to define ribs 728. Portions of blank 722 are reduced to a thickness 722T2 due to plastic deformation and elongations as the material is displaced.


The displacing material sheet step may be performed by a thermoforming process in which blank 722 is thermoformed. As a result, thicknesses 722T1 and 722T2 are maximized so that the insulative properties of insulative sleeve 713 are maximized.


Blank 722 is formed with a first linear edge 730 and a second linear edge 734. Ribs 728 are formed to abut second linear edge 734 at a first end and are spaced apart from first linear edge 730 by a distance 732 so that when first linear edge 730 overlaps second linear edge 734 during a wrapping sleeve blank step of the sleeve forming process, the first and second ends of ribs 728 do not overlap. This reduces the amount of material that must be compressed during wrapping sleeve blank process. Ribs 728 are positioned to engage an outer surface of a cup, such as cup 11, such that the inner surface 736 of depressions 724 are spaced apart from the outer surface of the cup to provide an air gap with only the ribs 728 engaging the outer surface of the cup. The air gap is insulative so that when a user grips an outer surface 738 of insulative sleeve 713, heat transfer from the cup to a user's hand is impeded.


Another embodiment of an insulative sleeve 813 in accordance with the present disclosure is shown in FIGS. 27 and 28. Insulative sleeve 813 includes an upright sleeve wall 818 and a sleeve floor 820 as shown in FIG. 27. Sleeve blank 824 is extruded with a first thickness and in a compressing material sheet step of a sleeve forming process, a fold line 828 is formed by compressing material to a relatively thinner second thickness. Sleeve floor 820 includes a floor platform 821 and a floor-retention tab 822 that is coupled to sleeve wall 818 during sleeve forming as shown in FIG. 27. After sleeve forming, sleeve floor 820 and sleeve wall 818 cooperate to define a cup-receiving space 814 therebetween.


Still yet another embodiment of an insulative sleeve 913 in accordance with the present disclosure is shown in FIGS. 29-31. Insulative sleeve 913 includes an upright sleeve wall 918 and a sleeve floor 920 as shown in FIGS. 29-31. Sleeve-wall blank 922 and sleeve-floor blank 924 are extruded with a first thickness and in a compressing material sheet step of a sleeve forming process, fold lines 928 are formed by compressing material to a relatively thinner second thickness in sleeve-floor blank 924 as shown in FIG. 31. Sleeve floor 920 includes a floor platform 921 and four floor-retention tabs 922A, 922B, 922C, 922D that are coupled to sleeve wall 918 during sleeve forming as shown in FIG. 29. After sleeve forming, sleeve floor 920 and sleeve wall 918 cooperate to define a cup-receiving space 914 therebetween.


In another embodiment, an insulative sleeve 1013 has a generally cylindrical shape with a lower tab 1002 as shown in FIG. 32. The lower tab 1002 is used to support a cylindrical drinking vessel, such as an aluminum can, for example, while insulative sleeve 1013 is positioned on the cylindrical drinking vessel. Insulative sleeve 1013 includes an opening into which the vessel is positioned and lower tab 1002 provides a stop so that the vessel is supported on lower tab 1002 to position insulative sleeve 1013. Insulative sleeve 1013 differs from sleeves 213 and 113 in that insulative sleeve 1013 has two joints 1006 and 1008 where material is joined to form the insulative sleeve 1013.


A blank 1022 for insulative sleeve 1013 includes two generally rectangular shaped portions 1012, 1014 interconnected by lower tab 1002 as shown in FIG. 33. A first linear edge 1016 of portion 1012 mates with a first linear edge 1018 of portion 1014 and the edges are overlapped in juxtaposition so that they can be joined to form joint 1006. Similarly, a second linear edge 1020 of portion 1012 mates with a second linear edge 1021 of portion 1014 overlapped and juxtaposed therewith to form joint 1008. The joints 1006 and 1008 are formed by heating the material and positioning the edges so that the insulative cellular non-aromatic polymeric material is coupled together. In other embodiments, the joints may be formed by applying adhesive to the respective edges. In either approach, pressure may be applied to assist with the joining. In other embodiments, the joints may be formed by forming a slit along one edge and forming a tab along the opposite edge and causing the tab to be inserted into the slit and retained therein.


In other embodiments, joints 1006 and 1008 may be secured by using a hook and loop fastening system, such as VELCRO®, for example. The insulative cellular non-aromatic polymeric material has sufficient flexibility to allow the insulative sleeve 1013 to be formed as a blank in a flat condition and assembled by a consumer. Similarly, sleeves 213 and 113 may use hook and loop fastening systems in some embodiments, such that the sleeves 213 and 113 can be shipped to a consumer as flat blanks and assembled by a consumer or at a point of sale. It should be understood that insulative sleeve 1013 may be formed with various surface discontinuities, including those discussed with regard to sleeves 313, 413, 513, 613, and 713 above.


Another embodiment of an insulative sleeve 1113 in accordance with the present disclosure is shown in FIGS. 34 and 35. Insulative sleeve 1113 includes an upright inner tab 1114, an upright outer tab 1112, and an upright fence 1111 extending between inner and outer tabs 1114, 1112 as suggested in FIGS. 34 and 35. Upright inner tab 1114 is arranged to extend upwardly from floor 20 of cup 11. Upright outer tab 1112 is arranged to extend upwardly from floor 20 and to mate with upright inner tab 1114 along an interface I therebetween as suggested in FIG. 35. Upright fence 1111 is arranged to interconnect upright inner and outer tabs 1114, 1112 and surround cup-receiving space 1115.


Upright fence 1111 of insulative sleeve 1113 is C-shaped in a horizontal cross-section and each of upright inner and outer tabs 1114, 1112 has an arcuate shape in a horizontal cross-section. Upright fence 1111 has a first thickness 11T1 and first and second upright tabs 1114, 1112 each have a second thickness 11T2. As suggested in FIG. 34 and shown in FIG. 35, second thickness 11T2 is about equal to first thickness 11T1. As a result, bridge 1114, 1112 formed by overlapping and coupling upright tabs 1114, 1112 has a third thickness 11T3 which about twice first and second thicknesses 11T1, 11T2.


Another embodiment of an insulative sleeve 1213 in accordance with the present disclosure is shown in FIGS. 36-40. Insulative sleeve 1213 includes a sleeve wall 1218 and a sleeve-wall retainer 1220 as shown, for example in FIG. 36. Sleeve wall 1218 includes a first sleeve panel 1218A, a second sleeve panel 1218B spaced-apart from first sleeve panel 1218A, and a connecting web 1218C positioned to lie between and interconnect first and second sleeve panels 1218A, 1218B as shown in FIGS. 36 and 38.


Sleeve-wall retainer 1220 includes an upright tab 1220A, an adhesive layer 1220B, and a release liner 1220C as shown in FIG. 36. Upright tab 1220A is coupled to a free end of first sleeve panel 1218A opposite connecting web 1218C. Adhesive layer 1220B is placed on upright tab 1220A and release liner 1220C is placed on adhesive layer 1220B to locate adhesive layer 1220B between release line 1220C and upright tab 1220 until assembly of insulative sleeve 1213 in the field.


In example of use, insulative sleeve 1213 may be assembled and coupled to a cup 11 in the field. As shown in FIG. 37, insulative sleeve 1213 is in a dis-assembled state in spaced-apart relation to cup 11. Second sleeve panel 1218B is folded back away from first sleeve panel 1218A about connecting web 1218C to expose sleeve retainer 1220 as suggested in FIG. 38. Release liner 1220C is pulled away from adhesive layer 1220B to expose adhesive layer 1220B as shown in FIG. 39. Upright tab 1220A and adhesive 1220B are arranged to overlap a free end of second sleeve panel 1218B to for insulative sleeve 1213 as shown in FIG. 40. Cup 11 is inserted into and coupled to insulative sleeve 1213 as suggested in FIG. 40. As an example, insulative sleeve 1213 may be coupled to cup 11 by friction interference or any other suitable method.


The insulative cellular non-aromatic polymeric material used to produce the insulative sleeves 213 and 113 and the variants of those sleeves are somewhat flexible and capable of expanding slightly under load to allow a properly sized sleeve to grip a vessel with some level of bias.


It is within the scope of the present disclosure to form insulative sleeves 913, 1013, 1113, and 1213 may be formed with various patterns, including those discussed with regard to sleeves 313, 413, 513, 613, and 713 above. The various patterns may be formed by forming localized areas of plastic deformation in each insulative sleeve. An example, the patterns may be formed by compression portions of the sleeve such that the pattern is made from uncompressed portions. As another example, the patterns may be formed by compressing portions of the sleeve such that the pattern is made from the compressed portions. In still yet another example, the patterns may be formed by deforming portions of the sleeve so that thicknesses throughout the sleeve are maximized. In yet another example, combinations of deformation and compression may be used.


The insulative sleeve as described hereinabove provides the cup with strength and insulation. A feature of the thermoformed cup with an insulative sleeve of the present disclosure is that the thermoformed cup is seamless, yet the insulating sleeve provides desired strength, insulation, and a printable surface. The thermoformed cup has a brim without a seam, thereby providing a lid seal which reduces potential leakage compared to expanded polystyrene cups (which have seams). Another feature of the thermoformed cup and insulative sleeve of the present disclosure is that the desired strength and insulation levels are attained, but the cup side walls have a desirable level of puncture resistance. The present disclosure also provides for an insulative sleeve which can be provided separate from the cup.


The insulative sleeve made of insulative cellular non-aromatic polymeric material as described in the present disclosure can also be used or adapted for use with structures other than containers. As an example, the insulative cellular non-aromatic polymeric material may used as, but not limited to, a window sill seal, pipe wrap, or other applications where a low density, light weight, thin, material with good insulation is desired.


In an alternative exemplary embodiment, the cup, base, or body may be made of a material other than a thermoformed material. As example, the cup, base, or body may be made of an injection molded material or any other suitable alternative.

Claims
  • 1. An insulative container comprising a wall and a floor, the wall being coupled to the floor, the wall comprising insulative cellular non-aromatic polymeric material having localized plastic deformation to provide a plastically deformed first material segment having a first density located in a first portion of the material and a second material segment having a second density lower than the first density located in an adjacent second portion of the material, wherein the insulative cellular non-aromatic polymeric material has no fractures so that a predetermined insulative characteristic is maintained in the material, wherein the wall is arranged to surround a vertical central axis and includes an upright inner tab arranged to extend upwardly along and in spaced-apart relation to the vertical central axis and is configured to provide the first material segment having the first density, an upright outer tab arranged to extend upwardly along and in spaced-apart relation to the vertical central axis and arranged to mate with the upright inner tab along an interface therebetween, and an upright fence arranged to interconnect the upright inner and outer tabs and surround the vertical central axis and configured to provide the second material segment having the second density and cooperate with the upright inner and outer tabs to form the wall.
  • 2. The insulative container of claim 1, wherein the fence has a substantially frustoconical shape and each of the upright inner and outer tabs has an arcuate shape.
  • 3. The insulative container of claim 1, wherein the upright inner tab includes an inner surface and an outer surface facing toward the upright outer tab, the upright outer tab includes an inner surface mating with the outer surface of the upright inner tab to define the interface between the upright inner and outer tabs, and the upright outer tab further includes an outer face facing away from the upright inner tab.
  • 4. The insulative container of claim 3, wherein each of the inner and outer surfaces of the upright inner and outer tabs has an arcuate shape in a horizontal cross-section and subtends an acute angle of less than 20°.
  • 5. The insulative container of claim 1, wherein the upright fence includes an upright left side edge and an upright right side edge arranged to lie in spaced-apart confronting relation to the upright left side edge and the upright outer tab is configured to have the first density and mate with the upright inner tab to establish a bridge arranged to interconnect the upright left and right side edges of the upright fence and is formed of plastically deformed material having the first density.
  • 6. The insulative container of claim 5, wherein the upright fence has an inner surface facing toward the vertical central axis and an outer surface facing away from the central vertical axis from the interior region and surrounding the inner surface of the upright fence and cooperating with the inner surface of the upright fence to define a first thickness therebetween, the upright inner tab includes an inner surface facing toward the vertical central axis and providing means for mating with the hot-beverage drink cup and an outer surface facing toward the upright outer tab, the upright outer tab includes an inner surface facing toward the vertical central axis and mating with the outer surface of the upright inner tab to define the interface between the upright inner and outer tabs, and the upright outer tab further includes an outer face facing away from the upright inner tab, the inner and outer surfaces of the upright inner tab cooperate to define a second thickness therebetween that is about half of the first thickness, and the inner and outer surfaces of the upright outer tab cooperate to define a third thickness that is about half of the first thickness.
  • 7. The insulative container of claim 1, further comprising a skin comprising a biaxially oriented polypropylene film adhered to the insulative cellular non-aromatic polymeric material, further comprising an adhesive interposed between the film and an exterior surface.
  • 8. The insulative container of claim 7, wherein ink is printed on the film to provide a graphic design.
  • 9. The insulative container of claim 1, wherein the first density is about 0.350 g/cm3 and the second density is about 0.175 g/cm3.
  • 10. An insulative container comprising a wall and a floor, the wall comprising insulative cellular non-aromatic polymeric material having an area of localized plastic deformation to provide a plastically deformed area and having a first density, the floor comprising insulative cellular non-aromatic polymeric material having a second density lower than the first density, wherein the insulative cellular non-aromatic polymeric material has no fractures so that a predetermined insulative characteristic is maintained throughout the material, and the floor and the wall are coupled together along a fold line.
  • 11. The insulative container of claim 10, wherein the fold line is formed by compressing the insulative cellular non-aromatic polymeric material to form an area of localized plastic deformation.
  • 12. The insulative container of claim 11, wherein the area of localized plastic deformation provides a first material segment having the first density and the floor provides a second material segment having the second density.
PRIORITY CLAIM

This application is a continuation of U.S. application Ser. No. 13/526,417, filed Jun. 18, 2012 which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 61/498,415, filed Jun. 17, 2011 and Ser. No. 61/618,637, filed Mar. 30, 2012, each of which are expressly incorporated by reference herein.

US Referenced Citations (383)
Number Name Date Kind
1396282 Penn Oct 1920 A
1435120 Holman Nov 1922 A
1920529 Sidebotham Jul 1931 A
1969030 Page Dec 1931 A
2097899 Smith Dec 1935 A
2809776 Barrington Oct 1957 A
3312383 Shapiro Apr 1967 A
3327038 Fox Jun 1967 A
3344222 Shapiro Sep 1967 A
3468467 Amberg Sep 1969 A
3547012 Amberg Dec 1970 A
3583624 Peacock Jun 1971 A
3661282 Buhayar May 1972 A
3733381 Willette May 1973 A
3793283 Frailey Feb 1974 A
3846349 Harada Nov 1974 A
3919368 Seto Nov 1975 A
3967991 Shimano Jul 1976 A
3971696 Manfredi Jul 1976 A
4049122 Maxwell Sep 1977 A
4070513 Rhoads Jan 1978 A
4106397 Amberg Aug 1978 A
4171085 Doty Oct 1979 A
4197948 Amberg Apr 1980 A
4240568 Pool Dec 1980 A
4284226 Herbst Aug 1981 A
4298331 Mueller Nov 1981 A
4299349 Gilden Nov 1981 A
4300891 Bemiss Nov 1981 A
4349400 Gilden Sep 1982 A
4365460 Cress Dec 1982 A
4409045 Busse Oct 1983 A
4550046 Miller Oct 1985 A
4604324 Nahmias Aug 1986 A
4621763 Brauner Nov 1986 A
4706873 Schulz Nov 1987 A
4720023 Jeff Jan 1988 A
4878970 Schubert Nov 1989 A
4918112 Roox Apr 1990 A
4940736 Alteepping Jul 1990 A
5078817 Takagaki Jan 1992 A
5116881 Park May 1992 A
5158986 Cha Oct 1992 A
5160674 Colton Nov 1992 A
5180751 Park Jan 1993 A
5286428 Hayashi Feb 1994 A
5308568 Lipp May 1994 A
5348795 Park Sep 1994 A
5366791 Carr Nov 1994 A
5385260 Gatcomb Jan 1995 A
5443769 Karabedian Aug 1995 A
5445315 Shelby Aug 1995 A
5490631 Iioka Feb 1996 A
5547124 Mueller Aug 1996 A
5605936 DeNicola, Jr. Feb 1997 A
5622308 Ito Apr 1997 A
5628453 MacLaughlin May 1997 A
5629076 Fukasawa May 1997 A
5759624 Neale Jun 1998 A
5765710 Bergerioux Jun 1998 A
5766709 Geddes Jun 1998 A
5769311 Morita Jun 1998 A
5819507 Kaneko Oct 1998 A
5840139 Geddes Nov 1998 A
5866053 Park Feb 1999 A
5868309 Sandstrom Feb 1999 A
5895614 Rivera Apr 1999 A
5925450 Karabedian Jul 1999 A
5944225 Kawolics Aug 1999 A
5948839 Chatterjee Sep 1999 A
6007437 Schickert Dec 1999 A
6030476 Geddes Feb 2000 A
6034144 Shioya Mar 2000 A
6051174 Park Apr 2000 A
6071580 Bland Jun 2000 A
6103153 Park Aug 2000 A
6129653 Fredricks Oct 2000 A
6136396 Gilmer Oct 2000 A
6139665 Schmelzer Oct 2000 A
6142331 Breining Nov 2000 A
6169122 Blizard Jan 2001 B1
6174930 Agarwal Jan 2001 B1
6231942 Blizard May 2001 B1
6235380 Tupil May 2001 B1
6267837 Mitchell Jul 2001 B1
6284810 Burnham Sep 2001 B1
6294115 Blizard Sep 2001 B1
6306973 Takaoka Oct 2001 B1
6308883 Schmelzer Oct 2001 B1
6319590 Geddes Nov 2001 B1
6328916 Nishikawa Dec 2001 B1
6376059 Anderson Apr 2002 B1
6379802 Ito Apr 2002 B2
6420024 Perez Jul 2002 B1
6444073 Reeves Sep 2002 B1
6455150 Sheppard Sep 2002 B1
6468451 Perez Oct 2002 B1
6472473 Ansems Oct 2002 B1
RE37932 Baldwin Dec 2002 E
6512019 Agarwal Jan 2003 B1
6521675 Wu Feb 2003 B1
6541105 Park Apr 2003 B1
6562447 Wu May 2003 B2
6565934 Fredricks May 2003 B1
6586532 Gauthy Jul 2003 B1
6593005 Tau Jul 2003 B2
6593384 Anderson Jul 2003 B2
6613811 Pallaver Sep 2003 B1
6616434 Burnham Sep 2003 B1
6646019 Perez Nov 2003 B2
6649666 Read Nov 2003 B1
6713139 Usui Mar 2004 B2
6720362 Park Apr 2004 B1
6749913 Watanabe Jun 2004 B2
6779662 Dorsey Aug 2004 B2
6811843 DeBraal Nov 2004 B2
6814253 Wong Nov 2004 B2
6883677 Goeking Apr 2005 B2
6884377 Burnham Apr 2005 B1
6884851 Gauthy Apr 2005 B2
6908651 Watanabe Jun 2005 B2
6926507 Cardona Aug 2005 B2
6926512 Wu Aug 2005 B2
7070852 Reiners Jul 2006 B1
7074466 DeBraal Jul 2006 B2
7094463 Haas Aug 2006 B2
7121991 Mannlein Oct 2006 B2
7144532 Kim Dec 2006 B2
7173069 Swennen Feb 2007 B2
7234629 Ho Jun 2007 B2
7281650 Milan Oct 2007 B1
7355089 Chang Apr 2008 B2
7361720 Pierini Apr 2008 B2
7365136 Huovinen Apr 2008 B2
7423071 Mogami Sep 2008 B2
7458504 Robertson Dec 2008 B2
7504347 Poon Mar 2009 B2
7510098 Hartjes Mar 2009 B2
7513386 Hartjes Apr 2009 B2
7514517 Hoenig Apr 2009 B2
7524911 Karjala Apr 2009 B2
7557147 Martinez Jul 2009 B2
7579408 Walton Aug 2009 B2
7582716 Liang Sep 2009 B2
7585557 Aylward Sep 2009 B2
7592397 Markovich Sep 2009 B2
7608668 Shan Oct 2009 B2
7622179 Patel Nov 2009 B2
7622529 Walton Nov 2009 B2
7629416 Li Dec 2009 B2
7655296 Haas Feb 2010 B2
7662881 Walton Feb 2010 B2
7666918 Prieto Feb 2010 B2
7671106 Markovich Mar 2010 B2
7671131 Hughes Mar 2010 B2
7673564 Wolf Mar 2010 B2
7687442 Walton Mar 2010 B2
7695812 Peng Apr 2010 B2
7714071 Hoenig May 2010 B2
7732052 Chang Jun 2010 B2
7737061 Chang Jun 2010 B2
7737215 Chang Jun 2010 B2
7741397 Liang Jun 2010 B2
7754814 Barcus Jul 2010 B2
7759404 Burgun Jul 2010 B2
7786216 Soediono Aug 2010 B2
7795321 Cheung Sep 2010 B2
7803728 Poon Sep 2010 B2
7811644 DeBraal Oct 2010 B2
7818866 Hollis Oct 2010 B2
7820282 Haas Oct 2010 B2
7825166 Sasaki Nov 2010 B2
7841974 Hartjes Nov 2010 B2
7842770 Liang Nov 2010 B2
7858706 Arriola Dec 2010 B2
7863379 Kapur Jan 2011 B2
7883769 Seth Feb 2011 B2
7893166 Shan Feb 2011 B2
7897689 Harris Mar 2011 B2
7906587 Poon Mar 2011 B2
7910658 Chang Mar 2011 B2
7915192 Arriola Mar 2011 B2
7918005 Hollis Apr 2011 B2
7918016 Hollis Apr 2011 B2
7922071 Robertson Apr 2011 B2
7928162 Kiss Apr 2011 B2
7935740 Dang May 2011 B2
7947367 Poon May 2011 B2
7951882 Arriola May 2011 B2
7977397 Cheung Jul 2011 B2
7989543 Karjala Aug 2011 B2
7993254 Robertson Aug 2011 B2
7998579 Lin Aug 2011 B2
7998728 Rhoads Aug 2011 B2
8003176 Ylitalo Aug 2011 B2
8003744 Okamoto Aug 2011 B2
8012550 Ylitalo Sep 2011 B2
8026291 Handa Sep 2011 B2
8043695 Ballard Oct 2011 B2
8067319 Poon Nov 2011 B2
8076381 Miyagawa Dec 2011 B2
8076416 Ellul Dec 2011 B2
8084537 Walton Dec 2011 B2
8087147 Hollis Jan 2012 B2
8105459 Alvarez Jan 2012 B2
8119237 Peng Feb 2012 B2
8124234 Weaver Feb 2012 B2
8173233 Rogers May 2012 B2
8198374 Arriola Jun 2012 B2
8211982 Harris Jul 2012 B2
8227075 Matsushita Jul 2012 B2
8273068 Chang Sep 2012 B2
8273826 Walton Sep 2012 B2
8273838 Shan Sep 2012 B2
8288470 Ansems Oct 2012 B2
8304496 Weaver Nov 2012 B2
8404780 Weaver Mar 2013 B2
8435615 Tsuchida May 2013 B2
8679620 Matsushita Mar 2014 B2
8883280 Leser Nov 2014 B2
20010010849 Blizard Aug 2001 A1
20010041236 Usui Nov 2001 A1
20020030296 Geddes Mar 2002 A1
20020058126 Kannankeril May 2002 A1
20020137851 Kim Sep 2002 A1
20020144769 Debraal Oct 2002 A1
20020172818 DeBraal Nov 2002 A1
20030003251 DeBraal Jan 2003 A1
20030017284 Watanabe Jan 2003 A1
20030029876 Giraud Feb 2003 A1
20030108695 Freek Jun 2003 A1
20030138515 Harfmann Jul 2003 A1
20030211310 Haas Nov 2003 A1
20030228336 Gervasio Dec 2003 A1
20030232210 Haas Dec 2003 A1
20040031714 Hanson Feb 2004 A1
20040038018 Anderson Feb 2004 A1
20040115418 Anderson Jun 2004 A1
20040170814 VanHandel Sep 2004 A1
20050003122 Debraal Jan 2005 A1
20050006449 DAmato Jan 2005 A1
20050101926 Ausen May 2005 A1
20050104365 Haas May 2005 A1
20050121457 Wilson Jun 2005 A1
20050147807 Haas Jul 2005 A1
20050159496 Bambara Jul 2005 A1
20050165165 Zwynenburg Jul 2005 A1
20050184136 Baynum Aug 2005 A1
20050236294 Herbert Oct 2005 A1
20050256215 Burnham Nov 2005 A1
20050272858 Pierini Dec 2005 A1
20050288383 Haas Dec 2005 A1
20060000882 Darzinskas Jan 2006 A1
20060095151 Mannlein May 2006 A1
20060135699 Li Jun 2006 A1
20060148920 Musgrave Jul 2006 A1
20060178478 Ellul Aug 2006 A1
20060198983 Patel Sep 2006 A1
20060199006 Poon Sep 2006 A1
20060199030 Liang Sep 2006 A1
20060199744 Walton Sep 2006 A1
20060199872 Prieto Sep 2006 A1
20060199884 Hoenig Sep 2006 A1
20060199887 Liang Sep 2006 A1
20060199896 Walton Sep 2006 A1
20060199897 Karjala Sep 2006 A1
20060199905 Hughes Sep 2006 A1
20060199906 Walton Sep 2006 A1
20060199907 Chang Sep 2006 A1
20060199908 Cheung Sep 2006 A1
20060199910 Walton Sep 2006 A1
20060199911 Markovich Sep 2006 A1
20060199912 Fuchs Sep 2006 A1
20060199914 Harris Sep 2006 A1
20060199930 Shan Sep 2006 A1
20060199931 Poon Sep 2006 A1
20060199933 Okamoto Sep 2006 A1
20060205833 Martinez Sep 2006 A1
20060211819 Hoenig Sep 2006 A1
20060234033 Nishikawa Oct 2006 A1
20060289609 Fritz Dec 2006 A1
20060289610 Kling Dec 2006 A1
20070010616 Kapur Jan 2007 A1
20070032600 Mogami Feb 2007 A1
20070056964 Holcomb Mar 2007 A1
20070065615 Odle Mar 2007 A1
20070066756 Poon Mar 2007 A1
20070078222 Chang Apr 2007 A1
20070095837 Meier May 2007 A1
20070112127 Soediono May 2007 A1
20070141188 Kim Jun 2007 A1
20070155900 Chang Jul 2007 A1
20070167315 Arriola Jul 2007 A1
20070167575 Weaver Jul 2007 A1
20070167578 Arriola Jul 2007 A1
20070202330 Peng Aug 2007 A1
20070219334 LiPiShan Sep 2007 A1
20080020162 Fackler Jan 2008 A1
20080045638 Chapman Feb 2008 A1
20080118738 Boyer May 2008 A1
20080121681 Wiedmeyer May 2008 A1
20080156857 Johnston Jul 2008 A1
20080177242 Chang Jul 2008 A1
20080227877 Stadlbauer Sep 2008 A1
20080234435 Chang Sep 2008 A1
20080260996 Heilman Oct 2008 A1
20080269388 Markovich Oct 2008 A1
20080280517 Chang Nov 2008 A1
20080281037 Karjala Nov 2008 A1
20080311812 Arriola Dec 2008 A1
20090042472 Poon Feb 2009 A1
20090068402 Yoshida Mar 2009 A1
20090069523 Itakura Mar 2009 A1
20090076216 Kiss Mar 2009 A1
20090105417 Walton Apr 2009 A1
20090110944 Aguirre Apr 2009 A1
20090170679 Hartjes Jul 2009 A1
20090220711 Chang Sep 2009 A1
20090247033 Peng Oct 2009 A1
20090263645 Barger Oct 2009 A1
20090275690 Weaver Nov 2009 A1
20090324914 Liang Dec 2009 A1
20100025073 Fagrell Feb 2010 A1
20100028568 Weaver Feb 2010 A1
20100029827 Ansems Feb 2010 A1
20100040818 Farha Feb 2010 A1
20100055358 Weaver Mar 2010 A1
20100069574 Shan Mar 2010 A1
20100093942 Silvis Apr 2010 A1
20100137118 Chang Jun 2010 A1
20100168267 Dang Jul 2010 A1
20100181328 Cook Jul 2010 A1
20100181370 Berbert Jul 2010 A1
20100196610 Chang Aug 2010 A1
20100240818 Walton Sep 2010 A1
20100279571 Poon Nov 2010 A1
20100324202 Bafna Dec 2010 A1
20110003929 Soediono Jan 2011 A1
20110008570 Seth Jan 2011 A1
20110009513 Chaudhary Jan 2011 A1
20110014835 Sieradzki Jan 2011 A1
20110091688 Maurer Apr 2011 A1
20110104414 Onodera May 2011 A1
20110111150 Matsuzaki May 2011 A1
20110118370 Jiang May 2011 A1
20110118416 Arriola May 2011 A1
20110124818 Arriola May 2011 A1
20110136959 Brandstetter Jun 2011 A1
20110144240 Harris Jun 2011 A1
20110217492 Stamatiou Sep 2011 A1
20110229693 Maurer Sep 2011 A1
20110230108 Arriola Sep 2011 A1
20110318560 Yun Dec 2011 A1
20120004087 Tharayil Jan 2012 A1
20120024873 Roseblade Feb 2012 A1
20120028065 Bafna Feb 2012 A1
20120041148 Bafna Feb 2012 A1
20120043374 Lemon Feb 2012 A1
20120045603 Zerafati Feb 2012 A1
20120108714 Wittner May 2012 A1
20120108741 Wu May 2012 A1
20120108743 Krishnaswamy May 2012 A1
20120125926 Iyori May 2012 A1
20120132699 Mann May 2012 A1
20120178896 Bastioli Jul 2012 A1
20120184657 Lake Jul 2012 A1
20120193365 Humphries Aug 2012 A1
20120199278 Lee Aug 2012 A1
20120199641 Hsieh Aug 2012 A1
20120214890 Senda Aug 2012 A1
20120220730 Li Aug 2012 A1
20120225961 VanHorn Sep 2012 A1
20120237734 Maurer Sep 2012 A1
20120267368 Wu Oct 2012 A1
20120270039 Tynys Oct 2012 A1
20120295994 Bernreitner Nov 2012 A1
20120318805 Leser Dec 2012 A1
20120318807 Leser Dec 2012 A1
20130023598 Song Jan 2013 A1
20130032963 Tokiwa Feb 2013 A1
20130052385 Leser Feb 2013 A1
20130280517 Buehring Oct 2013 A1
20130303645 Dix Nov 2013 A1
Foreign Referenced Citations (88)
Number Date Country
2291607 Jun 2000 CA
2765489 Dec 2010 CA
1288427 Mar 2001 CN
1495100 May 2004 CN
1942370 Apr 2007 CN
101429309 May 2009 CN
101531260 Sep 2009 CN
102115561 Jul 2011 CN
2831240 Jan 1980 DE
2831240 Mar 1988 DE
102006025612 Nov 2007 DE
102006025612 Nov 2007 DE
0001791 May 1979 EP
0086869 Aug 1983 EP
0161597 Nov 1985 EP
0318167 May 1989 EP
0570221 Nov 1993 EP
0659647 Jun 1995 EP
0879844 Nov 1998 EP
0972727 Jan 2000 EP
0796199 Feb 2001 EP
0940240 Oct 2002 EP
1308263 May 2003 EP
1479716 Nov 2004 EP
1666530 Jun 2006 EP
1754744 Feb 2007 EP
1921023 May 2008 EP
1939099 Jul 2008 EP
2266894 Dec 2010 EP
2386584 Nov 2011 EP
2386601 Nov 2011 EP
2720954 Apr 2014 EP
1078326 Aug 1967 GB
52123043 Oct 1977 JP
52123043 Oct 1977 JP
58029618 Feb 1983 JP
3140847 Jan 1994 JP
P310847 Dec 2000 JP
2001310429 Nov 2001 JP
2003292663 Oct 2003 JP
2004018101 Jan 2004 JP
2004168421 Jun 2004 JP
2004168421 Jun 2004 JP
2006096390 Apr 2006 JP
2006130814 May 2006 JP
2009066856 Apr 2009 JP
2009190756 Aug 2009 JP
100306320 Oct 2001 KR
2003036558 May 2003 KR
2004017234 Feb 2004 KR
101196666 Nov 2012 KR
9113933 Sep 1991 WO
9413460 Jun 1994 WO
9729150 Aug 1997 WO
9816575 Apr 1998 WO
0119733 Mar 2001 WO
0132758 May 2001 WO
0153079 Jul 2001 WO
0234824 May 2002 WO
03076497 Sep 2003 WO
03099913 Dec 2003 WO
2004104075 Dec 2004 WO
2006042908 Apr 2006 WO
2006124369 Nov 2006 WO
2007020074 Feb 2007 WO
2007068766 Jun 2007 WO
2008030953 Mar 2008 WO
2008038750 Apr 2008 WO
2008045944 Apr 2008 WO
2008057878 May 2008 WO
2008080111 Jul 2008 WO
2009035580 Mar 2009 WO
2010006272 Jan 2010 WO
2010019146 Feb 2010 WO
2010076701 Jul 2010 WO
2010111869 Oct 2010 WO
2011005856 Jan 2011 WO
2011036272 Mar 2011 WO
2011036272 Mar 2011 WO
2011038081 Mar 2011 WO
2011076637 Jun 2011 WO
2011141044 Nov 2011 WO
2012020106 Feb 2012 WO
2012025584 Mar 2012 WO
2012044730 Apr 2012 WO
2012055797 May 2012 WO
2012099682 Jul 2012 WO
2013032552 Mar 2013 WO
Non-Patent Literature Citations (94)
Entry
Third Party Observations filed with respect to European Patent Application No. 12727994.1, Aug. 17, 2015 (22 pages).
U.S. Appl. No. 61/498,455, filed Jun. 17, 2011, related to PCT Application No. PCT/US2012/041395, 46 pages.
“Slip Agents”, Polypropylene Handbook, 2nd edition, 2005, pp. 285-286.
English translation of Russian Office Action for Application Serial No. 2015127677, dated Sep. 16, 2015.
Office Action dated Oct. 8, 2015 for U.S. Appl. No. 14/188,504.
Second Chinese Office Action dated Sep. 6, 2015 for Chinese Application Serial No. 201280034350.9.
Office Action dated Oct. 27, 2015 for U.S. Appl. No. 14/462,073.
Borealis AG, DAPLOY(TM) HMS Polypropylene for Foam Extrusion, 2010, 20 pages.
European Search Report of Application No. 12861450.0, dated Nov. 21, 2014.
International Search Report and Written Opinion dated Apr. 16, 2014, relating to International Application No. PCT/US2013/075013.
International Search Report and Written Opinion dated Apr. 21, 2014, relating to International Application No. PCT/US2013/074923.
International Search Report and Written Opinion dated Apr. 22, 2014, relating to PCT/US2013/074965.
International Search Report and Written Opinion dated Apr. 25, 2014, relating to PCT/US2013/075052.
International Search Report and Written Opinion dated Jan. 19, 2015, relating to International Application No. PCT/US2014/059312.
International Search Report and Written Opinion dated Jul. 3, 2014, relating to International Application No. PCT/US2014/025697.
International Search Report and Written Opinion dated Sep. 17, 2013, relating to International Application No. PCT/US2012/041395.
International Search Report dated Feb. 26, 2013, relating to International Application No. PCT/US2012/043018.
International Search Report dated Jan. 19, 2015, relating to International Application No. PCT/US2014/059216.
International Search Report dated Jan. 29, 2013, relating to International Application No. PCT/US2012/043017.
International Search Report dated Jan. 30, 2013, relating to International Application No. PCT/US2012/042737.
International Search Report dated Jul. 29, 2013, relating to International Application No. PCT/US2012/043016, 25 pages.
International Search Report dated Jul. 30, 2012, relating to International Application No. PCT/US2012/041397.
International Search Report dated Mar. 11, 2014, relating to International Application No. PCT/US2013/66811.
International Search Report dated Nov. 19, 2012, relating to International Application No. PCT/US2012/041395.
International Search Report dated Nov. 7, 2014, relating to International Application No. PCT/US2014/51508.
Jaakko I. Raukola, A New Technology to Manufacture Polypropylene Foam Sheet and Biaxially Oriented Foam Film, VTT Publications 361, Technical Research Centre of Finland, Apr. 1998, 100 pages.
Machine English translation of JP 2006-130814.
New Zealand First Examination Report for Application No. 619616 dated Oct. 10, 2014.
New Zealand First Examination Report for Application No. 621219 dated Nov. 17, 2014.
Office action dated Apr. 11, 2014 for U.S. Appl. No. 13/526,417.
Office Action dated Aug. 19, 2014 for Chinese Application No. 201280035667.4.
Office Action dated Aug. 21, 2014 for U.S. Appl. No. 13/526,454.
Office Action dated Feb. 2, 2015 for U.S. Appl. No. 14/106,114.
Office Action dated Jan. 6, 2015 for Chinese Application No. 201280034350.9 (11 pages).
Office Action dated Jan. 9, 2015 for Chinese Application No. 201280035667.4 (22 pages).
Office Action dated Jul. 25, 2014 for U.S. Appl. No. 13/525,640.
Office Action dated Oct. 10, 2014 for U.S. Appl. No. 14/106,358.
Office Action dated Oct. 16, 2014 for U.S. Appl. No. 14/106,212.
Office Action dated Sep. 25, 2014 for U.S. Appl. No. 13/526,417.
Spanish Search Report of Application No. 201390099, dated Feb. 9, 2015.
Third-Party Submission Under 37 CFR 1.290 filed on Dec. 9, 2014 in U.S. Appl. No. 14/063,252.
Notice of Allowance dated Apr. 6, 2015 for U.S. Appl. No. 13/526,417.
Machine English translation of EP0086869.
Third-Party Submission Under 37 CFR 1.290 filed on Feb. 26, 2015 in U.S. Appl. No. 13/491,007.
Certified English translation of EP0086869.
Singapore Office Action dated Dec. 18, 2014 for Singapore Application No. 2014002273.
Office Action dated Apr. 30, 2015 for U.S. Appl. No. 14/462,073.
Office Action dated Apr. 14, 2015 for U.S. Appl. No. 14/106,212.
Office Action dated Apr. 10, 2015 for U.S. Appl. No. 14/106,358.
English translation of Spanish Search Report of Application No. 201490025, dated Apr. 20, 2015.
Spanish Search Report for Application No. 201490025, dated Apr. 20, 2015.
Office Action dated Jun. 23, 2015 for U.S. Appl. No. 13/525,640.
Third Party Submission Under 37 CFR 1.290 in U.S. Appl. No. 14/188,504 submitted May 11, 2015 and May 27, 2015 (43 pages).
Naguib et al., “Fundamental Foaming Mechanisms Governing the Volume Expansion of Extruded Polypropylene Foams,” Journal of Applied Polymer Science, vol. 91, pp. 2661-2668, 2004 (10 pages).
Wang et al., “Extending PP\s Foamability Through Tailored Melt Strength and Crystallization Kinetics,” paper 19 from the Conference Proceedings of the 8th International Conferences of Blowing Agents and Foaming Processes, May 16-17, 2006 in Munich, Germany Smithers Rapra Ltd, 2006 (14 pages).
Australian First Patent Examination Report for Application No. 2012302251 dated Jul. 9, 2015.
Notice of Allowance dated Jun. 23, 2014 for U.S. Appl. No. 13/491,327.
Notice of Allowance dated Oct. 6, 2014 for U.S. Appl. No. 13/491,327.
Office Action dated May 19, 2015 for Chinese Application No. 201280035667.4.
Office Action Chinese Patent Application No. 201280051426.9 dated Jul. 23, 2015.
Office Action dated Aug. 27, 2015 for U.S. Appl. No. 14/106,358.
Office Action dated Aug. 18, 2015 for U.S. Appl. No. 14/106,212.
Inter Partes Review Petition for US. Pat. No. 8,883,280 (712 pages).
Borealis webpage dated Jan. 20, 2010 from Internet Archive (6 pages).
Gibson and Ashby, Cellular solids: structure and properties, 2nd ed., Cambridge University Press (1997) (7 pages).
C. Maier and T. Calafut, Polypropylene: the Definitive User\s Guide and Databook, Plastics Design Library, William Andrew Inc. (1998) (19 pages).
Reichelt et al., Cellular Polymers, vol. 22, No. 5 (2003) (14 pages).
Ratzsch et al., Prog. Polym. Sci., 27 (2002), 1195-1282 (88 pages).
Encyclopedia of Polymer Science and Technology: Plastics, Resins, Rubbers, and Fibers, vol. 2, John Wiley & Sons, Inc. (1965) (37 pages).
Shau-Tarng Lee, Chul B. Park, and N.S. Ramesh, Polymer Foams: Science and Technology, CRC Press (2007) (51 pages).
Grant & Hackh\s Chemical Dictionary, 5th ed., McGraw-Hill, Inc. (1987) (3 pages).
Merriam-Webster\s Collegiate Dictionary, 11th ed. (2003), p. 70 (3 pages).
Merriam-Webster\s Collegiate Dictionary, 11th ed. (2003), p. 1237 (3 pages).
Hawley\s Condensed Chemical Dictionary, 14th Ed. (2001) (5 pages).
Reichelt et al., Abstract of PP-Blends with Tailored Foamability and Mechanical Properties, Cellular Polymers, (2003) available from http://www.polymerjournals.com/journals.asp?Page=111&JournalType=cp&JournalIssue=cp22-5&JIP=, listing (4 pages).
Ratzsch et al., Abstract of Radical Reactions on Polypropylene in the Solid State, Progress in Polymer Science, vol. 27, Issue 7, (Sep. 2002), available from http://www.sciencedirect.com/science/article/pii/S0079670002000060 (3 pages).
“Borealis Dapoly HMS Polypropylene for Foam Extrusion” obtained from Borealis webpage obtained from the Internet Archive\s “Wayback Machine” as of Nov. 16, 2008 (https://web.archive.org/web/20081116085125/http://www.borealisgroup.com/pdf/literature/borealis-borouge/brochure/K—IN0020—GB—FF—2007—10—BB.pdf) (“Brochure \08”) (20 pages).
English translation of First Office Action for Taiwanese Application No. 101121656, Nov. 13, 2015.
Singapore Notice of Eligibility for Grant, Search Report, and Examination Report transmitted Dec. 10, 2015 for Singapore Application No. 11201503336V.
Office Action dated Jan. 11, 2016 for U.S. Appl. No. 14/161,328.
English Summary of Russian Office Action for Application Serial No. 2014111340, dated Feb. 25, 2016, 8 pages.
United Kingdom Examination Report for Patent Application No. GB1400762.9 dated Feb. 11, 2016.
Office Action dated Feb. 16, 2016 for U.S. Appl. No. 14/108,142.
Extended European Search Report for European Application No. 13849152.7-1303/2912142 PCT/US2013/066811, dated Feb. 12, 2016.
English summary of Spanish Office Action for Application Serial No. P201490025, Feb. 9, 2016, 8 pages.
Supplemental European Search Report for European Application No. 12727994.1-1302, dated Feb. 17, 2016.
International Preliminary Report on Patentability dated Feb. 16, 2016, relating to International Application No. PCT/US2014/051508.
English Summary of Chinese Office Action for Application Serial No. 201380041896.1, dated Mar. 21, 7 pages.
Extended European Search Report for European Application No. 13827981.5-1708/2888092 PCT/US2013/053935, dated Feb. 19, 2016.
Australian First Patent Examination Report for Application No. 2012271047, dated Feb. 29, 2016.
N. N. Najib, N. M. Manan, A.A. Bakar, and C.S. Sipaut, Effect of Blowing Agent Concentration on Cell Morphology and Impact Properties of Natural Rubber Foam, Journal of Physical Science, vol. 20(1), 13-25, 2009 (13 pages).
Nigel Mills, Polymer Foams Handbook, Fig. 2.2, 1st ed. 2007 (2 pages).
University of Massachusetts, Advanced Plastics Processing Lecture, Lecture 11: Foam Processes, Slide 4 (Nov. 11, 2012) (2 pages).
Australian Second Patent Examination Report for Application No. 2012302251, dated Feb. 26, 2016.
Related Publications (1)
Number Date Country
20150298889 A1 Oct 2015 US
Provisional Applications (2)
Number Date Country
61498415 Jun 2011 US
61618637 Mar 2012 US
Continuations (1)
Number Date Country
Parent 13526417 Jun 2012 US
Child 14755546 US