Embodiments of the invention relate to x-ray tubes. More specifically, embodiments of the invention relate to x-ray tubes with insulators that include a conductive coating.
X-ray tubes are used to convert electrical input into x-rays. In an x-ray tube a cathode emits electrons into a vacuum of the x-ray tube. A large voltage between the cathode and anode accelerates the electrons towards the anode, where they strike the x-ray target surface. As the electrons strike the target, a portion of them are backscattered, and a portion have a number of inelastic collisions with both the electrons and the nuclei of the target atoms. The process of the electrons decelerating and changing directions in the target material produces x-rays. The x-rays are emitted in a hemispherical pattern from the surface of the target. Some of the x-rays then travel through the vacuum inside the x-ray tube and pass through an x-ray transparent window, typically made from beryllium. From here, they travel through the tube housing window and a collimator and can then be used for diagnostic purposes in a CT scanner. About 40% of the electrons are backscattered from the target and these can bombard the cathode and cathode insulator. As they bombard the cathode insulator, the electrons will charge up the surface of the insulator, leading to changes in the insulator's electric field arcing and failure of the insulator.
To reduce the charge build-up on the insulator, a conductive dissipative (CD) coating may be used. Such a conductive dissipative coating can be composed of metal oxides, such as titanium oxide and/or chromium oxide. The conductive coating is typically sprayed or brushed onto an individual insulator following a sintering process, which requires high temperatures above 1500° C. The insulator is typically attached to other components of the x-ray tube by metallization and brazing, which are lower temperature operations than the sintering process. A sintered conductive coating must be applied before lower temperature processes, such as brazing, because the high temperatures of the sintering process would melt a filler metal of the brazing process. Typical spraying or brushing processes can only be applied to one part at a time so applying the coating by batch processing is not possible. Further, spraying or brushing of the conductive coating may also be difficult to control and accurately apply.
Accordingly, there is a need for an improved coating processes that can apply a conductive coating after the insulator of the x-ray tube has been joined to supports without weakening or damaging the bond between the insulator and the support. Such a coating processes is preferably easy to control and can accurately apply conductive coatings to any desired portion of the insulator or onto multiple insulators simultaneously.
Embodiments of the invention solve the above-mentioned problems by providing a method and system for providing a conductive coating that can be applied to an insulator of an x-ray tube after joining components to the insulator. In some embodiments, the method may apply a plurality of conductive coatings to a plurality of insulators simultaneously.
A first embodiment of the invention is directed to a method for manufacturing an x-ray tube, said x-ray tube comprising a frame, an anode, a cathode, and at least one insulator surrounding the cathode, the method comprising the steps of securing the at least one insulator to at least one support by brazing using a filler material, then applying a first layer of a conductive dissipative coating to a surface of the insulator using a vapor deposition process, wherein the vapor deposition process uses a temperature that is lower than the melting point temperature of the filler material, wherein the conductive dissipative coating is configured to reduce an electrical charge buildup on the at least one insulator.
A second embodiment of the invention is directed to a system for reducing electrical charge buildup of an x-ray tube, the system comprising a frame, an anode, a cathode, an insulator joining the cathode to the frame, the insulator comprising at least one surface having a conductive dissipative coating thereon, whereby said conductive dissipative coating is applied by a vapor deposition process, wherein the conductive dissipative coating is configured to reduce an electrical charge buildup on the insulator.
A third embodiment of the invention is directed to a method for manufacturing a plurality of insulators of a respective plurality of x-ray tubes, the method comprising the steps of securing the plurality of insulators to a respective plurality of supports by brazing using a filler material, then applying a conductive dissipative coating to a surface of each of the plurality of insulators simultaneously using a vapor deposition process, wherein the vapor deposition process uses a temperature that is lower than the melting point temperature of the filler material, wherein the conductive dissipative coating is configured to reduce an electrical charge buildup of each of the insulators.
Additional embodiments of the invention are directed to a method for performing a sputtering process on an insulator of an x-ray tube.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
Embodiments of the invention are described in detail below with reference to the attached drawing figures, wherein:
The drawing figures do not limit the invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
The following detailed description references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
In this description, references to “one embodiment,” “an embodiment,” or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment,” “an embodiment,” or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the technology can include a variety of combinations and/or integrations of the embodiments described herein.
Embodiments of the invention use various coating processes to apply the conductive coating after the insulator of the x-ray tube has been joined to supports. It is desirable that the coating process not weaken or damage the bond joining the insulator to the other components of the x-ray tube, such as the support. Further, embodiments are contemplated that use coating processes that are easy to control and can accurately apply conductive coatings to desired portions of the insulator. In some embodiments, multiple conductive coatings may be applied onto multiple insulators simultaneously.
In some embodiments, the insulator 22 may be used to join the cathode assembly 14 to the frame 12. In such embodiments, the cathode assembly 14 may be supported by the insulator 22. The insulator 22 may be secured to the frame 12. The insulator 22 is coated with a conductive coating 42 on at least a portion of the outer surface of the insulator 22, as shown. In one embodiment, the conductive coating 42 is located on the surface of the insulator 22 between the cathode cup 24 and a support 40. In some embodiments, the frame 12 may comprise at least one support 40 that is desirably held at ground electrical potential. The power source 20 may be electrically connected to the cathode assembly 14 to supply an electrical potential to the cathode 26. The support 40 may be comprised of a metal material that is operable to conduct an electrical current.
During operation of the x-ray tube 10, the power source 20 may supply an electrical potential to the cathode 26. The electrical potential of the cathode 26 may produce an electron beam 36 from the cathode 26 to the target surface 34 of the anode 32. When electrons from the electron beam 36 strike the target surface 34 of the anode 32, x-rays 38 may be produced. The x-rays 38 may pass through the window 18 and be utilized as diagnostic x-rays 38. During the x-ray production process, secondary electrons and backscattered electrons may also be produced. These electrons may be absorbed into the insulator 22 creating an electrical charge buildup on the insulator 22.
A support 40 may be secured around the insulator 22, as shown. In some embodiments, the support 40 may be used to hold the insulator 22 and/or to mount the insulator 22 to the frame 12 of the x-ray tube 10. In some embodiments, the support 40 may be attached to the insulator 22 at various other locations on the insulator 22. For example, the support 40 may be attached on an end of the insulator 22. In some embodiments, a plurality of supports 40 may be secured to the insulator 22. In some embodiments, the insulator 22 may be used to support the cathode assembly 14 and electrically isolate the cathode assembly 14 from other components of the x-ray tube 10, such as the frame 12 and the support 40. The support 40 is preferably composed of a metal material, however, can be composed of other materials having similar properties. In some embodiments, the support 40 is a metal end of the insulator 22.
The terms conductive, conductive dissipative, or insulative as described herein may refer to a relative conductivity of various components. For example, the insulator 22 may be described as insulative because it has a lower conductivity than the conductive coating 42. As such, the conductive coating 42 may be described as conductive because it has a relatively high conductivity when compared with the insulator 22 but may not be considered a conductive electrostatic discharge material by the certain other standards.
In some embodiments, the conductive coating 42 may provide an electrical discharge path for electrons on the outer surface of the insulator 22 to dissipate the electrical charge. The conductive coating 42 may decrease the electrical resistivity of the insulator 22, while still allowing the insulator 22 to electrically isolate the cathode 26 from a ground potential of the frame 12. A material used for the conductive coating 42 of the insulator 22 may be selected based on the electrical conductivity of the material. In some embodiments, the material may be selected based on an electrical discharge rate. The electrical discharge rate may be the rate of reduction in the electrical charge of the insulator 22 and may vary depending on the material used for the conductive coating 42.
For example, in some embodiments, a material having a relatively high electrical conductivity may be selected for the conductive coating 42 to produce a high electrical discharge rate, while in some other embodiments, a material with a lower electrical conductivity may be selected for the conductive coating 42 to produce a lower electrical discharge rate.
At step 308, the electrical charge of the insulator 22 may be relieved using the conductive coating 42 to provide an electrical discharge path for electrons on the outer surface of the insulator 22 during operation of the x-ray tube 10. At step 310, the conductive coating 42 may be inspected to determine if the conductive coating 42 has become damaged. If the conductive coating 42 is damaged, the insulator may be removed from the frame 12 at step 312 to be repaired. If the conductive coating 42 is not damaged, the conductive coating 42 may continue to be used to relieve electrical charge during operation of x-ray tube 10. At step 314, the conductive coating 42 may be reapplied or an additional layer may be added. It may be desirable to reapply the conductive coating 42 especially when the conductive coating 42 or the insulator 22 has become damaged. It may also be desirable to reapply the conductive coating 42 to increase the electrical conductivity of the insulator 22 to relieve the electrical charge. After reapplying the conductive coating 42, step 306 may be repeated to re-secure the support 40 to the frame 12 to reassemble the x-ray tube 10 with the repaired coating on the insulator 22.
It should be understood that by applying the conductive coating 42 after the insulator 22 has been joined to the support 40, the manufacturing of the insulator 22 is more versatile. As such, the conductive coating 42 may be applied and reapplied onto the insulator 22 at any time, or additional layers of coating may be added. In some embodiments, the insulator 22 may be recycled and used in a new x-ray tube 10, especially when other components of the x-ray tube 10 become damaged. For example, if the support 40 becomes damaged, the insulator 22 may be secured to a new support 40 and the conductive coating 42 may be reapplied to the insulator 22. Additionally, the x-ray tube 10 may be taken apart so that the insulator 22 is removed from the frame 12 to perform maintenance operations on the x-ray tube 10. The insulator 22 may then be re-secured onto the frame 12, which may be via support 40 or other attachment means, and the conductive coating 42 may be re-applied to the insulator 22. In some embodiments, the insulator 22 may be removed from the x-ray tube 10 and secured to the support 40 of a new x-ray tube 10.
In some embodiments, other operations may be used to manufacture the insulator 22, such as a metallization process. The metallization process may be used to apply a metallic coating onto the insulator 22 or any other component of the x-ray tube 10. In some embodiments, the metallic coating may serve a functional purpose such as, increasing compatibility with a joining process, such as brazing process 46 of
In some embodiments, the physical vapor deposition process 600 may be any one of a cathodic arc deposition process, an electron beam deposition process, an evaporative deposition process, a close-space sublimation process, a pulsed laser deposition process, a sputtering process 60 (as shown in
In some embodiments, the type of vapor deposition process may be selected based on the brazing process 46. For example, a sputtering process 60 may be used because the sputtering process 60 may require a lower temperature than the melting temperature of the filler material 52 of the brazing process 46. Thus, the conductive coating 42 may be applied after the joining of the insulator 22 to other components of the x-ray tube 10. Accordingly, conductive coatings 42 may be reapplied to the insulator 22 that may already be brazed to the frame 12 of the x-ray tube 10.
It should be understood that the sputtered target particles 70 may be of the same material composition as the sputtering target 66. Accordingly, the material composition of the sputtering target 66 may be selected based on the desired material composition of the conductive coating 42. For example, an aluminum nitride material may be used for the sputtering target 66 to produce a thin film 72 of aluminum nitride on the outer surface of the insulator 22. In some embodiments, other types of metal nitrides or other suitable materials may be used for the sputtering target 66. Additionally, the type of sputtering gas 62 may be selected based on the material composition of the sputtering target 66 so that the sputtering gas 62 is operable to collide with the sputtering target surface 68 and release the sputtered target particles 70. It should be understood that any impurities in the material of the sputtering target 66 may also be present in the sputtered target particles 70. Accordingly, it may be desirable to use a sputtering target 66 with a high purity so that the sputtered target particles 70 have a high purity. The purity as described herein may refer to the percentage of the desired material or lack of impurities in the material.
In some embodiments, the substrate surface 44 may be a plurality of substrate surfaces 44 of a respective plurality of insulators 22. As such, the sputtering process 60 may be used to apply a plurality of conductive coatings 42 onto the plurality of insulators 22 simultaneously. By applying a plurality of conductive coatings 42 to the plurality of insulators 22 simultaneously, the coating process may be completed faster for the plurality of insulators 22 compared to coating processes that only apply the conductive coating 42 to one insulator 22 at a time.
Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.
Having thus described various embodiments of the invention, what is claimed as new and desired to be protected by Letters Patent includes the following:
This patent application is a continuation application claiming priority benefit, with regard to all common subject matter, of U.S. patent application Ser. No. 16/786,303, filed Feb. 10, 2020, and entitled “INSULATOR WITH CONDUCTIVE DISSIPATIVE COATING.” The above-referenced application is hereby incorporated by reference in its entirety into the present application.
Number | Date | Country | |
---|---|---|---|
Parent | 16786303 | Feb 2020 | US |
Child | 17574857 | US |