Intake air control device

Information

  • Patent Grant
  • 6543417
  • Patent Number
    6,543,417
  • Date Filed
    Thursday, June 13, 2002
    22 years ago
  • Date Issued
    Tuesday, April 8, 2003
    21 years ago
Abstract
In an intake air control device, a valve gear for driving a shaft of a throttle valve is made of non-magnetic metal that does not interfere with a magnetic circuit constituted by split type permanent magnet and yoke. Accordingly, as the magnetic flux from the magnetic circuit is effectively used without leakage to the valve gear, an opening degree of the throttle valve is accurately detected by a non-contact type Hall element. Further, it is not necessary to reinforce with other metal a ring shaped fixing portion of the valve gear that is rigidly fixed to an end of the shaft by staking or welding and an outer protrusion of the valve gear that comes in hitting contact with a stopper of a throttle body when the throttle valve is fully closed, resulting in less number of component parts and lower cost.
Description




CROSS REFERENCE TO RELATED APPLICATION




This application is based upon and claims the benefit of priority of Japanese Patent Application No. 2001-180388 filed on Jun. 14, 2001, the content of which is incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an intake air control device, in particular, having an angular position detector capable of detecting an opening degree of a throttle valve for an internal combustion engine.




2. Description of Related Art




JP-A-8-254129 describes an intake air control device for an internal combustion engine as a prior art. This intake air control device has a throttle body provided with an intake air conduit leading to the internal combustion engine, a throttle valve mounted on a shaft rotatably held in the throttle body for opening and closing the intake air conduit, a valve gear fixed by means of a nut to an end of the shaft of the throttle valve, an intermediate speed reduction gear in mesh with the valve gear and a motor driving the intermediate speed reduction gear.




According to this conventional control device, a throttle position sensor is located at another end of the shaft on a side opposite to the valve gear. This construction makes an entire body of the control device larger. It is preferable that the throttle position sensor is a non-contact type sensor, in which a change of magnetic flux generated from a magnetic circuit constituted by a magnet and a yoke is detected by a non-contact type detecting element, and located at the end of the shaft on the same side as the valve gear. Further, in the conventional control device, the valve gear, which is formed in half-moon shape, has a notch portion coming in hitting contact with a stopper fixed to an installation base of the throttle body when the throttle valve is at a fully closed position.




However, the conventional control device has a drawback that, if the non-contact type sensor is employed, the valve gear interferes with the magnetic circuit so that magnetic flux generated from the magnetic circuit leaks to the valve gear since the valve gear is made of iron base magnetic metal.




Accordingly, the opening degree of the throttle valve or the angular position of the shaft can not be accurately detected. On the other hand, if the valve gear is made of thermoplastic resin, it is required to reinforce with metal material each local portion of the valve gear that is rigidly fixed to the shaft for installation or comes in hitting contact with the stopper. As a result, insert molding of many component parts including the magnet and the yoke becomes necessary when the valve gear is formed, causing higher manufacturing cost.




SUMMARY OF THE INVENTION




An object of the invention is to provide an intake air control device for an internal combustion engine in which a change of magnetic flux generated in a magnetic circuit in response to a change of an opening degree of a throttle valve is accurately detected with less number of component parts and at lower manufacturing cost.




To achieve the above object, in the intake air control device having a throttle body having an intake conduit to the internal combustion engine, a throttle valve having a shaft rotatably held in the throttle body for opening and closing the intake conduit, a rotary member rigidly fixed to the shaft for driving the shaft in response to an acceleration pedal so as to rotate the throttle valve and a non-contact type angular position detector having a magnetic flux generating member and a magnetic flux detecting element, the rotary member is made of non-magnetic metal, the magnetic flux generating member is attached to the rotary member so as to rotate together therewith and the magnetic flux detecting element is stationarily positioned to face the magnetic flux generating member with an air gap therebetween.




With the device mentioned above, the magnetic flux detecting element generates an electric signal in response to a change of magnetic flux applied thereto from the magnetic flux generating member so that an angular position of the shaft driven by the rotary member is detected. Since the rotary member is made of non-magnetic metal, the magnetic flux from the magnetic flux generating member is effectively applied to the magnetic flux detecting element without leaking to the rotary member so that the opening degree of the throttle valve is accurately detected.




Further, as the rotary member is made of non-magnetic metal, it is not necessary to reinforce with reinforcing material (such as other metal) a local portion of the rotary member that is rigidly fixed to the shaft.




It is preferable that the magnetic flux generating member is a permanent magnet and a yoke magnetized by the permanent magnet, both of which are rotatable together with the shaft and the rotary member.




Further, it is preferable that the rotary member has an outer protrusion integrally provided therewith and the throttle body has a stopper with which the outer protrusion comes in hitting contact for restricting further rotation of the rotary member when the throttle is fully closed. Since the rotary member is made of non-magnetic metal, it is not necessary to reinforce the outer protrusion that comes in hitting contact with the stopper. Accordingly, the control device can be manufactured with less number of component parts at lower cost.




Furthermore, it is preferable that the rotary member is formed in shape of a cup whose bottom wall is fixed to an end face of the shaft by staking or welding and whose inner circumferential wall is provided with the magnetic flux generating member. As the magnetic flux detecting element is accommodated inside the cap, an entire body of the non-contact type angular position detector becomes more compact.











BRIEF DESCRIPTION OF THE DRAWING




Other features and advantages of the present invention will be appreciated, as well as methods of operation and the function of the related parts, from a study of the following detailed description, the appended claims, and the drawings, all of which form a part of this application. In the drawings:





FIG. 1

is a cross sectional view of an intake air control device for an internal combustion engine according to a preferred embodiment of the present invention; and





FIG. 2

is an elevation view of the intake air control device of

FIG. 1

without a sensor cover.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




An intake air control device for an internal combustion engine according to a preferred embodiment is described with reference to

FIGS. 1 and 2

.




The intake air control device is composed of a throttle body


1


in which an intake air conduit leading to the internal combustion engine (engine) is formed, a throttle valve


2


having a shaft


3


rotatably held in the throttle body


1


, an actuator


4


driving the shaft


3


to rotate, and an engine control unit (ECU) electrically controlling the actuator


4


. The intake air control device is operative to regulate an amount of intake air to be introduced into the engine according to a depressing operation of an acceleration pedal of a vehicle so that revolution speed of the engine is controlled. An acceleration pedal position sensor (not shown) that generates an electric signal representing an acceleration pedal depressing degree is connected in circuit with ECU.




The intake air control device is further provided with a throttle valve position sensor


5


that generates an electric signal representing an opening degree of the throttle valve


2


and outputs it to ECU. The throttle body


1


, made of aluminum by die-casting, is fixed by fastening means such as bolts to an intake manifold of the engine for holding the throttle valve


2


. The throttle body


1


has a bearing holding portion


12


where an end of the shaft


3


is rotatably held via a ball bearing


11


, another bearing holding portion


14


where the other end of the shaft


3


is rotatably held via a dry bearing


13


and an accommodation portion


15


where the actuator


4


is housed. An opening end of the bearing holding portion


14


is closed with a plug


16


.




A stopper


17


, with which a valve gear


6


comes in hitting contact on fully closing the throttle valve


2


, is fixed to the throttle body


1


by screwing. The stopper


17


serves to restrict further movements of the throttle valve


2


and the shaft


3


when the throttle valve


2


is fully closed. A warm water pipe


19


, through which warm water (engine coolant) is introduced to the throttle body


1


for preventing icing of moisture on and around the throttle valve


2


, is attached to the throttle body


1


. A sensor cover


20


, which is made of thermoplastic resin for electrically insulating associated terminals of the throttle position sensor


5


, is mounted on the throttle body


1


for closing an opening thereof. A fitting portion


21


of the sensor cover


20


is coupled with and fixed by a cylindrical clip


22


to a fitting portion of the throttle body


1


provided on an opening side thereof.




The throttle valve


2


is a butterfly like rotary valve for controlling an amount of intake air to be introduced to the engine and is fixed to an outer circumference of the shaft


3


by fastening means


23


such as fastening screws. The throttle valve


2


of the present embodiment is made of a metal or resin plate and formed in a disk shape. The valve gear


6


(rotary member) is fixed to the end of the shaft


3


. The valve gear


6


is made of non-magnetic material such as stainless steel sintered metal, for which rustproof treatment is not necessary, and formed roughly in a cup shape. The valve gear


6


has a radially outward protruding fun shaped portion whose outer periphery is provided with a gear portion


24


in mesh with an intermediate speed reduction gear


33


. The valve gear


6


is further provided at a bottom thereof with a ring shaped fixing portion


25


that is fixed to the end of the shaft


3


by staking or welding, at inner circumference thereof with a cylindrical holding portion


26


that holds a split type permanent magnet


41


and a split type yoke


42


, and at outer circumference thereof with an outer protrusion


27


that comes in hitting contact with the stopper


17


fixed to the throttle body


1


when the throttle valve


2


is fully closed.




A resin rotor member


7


is disposed rotatably around an outer circumference of the shaft


3


between the valve gear


6


and an inner race of the ball bearing


11


. Coil shaped return springs


28


and


29


are arranged between a left end of the valve gear


6


and a right end of the rotor member


7


and between a left end of the rotor member and a right end of the throttle body


1


, respectively, as shown in FIG.


1


and serve to return the throttle valve


2


and the shaft


3


to initial positions so that the engine is at idling revolution speed.




The actuator


4


is composed of a motor


31


that is electronically controlled by ECU, a pinion gear (motor gear)


32


fixed to an outer circumference of an output shaft of the motor


31


and rotatable together with the output shaft thereof, the intermediate speed reduction gear


33


rotatable in mesh with the pinion gear


32


and the valve gear


6


rotatable in mesh with the intermediate speed reduction gear


33


. The actuator


4


is a valve drive member for driving the throttle valve


2


and the shaft


3


to rotate. The motor


31


, which is a driving source, is connected in circuit with terminals integrally embedded in the sensor cover


20


and, when energized through the terminals, drives the pinion gear


32


.




The intermediate speed reduction gear


33


, which is formed by resin molding, is rotatably fitted to an outer circumference of a holding shaft


34


located at a rotation axis thereof. The intermediate speed reduction gear


33


is composed of a large diameter gear


35


in mesh with the pinion gear


32


and a small diameter gear


36


in mesh with the gear portion


24


of the valve gear


6


. The pinion gear


32


and the intermediate speed reduction gear


33


constitute a torque transmission member for transmitting torque of the motor


31


to the valve gear


6


. An end of the holding shaft


34


is fitted to a hole provided in an inner wall of the sensor cover


20


and the other end of the holding shaft


34


is press fitted to a hole provided in an outer wall of the throttle body


1


.




The throttle position sensor


5


, which is an angular position detector, is composed of the split type (near square shaped) permanent magnet


41


for generating magnetic flux, the split type (near arc shaped) yoke (magnetic material)


42


that is magnetized by the permanent magnet


41


, Hall element


43


integrally arranged on a side of the sensor cover


20


so as to be opposed to the permanent magnet


41


, terminals (not shown), which is made of conductive thin metal plate, for connecting the Hall element


43


in circuit with ECU located outside, and a stator


44


made of iron base metal (magnetic material) for concentrating magnetic flux to the Hall element


43


.




The split type permanent magnet


41


and the split type yoke


42


are fixed by means of glue to an inner circumference of the holding portion


26


of the valve gear


6


. Each piece of the split type permanent magnet


41


is disposed between adjacent two pieces of the split type yoke


42


. Each pole of two square shaped pieces of the split type permanent magnet


41


is orientated in the same direction (upper side is N pole and lower side is S pole in FIG.


2


). The Hall element


43


is a non-contact type detecting element and positioned so as to be opposed to inner circumferences of the two pieces of the split type permanent magnet


41


. When N pole or S pole magnetic field is applied to a sensing surface of the Hall element


43


, the Hall element


43


generates an electromotive force in response to the magnetic field (+ electrical potential when N pole magnetic field is applied and − electrical potential when S pole magnetic field is applied).




An operation of the intake air control device is described with reference to

FIGS. 1 and 2

.




When a driver depresses the acceleration pedal, the electric signal representing the acceleration pedal depressing degree is input to ECU from the acceleration pedal position sensor. Then, ECU energizes the motor


31


so as to rotate the output shaft thereof to an extent that the throttle valve


2


is opened by a corresponding amount. The rotation of the output shaft of the motor


31


causes the pinion gear


32


to rotate counterclockwise in

FIG. 2

so that the torque of the motor


31


is transferred to the large diameter gear


35


of the intermediate speed reduction gear


33


. As the large diameter gear


35


rotates, the small diameter gear


36


rotates clockwise centered on the holding shaft


34


in

FIG. 2

so that the valve gear


6


having the gear portion


24


in mesh with the small diameter portion


36


rotates. Accordingly, since the valve gear


6


rotates counterclockwise centered on the shaft


3


in

FIG. 2

, the shaft


3


rotates to make the corresponding angular position so that the throttle valve


2


is kept at a given position in the intake air conduit provided in the throttle body


1


.




The throttle position sensor


5


detects the angular position of the permanent magnet


41


rotating together with the valve gear


6


by means of the Hall element


43


and delivers via the terminals to ECU an electric signal representing a throttle valve opening degree. ECU decides an amount of fuel to be supplied to the engine according to the electric signal from the throttle position sensor


5


. When the driver returns the acceleration pedal to the initial position, the throttle valve


2


, the shaft


3


and the valve gear


6


are returned to the original angular position by biasing forces of the springs


28


and


29


and/or reverse rotation of the motor


31


so that the throttle valve


2


is fully closed and the revolution speed of the engine becomes idling revolution speed.




According to the intake air control device mentioned above, material of the valve gear


6


is non-magnetic metal that does not interfere with the magnetic circuit constituted by the split type permanent magnet


41


and the split type yoke


42


, that is, does not adversely affect on detecting accuracy of the Hall element


43


. Accordingly, the magnetic flux from the magnetic circuit is effectively used without leakage to the valve gear


6


so that the opening degree of the throttle valve


2


is accurately detected by means of the non-contact type Hall element


43


. Further, since the valve gear


6


is made of non-magnetic metal, it is not necessary to reinforce with reinforcing material (such as other metal) the ring shaped fixing portion


25


that is rigidly fixed to the end of the shaft


3


by staking or welding and the outer protrusion


27


that comes in hitting contact with the stopper


17


when the throttle valve


2


is fully closed, resulting in less number of component parts and lower manufacturing cost.




Moreover, since the material of the valve gear


6


is stainless steel sintered metal, it is not necessary to carry out the rustproof treatment for preventing a surface of the valve gear


6


from rusting, that is, to treat the surface of the valve gear


6


with soluble zinc plating or electric zinc plating. Accordingly, the valve gear


6


can be more simply manufactured at less cost. Furthermore, as the valve gear


6


is fixed to the end of the shaft by staking or welding, axial length of the shaft is shorter, compared with a case that the valve gear


6


is fastened and fixed to the shaft by fastening means such as a nut, so that the magnetic circuit constituted by the permanent magnet


41


and the yoke


42


is more compact, resulting in making an entire body of the intake air control device more compact.




Instead of rotating the valve gear


6


(rotor member) through the motor


31


, the pinion gear


32


and the intermediate speed reduction gear


33


, the rotor member


6


may be rotated directly by a wire cable and/or an acceleration lever mechanically connected to the acceleration pedal and movable in response to the depressing amount of the acceleration pedal. In this case, the rotor member


6


may have the gear portion


24


in mesh with a gear provided with the acceleration lever or may not have the gear portion


24


but have any associated portion engaged with the wire cable and/or the acceleration lever. Further, the rotary member


6


may be the acceleration lever itself to which the wire cable is connected so as to move together with the acceleration pedal.




Moreover, instead of the Hall element


43


, hall IC or a magnetic resistance element may be employed as the non-contact type detecting element. Furthermore, instead of the split type permanent magnet


41


, a cylindrical permanent magnet may be employed as a magnetic flux generating source.



Claims
  • 1. An intake air control device movable in response to an acceleration pedal for an internal combustion engine comprising:a throttle body having an intake conduit to the internal combustion engine; a throttle valve having a shaft rotatably held in the throttle body for opening and closing the intake conduit; a rotary member made of non-magnetic metal and rigidly fixed to the shaft for driving the shaft in response to the acceleration pedal so as to rotate the throttle valve; and a non-contact type angular position detector having a magnetic flux generating member and a magnetic flux detecting element, the magnetic flux generating member being attached to the rotary member so as to rotate together therewith and the magnetic flux detecting element being stationarily positioned to face the magnetic flux generating member with an air gap therebetween, wherein the magnetic flux detecting element generates an electric signal in response to a change of magnetic flux applied thereto from the magnetic flux generating member so that an angular position of the shaft driven by the rotary member is detected.
  • 2. An intake air control device according to claim 1, wherein the magnetic flux generating member is a permanent magnet and a yoke magnetized by the permanent magnet.
  • 3. An intake air control device according to claim 1, wherein the non-magnetic material of the rotary member is material that is practically usable without carrying out rustproof treatment.
  • 4. An intake air control device according to claim 1, wherein the rotary member has an outer protrusion integrally provided therewith and the throttle body has a stopper with which the outer protrusion comes in hitting contact for restricting further rotation of the rotary member when the throttle is fully closed.
  • 5. An intake air control device according to claim 1, wherein the rotary member is formed in shape of a cup whose bottom wall is fixed to an end face of the shaft by one of processes of staking and welding and whose inner circumferential wall is provided with the magnetic flux generating member and, further, wherein the magnetic flux detecting element is accommodated inside the cap.
  • 6. An intake air control device according to claim 1, further comprising;a motor operative in response to the acceleration pedal and accommodated in the throttle body for generating torque; and a torque transmission member engaged with the motor, wherein the rotary member is engaged with the torque transmission member and is driven by the motor through the torque transmission member.
  • 7. An intake air control device according to claim 6, further comprising;a sensor cover attached to the throttle body for covering the non-contact type angular position detector, wherein the torque transmission member comprises a motor gear attached to an output shaft of the motor and an intermediate gears one of which is in mesh with the motor gear and another of which is in mesh with the rotary member and, further, wherein the sensor cover and the intermediate gears are made of non-magnetic material.
  • 8. An intake air control device according to claim 1, wherein the rotary member is mechanically connected to the acceleration pedal.
Priority Claims (1)
Number Date Country Kind
2001-180388 Jun 2001 JP
US Referenced Citations (5)
Number Name Date Kind
4392375 Eguchi et al. Jul 1983 A
5738072 Bolte et al. Apr 1998 A
6116215 Soleanicov et al. Sep 2000 A
6446600 Scherer et al. Sep 2002 B1
20010045203 Arsic et al. Nov 2001 A1
Foreign Referenced Citations (3)
Number Date Country
8-254129 Oct 1996 JP
11-343878 Dec 1999 JP
2001-3769 Jan 2001 JP