This application claims priority to German Patent Application DE 10 2006 011 513.9 filed Mar. 10, 2006, the entirety of which is incorporated by reference herein.
This invention relates to an intake cone in a fiber compound material for a gas turbine engine, especially a turbofan gas turbine engine, including a conical part, a base part and a fairing part, and made of fibers embedded in a resin.
Such mostly tapered intake cones are intended to provide a swirl-free inflow into the engine, as far as possible, and to limit damage by impinging foreign objects or particles, especially bird strikes.
On an intake cone made of fiber compound material known from specification GB 0 102 169, for example, the conical part in the form of a cone tip is extended by a cylindrical attachment or base part with a mounting flange. Via the flange, the intake cone is axially attached to the fan rotor. To obtain a swirl-free inflow to the fan blades also with this advantageous type of intake cone attachment, the cylindrical base part is covered by a separate fairing conformal with the conicity of the conical part and made, for example, of titanium. Besides the required manufacturing and assembly effort, the two-piece design is also aerodynamically disadvantageous.
Known methods for the manufacture of intake cones in a fiber compound material for engines are resin injection processing and the more frequently used “prepreg” autoclave processing.
In resin injection processing, resin is infiltrated into a dry fiber body in a mold by means of vacuum and cured under the influence of heat. Problematic here is the sometimes non-uniform infiltration of the resin. A reduced degree of infiltration may result in irregularities in the material structure which may affect the impact behavior of the intake cone.
Intake cones made by “prepreg” autoclave processing show improved impact properties. In this process, segments preimpregnated with epoxy resin and made of a glass-fiber weave, in which the resin is evenly distributable beforehand, are manually placed in a mold with negative intake cone geometry in a precisely defined position. Curing is accomplished under pressure produced by vacuum and the influence of heat. Apart from the fact that material weaknesses may occur at the seams, “prepreg” processing disadvantageously incurs high manufacturing effort.
The present invention, in a broad aspect, provides for the development, and for a method of manufacture, of a gas-turbine engine intake cone in fiber compound material which is producible and mountable with low effort while being highly resistant to impact by impinging birds or other objects or particles, respectively.
It is a particular object of the present invention to provide solution to the above problems by an intake cone designed in accordance with the features described herein, and by a method for its manufacture in accordance with the features described herein. Advantageous developments of the present invention will be apparent from the description below.
In accordance with the underlying idea of the present invention, the conical part, the attachment part and the fairing part of a gas-turbine engine intake cone in fiber compound material are integrally made of a wound interlace comprising a multitude of mutually crossing and covering winding layers including glass fiber strands and carbon fiber strands of similar thickness in alternate and parallel arrangement. The resultant resin-soaked weave is characterized by stiffness and elasticity as well as high impact resistance. One-piece manufacture with simultaneously formed-on material reinforcements serving as abutment, mounting or centering rings results in low manufacturing cost as well as low assembly effort. Crucial here is the formation of the winding layers. Moreover, the stiffness-increasing carbon fiber strands in combination with the elastic glass fiber strands, by virtue of the bridging effect between the glass fibers, provide a synergistic effect in that impacts onto the intake cone are taken up and passed on. Even if carbon fibers fail under high impact energy, the connection between the glass fibers and the adjacent carbon fibers—and thus the functioning of the intake cone—is maintained by the so-called “bridging effect”.
In the method according to the present invention, the winding layers are wound in a dry and/or preimpregnated condition onto a conical mold core. A resin is infiltrated into the weave. A resin coating is applied to the surface. Basically, the winding layers may also be passed through a synthetic resin bath prior to winding. Curing of the resin is accomplished in a known manner by pressure and heat. Subsequently, the abutment, centering and mounting reinforcements and the insertion area of a rubber tip of the intake cone can be machined.
The present invention is more fully described in the light of the accompanying Figures showing a preferred embodiment, wherein:
On an inner mold consisting of a conical core (not shown), winding layers 1 are continually wound which consist of dry or preimpregnated glass and carbon fiber strands of the same thickness in alternate and parallel arrangement. By use of several winders (not shown), the winding layers 1 are wound onto the cone core at different angles and under formation of an interlace 2, i.e. crossing and covering each other, thus forming an intake cone 3 of interlaced winding layers 1. Winding of the various—individual—winding layers onto the cone core can be coordinated such that circumferential material reinforcements are formed on the inner circumference of the intake cone 3. These material reinforcements 4, 5 are used for radial threaded attachment (4) and/or centering or as an axial abutment face (5) of the finished intake cone 8 on the fan rotor disk 6 and may also form circumferential reinforcing ribs (not shown) to strengthen the intake cone, in particular in the intake cone center area highest loaded by bird strike. An outer mold is then brought into engagement with the inner mold to form a mold cavity in which the winding layers are positioned. An epoxy resin is injected into the mold cavity and infiltrated into the weave (interlace 2) of the finish-wound intake cone 3 against a vacuum according to the known RTM method (Resin Transfer Molding) and cured under pressure and heat. A smooth surface coating is applied to the surface. Upon curing of the intake cone 3 and removal from the mold, finish-machining is accomplished, including, inter alia, producing mounting holes and sunken holes 7 for attaching the finished intake cone 8 to the fan rotor disk 6 and safely fixing a rubber tip 9 of the finished intake cone 8.
The one-piece intake cone produced to the above method, by virtue of the one-piece winding process with material reinforcements formed onto the inner wall, is producible and mountable cost-effectively and with low effort and is characterized by high stiffness and resistance to impact and erosion. Delamination effects, as may occur on intake cones made from segments in “prepreg” processing, are not to be feared. The advantageous mechanical properties result from the design of the intake cone as an interlace, the essentially straight or widely curved winding layers of straight (not bent) fiber strands and the parallel, alternately adjacent arrangement of similarly thick glass fiber and carbon fiber strands in one winding layer, that is, the glass fiber strands and carbon fiber strands are positioned side by side and generally wound as a tandem or conjoined single layer. The adjacent, parallel arrangement of elastic glass fibers and stiffness-improving carbon fibers provides for a synergistic effect in that, by virtue of this fiber arrangement, first carbon fibers may fail under a considerable mechanical load exerted on the intake cone, but that even the failed carbon fibers provide for bridging between the glass fibers, and the glass fibers between the carbon fibers can still take up and pass on the forces occurring, so that the impact energy is distributed and dissipated and the intake cone preserved as a whole.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 011 513 | Mar 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3031361 | Strickland | Apr 1962 | A |
3115271 | Anderson et al. | Dec 1963 | A |
3515501 | Palfreyman et al. | Jun 1970 | A |
3625634 | Stedfeld | Dec 1971 | A |
3711350 | Witzel, III | Jan 1973 | A |
3990814 | Leone | Nov 1976 | A |
4089727 | McLain | May 1978 | A |
4182495 | Borgmeier et al. | Jan 1980 | A |
4191510 | Teysseyre et al. | Mar 1980 | A |
4211818 | Ackley | Jul 1980 | A |
4220497 | Carley | Sep 1980 | A |
4368234 | Palmer et al. | Jan 1983 | A |
4381960 | Pinter et al. | May 1983 | A |
4385952 | Futakuchi et al. | May 1983 | A |
4393650 | Pool | Jul 1983 | A |
4397609 | Kochendorfer | Aug 1983 | A |
4631101 | Rix | Dec 1986 | A |
4693140 | Stephan | Sep 1987 | A |
4699568 | Harlamert et al. | Oct 1987 | A |
4751135 | Fenton | Jun 1988 | A |
4957415 | Paul et al. | Sep 1990 | A |
5149251 | Scanlon et al. | Sep 1992 | A |
5400505 | Wei et al. | Mar 1995 | A |
5487806 | Viellard | Jan 1996 | A |
5525035 | Ben-Porat et al. | Jun 1996 | A |
6358014 | Chou et al. | Mar 2002 | B1 |
6375125 | Kirn et al. | Apr 2002 | B1 |
6447255 | Bagnall et al. | Sep 2002 | B1 |
7011490 | Albrecht | Mar 2006 | B2 |
7938627 | Muller | May 2011 | B2 |
20080022524 | Schreiber | Jan 2008 | A1 |
20100051112 | Dieling | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
497641 | Nov 1970 | CH |
29 24 602 | Aug 1980 | DE |
30 37 388 | Jun 1982 | DE |
83 24 715 | May 1985 | DE |
27 39 702 | May 1987 | DE |
43 24 755 | Sep 1994 | DE |
195 03 939 | Jun 1996 | DE |
19503939 | Jun 1996 | DE |
198 10 119 | Sep 1999 | DE |
102 18 459 | Apr 2002 | DE |
103 50 974 | Jun 2005 | DE |
547433 | Aug 1942 | GB |
681859 | Oct 1952 | GB |
2 042 010 | Sep 1980 | GB |
Entry |
---|
D.B. Miracle & S.L. Donaldson: “vol. 21 Composites” Filament Winding ; McLarty, J. Lowrie, XP-002488464, Abstract only. |
Number | Date | Country | |
---|---|---|---|
20080022524 A1 | Jan 2008 | US |