Intake manifold leakage detection system of internal combustion engine

Information

  • Patent Grant
  • 6820470
  • Patent Number
    6,820,470
  • Date Filed
    Thursday, October 10, 2002
    21 years ago
  • Date Issued
    Tuesday, November 23, 2004
    19 years ago
Abstract
A system detecting leakage of an internal combustion engine having a secondary air passage, bypassing a throttle valve, at an air intake pipe connecting to the intake manifold and a secondary air control valve which regulates opening of the secondary air passage. In the system, when the changes in the absolute manifold pressure and the atmospheric pressure before and after the engine starts rotation, are small, it is determined that the intake manifold may possibly leak and should be monitored. Specifically, the opening of the secondary air passage is changed and the changes in the pressure, etc., before and after the opening is changed, are calculated and based thereon, it is determined whether the intake manifold, in fact, leaks. With this, it becomes possible to detect intake manifold leakage accurately with a simple configuration.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to an intake manifold leakage detection system of an internal combustion engine, more particularly to an intake manifold leakage detection system of an internal combustion engine for an outboard motor.




2. Description of the Related Art




In an internal combustion engine, intake air sucked in an intake pipe flows into an intake manifold, injected with fuel at an appropriate location and resulting air-fuel mixture flows into a cylinder combustion chamber where it is ignited and burns to drive the piston. When the intake manifold leaks, air enters from the leakage and hence the combustion state becomes different from that desired.




In view of the above, Japanese Laid-Open Patent Application No. 2000-104621 teaches detecting leakage of intake manifold by detecting in-cylinder pressure of respective cylinders. Specifically, in this prior art technique, an average of the detected in-cylinder pressures is calculated, each difference between the average and detected pressures is then calculated and is compared with a threshold value, and when any cylinder's difference is found to exceed the threshold value, it is determined that a manifold portion connecting to that cylinder leaks.




However, this prior art requires pressure sensors installed in respective cylinders for detecting the in-cylinder pressure and hence, the configuration is disadvantageously complicated.




SUMMARY OF THE INVENTION




An object of the present invention is therefore to provide an intake manifold leakage detection system of an internal combustion engine which can accurately detect leakage of the intake manifold in a simple configuration.




For realizing this object, there is provided a system for detecting leakage of an intake manifold of an internal combustion engine having a secondary air passage, bypassing a throttle valve, at an air intake pipe connecting to the intake manifold and a secondary air control valve which regulates opening of the secondary air passage, comprising: engine starting determining means for determining whether the engine starts rotation; pressure detecting means for detecting intake manifold pressure and atmospheric pressure when the engine is determined not to start rotation; first change determining means for detecting the intake manifold pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change from the intake manifold pressure detected before the engine is determined to start rotation, is equal to or smaller than a predetermined first value; second change determining means for detecting the atmospheric pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than a predetermined second value; manifold leakage possibility determining means for determining that the intake manifold may possibly leak when the change from the intake manifold pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined first value and the change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined second value; third change determining means for changing the opening of the secondary air passage by the secondary air control valve when it is determined that the intake manifold may possible leak and for determining whether a change of speed of the engine before and after the opening is changed, is equal to or smaller than a predetermined third value and a change of the intake manifold pressure before and after the opening is changed, is equal to or smaller than a predetermined fourth value; and manifold leaking determining means for determining that the intake manifold leaks when the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value.











BRIEF DESCRIPTION OF THE DRAWINGS




The object and advantages of the invention will be made apparent with reference to the following descriptions and drawings, in which:





FIG. 1

is a schematic view showing the overall configuration of an intake manifold leakage detection system of an internal combustion engine embodied, for example, as that for an outboard motor, according to an embodiment of the present invention;





FIG. 2

is an enlarged side view of one portion of

FIG. 1

;





FIG. 3

is a schematic diagram showing details of the engine of the motor shown in

FIG. 1

;





FIG. 4

is a block diagram setting out the particulars of inputs/outputs to and from the electronic control unit (ECU) shown in

FIG. 1

;





FIG. 5

is a flow chart showing the operation of the system illustrated in

FIG. 1

, more particular the operation to determine the possibility of intake manifold leakage and the intake manifold should accordingly be monitored;





FIG. 6

is a flow chart showing the operation to detect or monitor the intake manifold leakage when it is determined that the intake manifold should be monitored.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




An intake manifold leakage detection system of an internal combustion engine according to an embodiment of the present invention will now be explained with reference to the attached drawings.





FIG. 1

is a schematic view showing the overall configuration of an intake manifold leakage detection system of an internal combustion engine embodied, for example, as that for an outboard motor, according to an embodiment of the present invention.




Reference numeral


10


in

FIGS. 1 and 2

designates the aforesaid propulsion unit including an internal combustion engine, propeller shaft and propeller integrated into what is hereinafter called an “outboard motor.” The outboard motor


10


is mounted on the stem of a boat (small craft)


12


by a clamp unit


14


(see FIG.


2


).




As shown in

FIG. 2

, the outboard motor


10


is equipped with the internal combustion engine (hereinafter called the “engine”)


16


. The engine


16


is a spark-ignition V-6 gasoline engine. The engine is positioned above the water surface and is enclosed by an engine cover


20


of the outboard motor


10


. An electronic control unit (ECU)


22


composed of a microcomputer is installed near the engine


16


enclosed by the engine cover


20


.




As shown in

FIG. 1

, a steering wheel


24


is installed in the cockpit of the boat


12


. When the operator turns the steering wheel


24


, the rotation is transmitted to a rudder (not shown) fastened to the stern through a steering system not visible in the drawings, changing the direction of boat advance.




A throttle lever


26


is mounted on the right side of the cockpit and near it is mounted a throttle lever position sensor


30


that outputs a signal corresponding to the position of the throttle lever


26


set by the operator.




A shift lever


32


is provided adjacent to the throttle lever


26


and next to it is installed a neutral switch


34


that outputs an ON signal when the operator puts the shift lever


32


in Neutral and outputs an OFF signal when the operator puts the shift lever


32


in Forward or Reverse. The outputs from the throttle lever position sensor


30


and neutral switch


34


are sent to the ECU


22


through signal lines


30




a


and


34




a.






The output of the engine


16


is transmitted through a crankshaft and a drive shaft (neither shown) to a clutch


36


of the outboard engine


10


located below the water surface. The clutch


36


is connected to a propeller


40


through a propeller shaft (not shown).




The clutch


36


, which comprises a conventional gear mechanism, is omitted from the drawing. It is composed of a drive gear that rotates unitarily with the drive shaft when the engine


16


is running, a forward gear, a reverse gear, and a dog (sliding clutch) located between the forward and reverse gears that rotates unitarily with the propeller shaft. The forward and reverse gears are engaged with the drive gear and rotate idly in opposite directions on the propeller shaft.




The ECU


22


is responsive to the output of the neutral switch


34


received on the signal line


34




a


for driving an actuator (electric motor)


42


via a drive circuit (not shown) so as to realize the intended shift position. The actuator


42


drives the dog through a shift rod


44


.




When the shift lever


32


is put in Neutral, the engine


16


and the propeller shaft are disconnected and can rotate independently. When the shift lever


32


is put in Forward or Reverse position, the dog is engaged with the forward gear or the reverse gear and the rotation of the engine


16


is transmitted through the propeller shaft to the propeller


40


to drive the propeller


40


in the forward direction or the opposite (reverse) direction and thus propel the boat


12


forward or backward.




The engine


16


will now be explained with reference to

FIGS. 3 and 4

.




As shown in

FIG. 3

, the engine


16


is equipped with an air intake pipe


46


. Air drawn in through an air cleaner (not shown) is supplied to intake manifolds


52


provided one for each of left and right cylinder banks disposed in V-like shape as viewed from the front, while the flow thereof is adjusted by a throttle valve


50


, and finally reaches an intake valves


54


of the respective cylinders. An injector


56


(not shown in

FIG. 3

) is installed in the vicinity of each intake valve (not shown) for injecting fuel (gasoline).




The injectors


56


are connected through two fuel lines


58


provided one for each cylinder bank to a fuel tank (not shown) containing gasoline. The fuel lines


58


pass through separate fuel pumps


60




a


and


60




b


equipped with electric motors (not shown) that are driven via a relay circuit


62


so as to send pressurized gasoline to the injectors


56


. Reference numeral


64


designates a vaporized fuel separator.




The intake air is mixed with the injected gasoline to form an air-fuel mixture that passes into the combustion chamber (not shown) of each cylinder, where it is ignited by a spark plug


66


(not shown in

FIG. 3

) to burn explosively and drive down a piston (not shown). The so-produced engine output is taken out through a crankshaft. The exhaust gas produced by the combustion passes out through exhaust valves


68


into exhaust manifolds


70


provided one for each cylinder bank and is discharged to the exterior of the engine.




As illustrated, a branch passage


72


for secondary air supply is formed to branch off from the air intake pipe


46


upstream of the throttle valve


50


and rejoin the air intake pipe


46


downstream of the throttle valve


50


. The branch passage


72


is equipped with an electronic secondary air control valve (EACV)


74


. The EACV


74


is connected to the ECU


22


. The ECU


22


calculates a current command value ICMD and supplies it to the EACV


74


so as to drive the EACV


74


for regulating the opening of the branch passage


72


.




The branch passage


72


and the EACV


74


thus constitute a secondary air supplier


80


for supplying secondary air in proportion to the opening of the EACV


74


. Thus, the engine


16


has the branch passage (secondary air passage)


72


, that bypasses the throttle valve


50


, at the air intake pipe


46


connecting to the intake manifold


52


and the EACV (secondary air control valve)


74


which regulates the opening of the branch passage


72


.




The throttle valve


50


is connected to an actuator (stepper motor)


82


. The actuator


82


is connected to the ECU


22


. The ECU


22


calculates a current command value proportional to the output of the throttle lever position sensor


30


and supplies it to the actuator


82


through a drive circuit (not shown) so as to regulate the throttle opening or position TH.




More specifically, the actuator


82


is directly attached to a throttle body


50




a


housed in the throttle valve


50


with its rotating shaft (not shown) oriented to be coaxial with the throttle valve shaft. In other words, the actuator


82


is attached to the throttle body


50




a


directly, not through a linkage, so as to simplify the structure and save mounting space. Thus, in this embodiment, the push cable is eliminated and the actuator


82


is directly attached to the throttle body


50




a


for driving the throttle valve


50


.




The engine


16


is provided in the vicinity of the intake valves


54


and the exhaust valves


68


with a variable valve timing system


84


. When engine speed and load are relatively high, the variable valve timing system


84


switches the valve open time and lift to relatively large values (Hi V/T). When the engine speed and load are relatively low, it switches the valve open time and lift to relatively small values (Lo V/T).




The exhaust system and the intake system of the engine


16


are connected by EGR (exhaust gas recirculation) passages


86


provided therein with EGR control valves


90


. Under predetermined operating conditions, a portion of the exhaust gas is returned to the air intake system.




The actuator


82


is connected to a throttle position sensor


92


responsive to rotation of the throttle shaft for outputting a signal proportional to the throttle opening or position TH. A manifold absolute pressure sensor


94


is installed downstream of the throttle valve


50


for outputting a signal proportional to the manifold absolute pressure PBA in the air intake pipe (engine load). In addition, an atmospheric air pressure sensor


96


is installed near the engine


16


for outputting a signal proportional to the atmospheric air pressure PA.




An intake air temperature sensor


100


installed downstream of the throttle valve


50


outputs a signal proportional to the intake air temperature TA. A first temperature sensor


102




a


and a second temperature sensor


102




b


each installed at cooling passages (not shown) connected to the water inlet (not shown) via a thermostat (not shown) of the left and right cylinder banks, output signals indicative of the temperature at those locations, and a third temperature sensor


102




c


installed in the exhaust manifolds


70


of one of the left and right cylinder banks outputs a signal indicative of the engine temperature TOH and the engine coolant temperature TW. Thus, the three temperature sensors


102




a


,


102




b


and


102




c


function as the sensors for detecting the engine temperature TOH and the engine coolant temperature TW.




O


2


sensors


110


installed in the exhaust manifolds


70


output signals reflecting the oxygen concentration of the exhaust gas. A knock sensor


112


installed at a suitable location on the cylinder block


104


outputs a signal related to knock.




The explanation of the outputs of the sensors and the inputs/outputs to/from the ECU


22


will be continued with reference to FIG.


4


. Some sensors and signals lines do not appear in FIG.


3


.




The motors of the fuel pumps


60




a


and


60




b


are connected to an onboard battery


114


and detection resistors


116




a


and


116




b


are inserted in the motor current supply paths. The voltages across the resistors are input to the ECU


22


through signal lines


118




a


and


118




b


. The ECU


22


determines the amount of current being supplied to the motors from the voltage drops across the resistors and uses the result to discriminate whether any abnormality is present in the fuel pumps


60




a


and


60




b.






TDC (top dead center) sensors


120


and


122


and a crank angle sensor


124


are installed near the engine crankshaft for producing and outputting to the ECU


22


cylinder discrimination signals, angle signals near the top dead centers of the pistons, and a crank angle signal once every 30 degrees. The ECU


22


calculates the engine speed NE from the output of the crank angle sensor. Lift sensors


130


installed near the EGR control valves


90


produce and send to the ECU


22


signals related to the lifts (valve openings) of the EGR control valves


90


.




The engine


16


is connected with an alternator (ACG; whose F terminal is shown as “ACGF” in the figure)


134


and its output (generated alternating current) is inputted to the ECU


22


.




Three hydraulic (oil pressure) switches


136


installed in the hydraulic circuit (not shown) of the variable valve timing system


84


produce and output to the ECU


22


a signal related to the detected hydraulic pressure. A hydraulic switch


140


installed in the hydraulic circuit (not shown) of the engine


16


produces an OFF-signal (L level signal) when the hydraulic pressure is equal to or greater a predetermined value and an ON-signal (H level signal) when the hydraulic pressure becomes less than the predetermined value. The signal (output) of the hydraulic switch is sent to the ECU


22


.




The ECU


22


, which is composed of a microcomputer as mentioned earlier, is equipped with an EEPROM (electrically erasable and programmable read-only is memory)


22




a


for back-up purposes. The ECU


22


uses the foregoing inputs to carry out the checking of overheat, hydraulic pressure abnormality, etc, and if happened, it turns on any of warning lamps


146


,


148


,


150


and


152


and sounds a buzzer


154


to warn the operator.




The operation of the illustrated intake manifold leakage detection system of an internal combustion engine will now be explained.





FIG. 5

is a flow chart showing the operation of the system illustrated in

FIG. 1

, more particular the operation to determine the possibility of intake manifold leakage and it should accordingly be monitored. The illustrated program is executed when an ignition switch (indicated by reference numeral


160


in

FIG. 4

) is turned to the ACC position whereafter it is looped once every 100 msec.




The program begins in S


10


in which it is determined whether the pulses are outputted from the crank angle sensor


124


, in other words it is determined whether the engine


16


starts rotation.




When the result is negative, the program proceeds to S


12


in which it is determined whether the bit of a flag F.X is set to 1. Since the bit of the flag has initially been reset to 0, the result in the first program loop is normally negative and the program proceeds to S


14


in which the detected manifold absolute pressure PBA (indicative of the pressure in the intake manifold


52


, i.e., the intake manifold pressure) is renamed A, i.e., the manifold absolute pressure PBA is detected and stored in memory (memorized). At the same time, the detected atmospheric pressure PA is renamed B, i.e., the atmospheric pressure PA is detected and stored in memory (memorized), and the bit of the flag F.X is set to 1.




In a next program loop, the result in S


10


is normally negative and the program proceeds to S


12


where the result is affirmative and skips S


14


. In this way, to set the bit of the flag F.X to 1 indicates that detection and memorization of the manifold absolute pressure PBA, etc., before the engine


16


starts rotation has been completed.




When the engine


16


starts rotation, the result in S


10


becomes affirmative and the program proceeds to S


16


in which it is determined whether the bit of a flag F.THIDLE is set to 1. The bit of this flag is set to 1 in a routine (not shown) when the throttle valve


50


is at a fully-closed position (precisely when it is at a position slightly opened from the fully-closed position so as to avoid valve sticking). The determination of this step amounts for determining whether the throttle valve


50


is closed.




when the result is negative, the program is immediately terminated. On the other hand, when the result is affirmative, the program proceeds to S


18


in which it is determined whether a difference between the manifold absolute pressure (indicative of the intake manifold pressure) PBA detected at this program loop and the value A is equal to or smaller than a predetermined first value P


1


, more precisely it is determined whether the difference is equal to or smaller than P


1


in absolute value. Thus, the pressure in the intake manifold


52


is detected when the throttle valve is closed after the engine


16


has started rotation (i.e., after the engine


16


has started), and it is determined whether the change (difference) from the intake manifold pressure before the engine


16


starts rotation is, in absolute value, equal to or smaller than the predetermined first value P


1


.




When the result in S


18


is negative, the program is immediately terminated. On the other hand, when the result is affirmative, the program proceeds to S


20


in which it is determined whether a difference between the atmospheric pressure PA detected at this program loop and the value B is equal to or smaller than a predetermined second value P


2


, more precisely it is determined whether the difference is equal to or smaller than P


2


in absolute value. Thus, the atmospheric pressure is detected when the throttle valve is closed after the engine


16


has started rotation, and it is determined whether the change (difference) from the atmospheric pressure before the engine


16


starts rotation is, in absolute value, equal to or smaller than the predetermined second value P


2


.




When the result in S


20


is negative, the program is immediately terminated. On the other hand, when the result is affirmative, the program proceeds to S


22


in which the bit (initially 0) of a flag F.MON is set to 1 to indicate that the intake manifold may possibly leaks and should therefore be monitored. In addition, the bit of the flag F.X is reset to 0.





FIG. 6

is a flow chart showing the operation to detect or monitor the intake manifold leakage when it is determined that the intake manifold should be monitored. The illustrated program is also executed when the ignition switch is turned to the ACC position whereafter it is looped once every 100 msec.




In the system according to this embodiment, when the changes in the absolute manifold pressure PBA and the atmospheric pressure PA before and after the engine


16


starts rotation, are small, it is determined that the intake manifold may possibly leaks and should be monitored. Specifically, as will be explained later, the opening of the branch passage (secondary air passage)


72


is changed and the changes in the pressure, etc., before and after the opening is changed, are calculated and based thereon, it is determined whether the intake manifold


52


, in fact, leaks.




The program begins in S


100


in which it is determined whether the bit of the flag F.MON is set to 1 and when the result is negative, the program is immediately terminated. On the other hand, when the result is affirmative, the program proceeds to S


102


in which it is determined whether the bit of the flag F.THIDLE is set to 1. This amounts for determining whether the throttle valve


50


is closed.




When the result is negative, the program is immediately terminated. When the result is affirmative, the program proceeds to S


104


in which it is determined whether the bit of a flag F.ICH is set to 1. Since the bit of the flag has initially been reset to 0, the result is normally negative and the program proceeds to S


106


in which the detected engine speed NE (before the opening of the passage


72


is changed) is renamed C (i.e., is detected and stored in memory) and the detected manifold absolute pressure PBA (before the opening of the passage


72


is changed) is renamed D (i.e., is detected and stored in memory). At the same time, the bit of the flag F.ICH is set to 1. To set the bit of this flag indicates that detection and memorization of the detected engine speed NE, etc., before the opening of the passage


72


is changed has been completed.




The program then proceeds to S


108


in which the current command value ICMD to be supplied to the EACV


74


is increased (changed) by a predetermined amount. In other words, at the situation where the throttle valve


50


is closed, the opening of the branch passage


72


is changed in the opening direction by the predetermined amount to change the air flow passing and flowing the intake manifold


52


.




In a next program loop, when the program proceeds, via S


100


to S


102


, to S


104


in which the result becomes affirmative and proceeds to S


110


in which it is determined whether a difference between the engine speed NE detected at this program loop (after the opening of the passage


72


is changed) and the value C, in other words, it is determined whether the change of the engine speeds before and after the opening of the passage


72


is changed, is equal to or smaller than a predetermined third value N


3


(more precisely it is determined whether the change is equal to or smaller than N


3


in absolute value), and a difference between the manifold absolute pressure PBA detected at this program loop (after the opening of the passage


72


is changed) and the value D, in other words, it is determined whether the change of the intake manifold pressures before and after the opening of the passage is changed, is equal to or smaller than a predetermined fourth value P


4


(more precisely it is determined whether the change is equal to or smaller than P


4


in absolute value).




When the result in S


110


is negative, it is determined that the intake manifold


52


is normal and does not leaks and the program proceeds to S


112


in which the bits of the flags F.ICH and F.MON are reset to 0 and the program is terminated.




On the contrary, when the result in S


110


is affirmative, the program proceeds to S


114


in which it is determined that the intake manifold


52


, in fact, leaks, i.e., the intake manifold


52


is not air-tight condition and has a leakage(s) in junction(s) from which air enters. At the same time, any of the aforesaid warning lamps


146


,


148


,


150


and


152


is turned on and/or sound the buzzer


154


to warn the operator.




Having been configured in the foregoing manner, the system according to the embodiment can detect the leakage of the intake manifold


52


accurately in a simple configuration, without need to install a pressure sensor in each of the cylinders to detect the in-cylinder pressure.




It should be noted in the above that, although the changes of pressure and engine speed is determined by calculating the differences, ratios between the pressures and engine speeds can instead by used.




The embodiment is thus configured to have a system for detecting leakage of an intake manifold


52


of an internal combustion engine


16


having a secondary air passage


72


, bypassing a throttle valve


50


, at an air intake pipe


46


connecting to the intake manifold


52


and a secondary air control valve


74


which regulates opening of the secondary air passage, comprising: engine starting determining means (ECU


22


, S


10


) for determining whether the engine starts rotation; pressure detecting means (ECU


22


, S


14


) for detecting intake manifold pressure (manifold absolute pressure PBA; A) and atmospheric pressure PA (B) when the engine is determined not to start rotation; first change determining means (ECU


22


, S


16


, S


18


) for detecting the intake manifold pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change (difference) from the intake manifold pressure detected before the engine is determined to start rotation, is equal to or smaller than a predetermined first value P


1


; second change determining means (ECU


22


, S


16


, S


18


) for detecting the atmospheric pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change (difference) from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than a predetermined second value P


2


; manifold leakage possibility determining means (ECU


22


, S


22


) for determining that the intake manifold may possibly leak when the change from the intake manifold pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined first value and the change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined second value; third change determining means (ECU


22


, S


100


-S


110


) for changing the opening of the secondary air passage by the secondary air control valve when it is determined that the intake manifold may possible leak and for determining whether a change of speed of the engine NE before and after the opening is changed, is equal to or smaller than a predetermined third value N


3


and a change of the intake manifold pressure before and after the opening is changed, is equal to or smaller than a predetermined fourth value P


4


; and manifold leaking determining means (ECU


22


, S


114


) for determining that the intake manifold leaks when the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value.




In the system, the third change determining means determines whether the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value, when the throttle valve is closed (ECU


22


, S


102


).




In the system, the first change determining means calculates the change by obtaining differences between the intake manifold pressures detected before and after the engine is determined to start rotation, the second change determining means calculates the change by obtaining a difference between the atmospheric pressures detected before and after the engine is determined to start rotation, and the third change determining means calculates the changes by obtaining each difference of the speed of the engine and the intake manifold pressures before and after the opening is changed.




It should also be noted that, although the invention has been explained with reference to an embodiment of an outboard motor, the invention is not limited in application to an outboard motor but can also be applied to an inboard motor.




The entire disclosure of Japanese Patent Application No. 2001-315853 filed on Oct. 12, 2001, including specification, claims, drawings and summary, is incorporated herein in reference in its entirety.




While the invention has thus been shown and described with reference to specific embodiments, it should be noted that the invention is in no way limited to the details of the described arrangements but changes and modifications may be made without departing from the scope of the appended claims.



Claims
  • 1. A system for detecting leakage of an intake manifold of an internal combustion engine having a secondary air passage, bypassing a throttle valve, at an air intake pipe connecting to the intake manifold and a secondary air control valve which regulates opening of the secondary air passage, comprising:engine starting determining means for determining whether the engine starts rotation; pressure detecting means for detecting intake manifold pressure and atmospheric pressure when the engine is determined not to start rotation; first change determining means for detecting the intake manifold pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change from the intake manifold pressure detected before the engine is determined to start rotation, is equal to or smaller than a predetermined first value; second change determining means for detecting the atmospheric pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than a predetermined second value; manifold leakage possibility determining means for determining that the intake manifold may possibly leak when the change from the intake manifold pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined first value and the change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined second value; third change determining means for changing the opening of the secondary air passage by the secondary air control valve when it is determined that the intake manifold may possible leak and for determining whether a change of speed of the engine before and after the opening is changed, is equal to or smaller than a predetermined third value and a change of the intake manifold pressure before and after the opening is changed, is equal to or smaller than a predetermined fourth value; and manifold leaking determining means for determining that the intake manifold leaks when the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value.
  • 2. A system according to claim 1, wherein the third change determining means determines whether the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value, when the throttle valve is closed.
  • 3. A system according to claim 1, wherein the first change determining means calculates the change by obtaining a difference between the intake manifold pressures detected before and after the engine is determined to start rotation.
  • 4. A system according to claim 1, wherein the second change determining means calculates the change by obtaining a differences between the atmospheric pressures detected before and after the engine is determined to start rotation.
  • 5. A system according to claim 1, wherein the third change determining means calculates the changes by obtaining each difference of the speed of the engine and the intake manifold pressures before and after the opening is changed.
  • 6. A system according to claim 1, wherein the engine is an engine for outboard motor.
  • 7. A method of detecting leakage of an intake manifold of an internal combustion engine having a secondary air passage, bypassing a throttle valve, at an air intake pipe connecting to the intake manifold and a secondary air control valve which regulates opening of the secondary air passage, comprising the steps of:determining whether the engine starts rotation; detecting intake manifold pressure and atmospheric pressure when the engine is determined not to start rotation; detecting the intake manifold pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change from the intake manifold pressure detected before the engine is determined to start rotation, is equal to or smaller than a predetermined first value; detecting the atmospheric pressure when the throttle valve is closed after the engine is determined to start rotation and for determining whether a change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than a predetermined second value; determining that the intake manifold may possibly leak when the change from the intake manifold pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined first value and the change from the atmospheric pressure detected before the engine is determined to start rotation is equal to or smaller than the predetermined second value; changing the opening of the secondary air passage by the secondary air control valve when it is determined that the intake manifold may possible leak and determining whether a change of speed of the engine before and after the opening is changed, is equal to or smaller than a predetermined third value and a change of the intake manifold pressure before and after the opening is changed, is equal to or smaller than a predetermined fourth value; and determining that the intake manifold leaks when the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value.
  • 8. A method according to claim 7, wherein the step of third change determining determines whether the change of speed of the engine is equal to or smaller than the predetermined third value and the change of the intake manifold pressure is equal to or smaller than the predetermined fourth value, when the throttle valve is closed.
  • 9. A method according to claim 7, wherein the step of first change determining calculates the change by obtaining a difference between the intake manifold pressures detected before and after the engine is determined to start rotation.
  • 10. A method according to claim 7, wherein the step of second change determining calculates the change by obtaining a differences between the atmospheric pressures detected before and after the engine is determined to start rotation.
  • 11. A method according to claim 7, wherein the third change determining calculates the changes by obtaining each difference of the speed of the engine and the intake manifold pressures before and after the opening is changed.
  • 12. A method according to claim 7, wherein the engine is an engine for outboard motor.
Priority Claims (1)
Number Date Country Kind
2001-315853 Oct 2001 JP
US Referenced Citations (11)
Number Name Date Kind
5531100 Mezger et al. Jul 1996 A
5615643 Hill Apr 1997 A
5617722 Takaku Apr 1997 A
5750888 Matsumoto et al. May 1998 A
5996400 Nishioka et al. Dec 1999 A
6220229 Kawamura et al. Apr 2001 B1
6427527 Langer Aug 2002 B1
6487892 Ito et al. Dec 2002 B1
6612155 Stergiou Sep 2003 B1
6614345 Kimata et al. Sep 2003 B2
6644284 Pfitz Nov 2003 B2
Foreign Referenced Citations (1)
Number Date Country
2000-104621 Apr 2000 JP