This application is based on Japanese Patent Application No. 2007-128800 filed on May 15, 2007, the disclosure of which is incorporated herein by reference.
The present invention relates to an intake manifold which introduces intake air to each cylinder of an engine.
JP-2003-269271A (U.S. Pat. No. 6,802,293B2) shows an intake manifold. One end of an intake pipe is connected to a cylinder head of an engine and the other end is connected to a surge tank in such a manner as to project into an interior of the surge tank. Intake air flows into a space formed under the projected end of the intake pipe in the surge tank, which causes an increase in pressure loss of the intake air.
The present invention is made in view of the above matters, and it is an object of the present invention to reduce a pressure loss of an intake air in an intake manifold in which an open end of an intake pipe is projected into an interior of a surge tank.
According to the present invention, an intake manifold includes a plurality of intake pipes. The intake pipes have connecting ends respectively connected to intake ports of a cylinder head of an engine and opening ends aligned in a row in such a manner as to project into a surge tank. The intake manifolds includes an intake air introducing port formed at one side of the row of the opening ends of the intake pipes. A space is formed under the opening ends in the surge tank. The intake manifold includes a partition dividing the space in a direction of the row.
When the intake air is introduced from the intake air introducing port toward the space, the intake air is prevented from flowing into the space by the partitions. Hence, the intake air is effectively suctioned into each of cylinders so that pressure loss of intake air is reduced.
Other objects, features and advantages of the present invention will become more apparent from the following description made with reference to the accompanying drawings, in which like parts are designated by like reference numbers and in which:
Referring to
The intake pipes 2-5 extend along an outer surface of a surge tank 8. The intake pipes 2-5 have connecting ends 9-12 connected to the cylinder head and opening ends 15-18 projected into an interior of the surge tank 8. These opening ends 15-18 are aligned in one direction. In this embodiment, the opening ends 15-18 are aligned in a horizontal direction. An intake air introducing port 20 is provided on left side of the opening ends 15-18.
The intake manifold 1 is provided with three partitions 23-25 which horizontally divide a lower space 21 formed under the opening ends 15-18. The partitions 23-25 extend downwardly from a center of projecting walls 151, 161, 171 of the opening ends 15-17 to an inner surface of the surge tank 8.
The intake manifold 1 is provided with the partitions 23-25 which divide the lower space 21 formed under the projecting walls 151, 161, 171 of the opening ends 15-17.
When the intake air flows from the intake air introducing port 20 in a right direction, the intake air is prevented from flowing into the lower space 21 by the partitions 23-25. Hence, the intake air is effectively suctioned into each of cylinders 2-5 so that pressure loss of intake air is reduced.
In a case that a differential pressure between the intake air introducing port 20 and the connecting ends 9-12 is 50 mmHg and an engine speed is in a rage of 700-1000 rpm,
The partitions 23-25 extend from a center of projecting walls 151, 161, 171 of the opening ends 15-17 to an inner surface of the surge tank 8. The partitions 23-25 function as ribs to enhance mechanical strength of the intake manifold 1.
According to a second embodiment, as shown in
In the first embodiment, three partitions 23-25 are provided, and in the second embodiment, four partitions 23-26 are provided. Alternatively, the partition 23 only may be provided under the opening end 15. Even when a single partition is provided, the pressure loss is effectively reduced.
In the first and the second embodiment, adjacent opening ends 15-18 are respectively in contact with each other. Alternatively, the opening end 15 and the opening end 16 may be formed in a manner to make a clearance therebetween and the partition 24 may be provided in the clearance.
The engine is not limited to the four-cylinder engine. The present invention can be applied to a three-cylinder engine, a six-cylinder engine, and an eight-cylinder engine. The present invention can be applied to an inline four-cylinder engine, a V-type engine, and a horizontally-opposed engine.
Number | Date | Country | Kind |
---|---|---|---|
2007-128800 | May 2007 | JP | national |