The present invention relates to an intake manifold for an engine, and more particularly to an intake manifold that is suitable for promoting generation of tumble flow or swirl flow in cylinders of an engine.
For example, Japanese Laid-Open Patent Publication No. 2007-113482 and Japanese Laid-Open Patent Publication No. 2008-45430 disclose such typical intake manifolds.
The intake manifold disclosed in Japanese Laid-Open Patent Publication No. 2007-113482 is made of synthetic resin and has an intake passage connected to one of intake ports of an engine. A downstream section of the intake passage is divided into upper and lower regions by a partition. A synthetic resin valve for opening and closing the lower region in the intake passage is provided in the intake passage at a position upstream of the partition. When the lower region in the intake passage is closed by the valve, flow of air that flows into one of engine cylinders from the intake manifold through the upper region in the intake passage generates tumble flow in the engine cylinder.
In the case of this intake manifold, molding distortion in the synthetic resin intake manifold and valve can cause the side edges of the valve to interfere with wall surface that defines the intake passage to such an extent that the side edges hinder the operation of the valve. To eliminate such a drawback, it is inevitable that a clearance is provided between each side edge of the valve and a portion of the intake passage wall surface that faces the side edge of the valve. Therefore, when the lower region in the intake passage is closed by the valve, air flows into one of the engine cylinders from the intake manifold not only through the upper region in the intake passage, but also through the clearances. This disadvantageously reduces the efficiency of generation of tumble flow in the corresponding engine cylinder.
The intake manifold disclosed in Japanese Laid-Open Patent Publication No. 2008-45430 is made of synthetic resin and has intake passages each connected to one of intake ports of an engine. A synthetic resin valve is arranged in each intake passage. The valves are supported at their proximal ends by a shaft. Each valve rotates integrally with the shaft to open and close the corresponding intake passage. Each valve has a slit, which is formed by cutting out a part of the distal end of the valve. When each intake passage is closed by the corresponding valve, the slit of the valve allows air to flow therethrough to one of the engine cylinders. The airflow through the slit of each valve generates tumble flow in the corresponding engine cylinder.
In the case of this intake manifold also, it is inevitable that a clearance is provided between each side edge of each valve and a portion of the corresponding intake passage wall surface that faces the side edge of the valve. Therefore, when each intake passage is closed by the corresponding valve, air flows into the engine cylinders from the intake manifold not only through the slits of the valves, but also through the clearances. This disadvantageously reduces the efficiency of generation of tumble flow in the cylinders.
Accordingly, it is an objective of the present invention to provide an intake manifold that is capable of reliably promoting generation of tumble flow or swirl flow in engine cylinders.
To achieve the foregoing objective and in accordance with one aspect of the present invention, an intake manifold including a manifold case and a valve is provided. The manifold case has an intake passage. The valve is arranged in the intake passage. The valve is rotatable about its proximal end so as to partly close the intake passage. When the valve partly closes the intake passage, a clearance is formed between a wall surface defining the intake passage and a distal end of the valve. The clearance connects a section of the intake passage upstream of the valve and a section of the intake passage downstream of the valve to each other. When the valve partly closes the intake passage, each of side edges of the valve comes in surface-to-surface contact with a portion of the intake passage wall surface that faces the side edge of the valve, thereby airtightly sealing the spaces between the side edges of the valve and the wall surface of the intake passage.
In a preferred embodiment, a stepped portion is provided in each of the portions of the wall surface of the intake passage. The surface-to-surface contact of the side edges of the valve with the portions of the wall surface of the intake passage is achieved when each side edge of the valve contacts one of the stepped portions.
In a preferred embodiment, portions of the valve that comes in surface-to-surface contact with the stepped portions each have a width that increases toward the clearance between the wall surface of the intake passage and the distal end of the valve.
In a preferred embodiment, each side edge of the valve and the corresponding stepped portion are formed to be fitted to each other.
In a preferred embodiment, each side edge of the valve and the corresponding stepped portion each have one of a projection having an acute-angled cross-sectional shape and a recess having an acute-angled cross-sectional shape. The fitting of each side edge of the valve and the corresponding stepped portion is achieved by fitting the projection and the recess of the side edge and the stepped portion to each other.
In a preferred embodiment, a labyrinth structure is formed between each side edge of the valve and the wall surface of the intake passage when the side edge is fitted to the corresponding stepped portion.
In a preferred embodiment, each side edge of the valve comes in surface-to-surface contact, through a sealing member, with the corresponding one of the portions of the wall surface of the intake passage.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
A first embodiment of the present invention will now be described with reference to
As shown in
A plurality of intake passages 16 are formed in the manifold case 12. Each intake passage 16 is connected to one of intake ports 11a provided in the cylinder head 11. Each intake passage 16 has a rectangular cross section. As shown in
As shown in
As shown in
As shown in
As shown in
The intake manifold 10 is assembled in the following manner.
First, the shaft 22 is passed through the insertion holes 24a of the valves 24 such that the valves 24 are supported by the shaft 22. The valves 24 are arranged at equal intervals. Then, the sleeve 23A or the sleeve 23B is fitted about the shaft 22 at a position on each side of each valve 24. The collar 23C is provided about each of the sleeves 23A, 23B in advance. Thereafter, the collars 23C are supported by the bearings 20 and the bearings 21.
The thus obtained assembly of the valves 24, the shaft 22, and the bearings 20, 21 is subsequently installed in the manifold case 12. At this time, each valve 24 is accommodated in the corresponding intake passage 16 of the manifold case 12, and each bearing 20, 21 is fitted in the corresponding recess 17 of the manifold case 12. Thereafter, the boss 26a of the driven gear 26 is inserted to the support cylinder 25 of the manifold case 12, so that the boss 26a is fitted to one end of the shaft 22. Finally, the gasket 13 is fitted in the groove 19 of the manifold case 12. This completes the assembly of the intake manifold 10. The completed intake manifold 10 is fixed to the cylinder head 11 by means of the bolts with the flange portion 14 of the manifold case 12 contacting the cylinder head 11 as shown in
When there is a demand for high engine speed, the valves 24 receive power from the motor 27 and rotate about their proximal ends integrally with the shaft 22, and are moved to the open position, which is shown by alternate long and two short dashes line in
When there is a demand for low engine speed, the valves 24 receive power from the motor 27 and rotate integrally with the shaft 22, and are moved to the closed position, which is shown by solid line in
The first embodiment has the following advantages.
When each valve 24 is at the closed position, the spaces between the side edges of the valve 24 and the wall surface of the corresponding intake passage 16 are airtightly sealed. If the sealing is not airtight, air flows through the spaces between the side edges of each valve 24 and the wall surfaces of the corresponding intake passage 16, and hinders generation of tumble flow in each engine cylinder. Therefore, airtight sealing between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16 when the valve 24 is at the closed position is advantageous for efficiently generating tumble flow in each engine cylinder.
Airtight sealing between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16 is achieved by causing each side edge of the valve 24 to come in surface-to-surface contact with the corresponding stepped projection 30 of the intake passage 16. Thus, even if the manifold case 12 is deformed due to, for example, shrinkage, the side edges of each valve 24 are prevented from interfering with the wall surface of the corresponding intake passage 16 to such an extent that the side edges hinder the operation of the valve 24. Also, spaces are not formed between the side edges and the wall surface.
When each valve 24 is moved to the closed position, each of the stepped projections 30 on the wall surface of the corresponding intake passage 16 is fitted in one of the stepped recesses 31 formed on the side edges of the valve 24. This improves the airtightness between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16.
Each of the side edges of each valve 24 comes in surface-to-surface contact with one of the stepped projections 30 of the corresponding intake passage 16. This configuration is advantageous in accurately determining the position of each valve 24 at the closed position.
A second embodiment will now be described. The differences from the first embodiment will be mainly discussed.
As shown in
In addition to the advantages of the first embodiment, the second embodiment has the following advantage.
The stepped projections 30 and the stepped recesses 31 each have an acute-angled cross-sectional shape. This further improves the airtightness between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16, which is improved by causing each stepped projection 30 of the intake passage 16 to be fitted in one of the stepped recess 31 of the valve 24.
A third embodiment will now be described. The differences from the first embodiment will be mainly discussed.
In the first embodiment, the stepped projections 30 each have a constant width. In contrast, as shown in
In addition to the advantages of the first embodiment, the third embodiment has the following advantage.
When each valve 24 is at the closed position, air flow in a section upstream of the valve 24 concentrates on the clearance 29 in the corresponding intake passage 16. That is, the closer to the distal end of each valve 24, the stronger the pressure of the air flowing through the intake passage 16 acting on the valve 24 becomes. The widths of portions of each valve 24 that come in surface-to-surface contact with the corresponding stepped projections 30 each increase from the proximal end toward the distal end of the valve 24. Thus, even in a position near the distal end of each valve 24, which receives a great pressure of air flowing through the corresponding intake passage 16, airtight sealing between the side edges of the valve 24 and the wall surface of the corresponding intake passage 16 is reliably maintained.
A fourth embodiment will now be described. The differences from the first embodiment will be mainly discussed.
As shown in
In addition to the advantages of the first embodiment, the fourth embodiment has the following advantage.
Airtight sealing between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16 is achieved by causing the protrusion 45 on each side edge of the valve 24 to be fitted in the recessed portion 46 of one of the stepped projections 30 in the corresponding intake passage 16. The fitting of the protrusions 45 to the recessed portions 46 form a labyrinth structure between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16. This further improves the airtightness between the side edges of each valve 24 and the wall surface of the corresponding intake passage 16.
The above embodiments may be modified as follows.
In the first embodiment, the stepped recess 31 on each side edge of each valve 24 may be omitted as shown in
In the first embodiment, as shown by alternate long and two short dashes lines in a circle of an alternate long and short dash line in
In the intake manifold 10 of the second embodiment shown in
The intake manifolds 10 of the previous embodiments are capable of promoting generation of tumble flow in engine cylinders. However, the present invention may be applied to other types of intake manifolds. For example, the present invention may be applied to an intake manifold that is capable of promoting generation of swirl flow in engine cylinders. In this case, when each valve is at the closed position, the position of clearance, which is formed between the distal end of the valve and the wall surface defining the corresponding intake passage and connects the upstream and downstream sections of the intake passage to each other, is on the left side or the right side in the intake passage, instead of being in an upper portion of the intake passage as in the above embodiments.
Number | Date | Country | Kind |
---|---|---|---|
2008-187511 | Jul 2008 | JP | national |