Intake system for the combustion air of an internal combustion engine in a portable handheld work apparatus

Information

  • Patent Grant
  • 6681726
  • Patent Number
    6,681,726
  • Date Filed
    Thursday, June 6, 2002
    22 years ago
  • Date Issued
    Tuesday, January 27, 2004
    20 years ago
Abstract
The invention relates to an intake system (1) for the combustion air (2) of an internal combustion engine (3) in a portable handheld work apparatus (4). The intake system (19) includes a filter housing (5) having an air filter (6) for purifying the combustion air (2). The clean space (8) of the air filter (6) is fluidly connected to an outlet opening (10) of the filter housing (5). The outlet opening (10) communicates with a carburetor (7) of the engine (3). A centrifugal-force separator (13) is mounted forward of the air filter (6) for separating large amounts of dust in the inducted combustion air (2). The separator (13) is so positioned ahead of the filter housing (5) that a central core flow (14) of the separator has a lower particle density (15) and is supplied to the filter (6). A tangential flow (16) surrounds the central core flow (14) in the interior of the separator (13). The tangential flow (16) has a great amount of dust or dirt and is conducted away via the suction side (11) of a blower (12), especially of a cooling-air blower (19) of the engine (3) having vanes on the back side thereof.
Description




BACKGROUND OF THE INVENTION




U.S. Pat. No. 5,526,777 discloses an intake system for an internal combustion engine of a portable handheld work apparatus, namely, a motor-driven chain saw. A cooling-air blower of the chain saw moves air into an air filter housing. The clean space of the air filter is connected to an intake channel of a carburetor of the internal combustion engine. Dust-laden ambient air is drawn by suction via an inlet opening into the contaminant space of the filter housing. This dust-laden air is conducted past the air filter and is supplied to the cooling air flow via an outlet opening on the filter housing. The air filter is charged with dust in an extreme manner depending upon the ambient conditions at the location where the chain saw is used. During operation of the intake system, different flow resistances of the air filter result in dependence upon the layer thickness of the deposited dust. The operation of the engine can thereby be affected.




SUMMARY OF THE INVENTION




It is an object of the invention to provide an intake system for the combustion air of an internal combustion engine which ensures a disturbance-free operation of the engine even under operating conditions wherein very intense amounts of dust are present.




The intake arrangement of the invention is for the combustion air of an internal combustion engine including an internal combustion engine of a portable handheld work apparatus. The engine includes a carburetor and the intake arrangement includes: a filter housing defining an interior; an air filter mounted in the filter housing for filtering the combustion air supplied to the engine; the air filter being mounted in the filter housing so as to partition the interior into a contaminant space having an inlet opening and a clean space fluidly connected to the carburetor; a blower for moving a flow of the combustion air laden with dust toward the filter housing; a centrifugal-force separator for receiving the flow of combustion air and for dividing the flow into a central core flow having a low particle density of the dust and a tangential flow surrounding the core flow with the tangential flow having a particle density of the dust greater than the low particle density; the centrifugal-force separator having discharge means for conducting the tangential flow away from the centrifugal-force separator; and, the centrifugal-force separator having conducting means for conducting the central core flow into the inlet opening and the contaminant space.




A centrifugal-force separator is mounted forward of the filter housing in order to prevent a clogging of the air filter especially when there is a high dust content in the ambient air of a portable handheld motor-driven work apparatus. During the operation of the centrifugal-force separator or cyclone, a central core flow with low particle density is present in the interior of the separator, that is, a low-dust zone having preferably very small particles and a tangential flow which surrounds the core flow. The tangential flow has a greater particle density with particles of larger average diameter. The airflow, which is needed for separation, in the centrifugal-force separator is generated by the cooling-air blower. The core flow of the cyclone is conducted to the contaminant space of the filter housing; whereas, the tangential flow of the cyclone is preferably conducted away via the suction end of the blower. In this way, the low-dust air flows toward the air filter and the air filter does not become rapidly clogged with dust. This is of significant advantage in cutoff machines which generate intense quantities of dust at the cutting or scraping tool.




In an air-cooled internal combustion engine, it is practical to utilize the cooling-air blower for generating the airflow through the centrifugal-force separator. It is advantageous that the blower be a blower having rear-mounted vanes. The blower wheel of the cooling-air blower is provided with blower vanes on its rear side. As a centrifugal-force separator, cyclones, preferably axial cyclones or turbofilters and the like are suitable. Axial cyclones and turbofilters are characterized by a cylindrically-shaped housing; whereas, cyclones have a conically tapered section. All centrifugal-force separators have in common that, during operation, a rotating movement of air is present in the interior with a low path velocity at the center of the separator and a high peripheral or path velocity in the peripheral regions.




It is practical to configure the housing of the centrifugal-force separator essentially as one piece with the filter housing. In this way, a compact configuration of the entire intake system results. The core flow is then preferably taken with a dip pipe which is mounted at an axial end of the centrifugal-force separator. The tangential flow is taken tangentially from the centrifugal-force separator.




For assembly purposes, it is practical to form the filter housing from two parts, approximately halfshell-shaped parts. The halfshell-shaped filter housing parts are tightly connected in the assembled condition of the filter housing with threaded fasteners or are connected in some other way so as to be form-tight or force-tight. The dip tube on the centrifugal-force separator is configured as one piece with a portion of the filter housing, preferably with a cover of the filter housing. The second part of the filter housing is preferably fixed to a flange of the carburetor of the engine.




In another embodiment of the intake system, an axial cyclone is applied to preclean the combustion air. The axial cyclone is formed of a cylindrically-shaped housing having a first axial end with a conducting arrangement mounted in the interior of the housing at this axial end. Dirt-laden combustion air is moved by a blower to the conducting arrangement from outside of the axial cyclone and the conducting arrangement imparts a rotational movement to the in-flowing combustion air in the interior of the housing. In this way, a central core flow having a low particle density forms as does a tangential flow which surrounds the core flow and has a greater particle density than in the core flow. The axial cyclone has an axial second end lying downstream and a preferably cylindrically-shaped dip pipe projects axially into the housing at this axial second end. The core flow is supplied to the contaminant space of the filter housing through the dip pipe. The tangential flow flows out radially through an opening at the second axial end of the axial cyclone. The tangential flow conducts dust away so that the combustion air is purified of larger particles by the axial cyclone. The length of the axial cyclone is approximately twice as large as its diameter.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will now be described with reference to the drawings wherein:





FIG. 1

is a schematic perspective view of an intake arrangement according to an embodiment of the invention;





FIG. 2

is an exploded perspective view of a centrifugal-force separator;





FIG. 3

is a schematic of an intake arrangement having an axial cyclone;





FIG. 4

is a perspective view of an axial cyclone; and,





FIG. 5

is a perspective view of a conducting arrangement.











DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION





FIG. 1

is a schematic view of an intake arrangement


1


for combustion air


2


on an internal combustion engine


3


of a partially illustrated work apparatus


4


. Dirt, such as dust or the like, is generated during the operation of such work apparatus, especially with cutoff machines. The dirt can be organic or inorganic particles such as stone powder or metal chips.




The combustion air


2


, which is drawn in by the engine


3


, must be purified before entry into the combustion chamber of the engine


3


in order to avoid wear. For this purpose, the carburetor


7


is provided with an intake arrangement


1


which comprises a centrifugal-force separator


13


and a filter housing


5


having an air filter


6


. A blower


12


is provided for feeding the combustion air into the intake arrangement


1


. A cooling-air fan


18


is advantageously used as blower


12


, which, in the embodiment shown, is a radial blower


19


having rear-mounted vanes. A fan wheel


25


of the radial blower


19


is shown. The fan wheel


25


is provided on both sides (


26


,


27


) with axially and radially extending fan vanes


28


. The fan wheel


25


is fixed on an end


29


of the crankshaft of the engine


3


. The fan wheel simultaneously functions as a rotor for an ignition system of the engine


3


.




In the assembled state of the engine


3


, the fan wheel


25


is covered by a housing cover. The fan wheel


25


rotates in the direction of arrow


31


during operation of the engine


3


. The axial region


32


of the fan wheel


25


is the suction side


11


. The fan wheel moves air from the suction side


11


in a radial direction. With the aid of the housing cover (not shown), the cooling-air flow is conducted to the cooling ribs


30


of the engine


3


.




A curved discharge pipe


33


extends tangentially from the centrifugal-force separator


13


to a suction side of the blower


19


. An underpressure is present in the discharge pipe


33


during operation of the blower


19


and this underpressure propagates via the interior of the separator


13


and via an intake pipe


35


which opens at an axial end


34


of the separator


13


. The underpressure is also present at an intake opening


36


of the intake pipe


35


. Combustion air


2


is drawn by suction from the ambient of the work apparatus


4


through the opening


36


together with dust


37


contained in the air and reaches the interior of the separator


13


via the intake pipe


35


.




The housing


38


of the separator


13


has the shape of a parallelepiped when viewed from the outside and is cylindrically shaped in the interior thereof. In the housing


38


, a rotational movement is imparted to the in-flowing combustion air


2


. A core flow


14


is formed in the center of the separator


13


and a tangential flow


16


is formed which radially surrounds the core flow


14


. The core flow


14


has a particle density


15


which is less than the particle density


17


of the tangential flow


16


. In addition, the mean diameters of the particles in the core flow are less and especially significantly less than the mean diameters of the particles in the tangential flow


16


. As shown in

FIG. 2

, the tangential flow


16


is conducted tangentially via the discharge pipe


33


to the blower


19


. In this way, the main mass of the dust, which passes through the opening


36


of the intake pipe


35


, is again removed from the separator


13


after passing through a part length of the housing


38


of the separator. The core flow


14


moves rotationally in the interior of the separator


13


and axially through an axial end


39


of the housing


38


of the separator


13


and is fed to the air filter


6


. The axial end


39


of the housing


38


lies opposite the axial end


34


.




In the embodiment shown, the filter housing


5


comprises two parts, namely, a lower part


22


and a cover


24


. The lower part is approximately quadratic in its outline and has a half-shell shape and the cover


24


is approximately the same size in its outline and it too has a half-shell shape. A fluid connection


41


to the separator


13


is formed as one piece with the cover


24


. In the embodiment of

FIG. 1

, this fluid connection


41


is formed as a dip pipe for the centrifugal-force separator


13


shown in FIG.


2


. The dip pipe functions to pick up the core flow


14


of the separator


13


and to feed the core flow


14


into a contaminant space


42


of the filter


6


. The pick up of the core flow


14


from the separator


13


takes place because of the suction action of the engine


3


when drawing the air/fuel mixture via the carburetor


7


into a crankcase, that is, into a combustion chamber of the engine


3


.





FIG. 2

shows an exploded perspective view of a centrifugal-force separator


13


. A dip pipe


21


is shown at the axial end


39


of the housing


38


and, in the embodiment shown, the dip pipe


21


projects into the separator with an axial length of approximately ⅛ to {fraction (1/10)} of the axial length of the housing


38


of the separator. In contrast to the centrifugal-force separator shown in

FIG. 1

, the discharge pipe


33


lies in the direct proximity of the dip pipe


21


tangentially thereof and opens into the annular space between the dip pipe


21


and the housing.




The components of the intake system


1


such as the intake pipe


35


, the housing


38


of the separator


13


as well as the parts


23


and


22


of the filter housing


5


and the discharge pipe


33


preferably are made of plastic. The two-part filter housing shown in

FIG. 1

has parts


22


and


23


which are tightly connected to each other with threaded fasteners or are riveted. In lieu of the filter housing of

FIG. 1

, the filter housing


5


and parts of the housing


38


of the separator


13


can be configured as one piece. In lieu of the cyclone shown in the embodiment, an axial cyclone or turbofilter can also be used. It can be practical to connect several centrifugal-force separators in parallel or in series ahead of the filter housing


5


. In this way, a large amount of dust in the inducted combustion air


2


can be separated via the blower


19


before the combustion air is supplied to the air filter


6


.





FIG. 3

shows a schematic of another intake system


1


for the combustion air


2


of an internal combustion engine. In contrast to the intake system shown in

FIG. 1

, an axial cyclone


20


is used in the embodiment of FIG.


3


. The axial cyclone


20


is configured from a cylindrically-shaped housing


38


whose axial length


43


is approximately twice the size of its diameter


44


. The axial cyclone


20


has a length


43


of approximately 80 mm and a diameter of approximately 30 mm. The housing


30


is made of plastic, preferably a thermoplastic plastic.




The blower


12


is configured as a radial blower and moves combustion air


2


together with dirt


37


to a first axial end


45


of the axial cyclone


20


. A conducting arrangement


46


(

FIG. 5

) in the form of an axial blower wheel


47


is fixed in the interior of the housing


38


at the axial end


45


thereof. The axial blower wheel


47


extends essentially over the clear cross section of the housing


38


. The blower wheel


47


is shown in perspective in FIG.


5


and imparts a rotational movement to the combustion air


2


in the interior of the housing


38


. The blower wheel


47


does this with its six vanes


49


arranged on the hub


48


of the blower wheel


47


at a pitch angle of approximately 30°. In this way, a tangential flow


16


is formed with significant portions of the dust


37


. The tangential flow


16


surrounds the core flow


14


in the center


50


of the housing


38


.




The particle density


17


of the tangential flow


16


is greater, and preferably significantly greater, than the particle density


15


of the core flow


14


as described with respect to the centrifugal-force separator


13


shown in FIG.


2


. The dip pipe


21


projects at the axial end


51


of the housing


38


into the interior of the housing. The axial end


51


lies opposite the axial end


45


. The housing


38


extends at its axial end


51


seal tight to the outer wall


53


of the dip pipe


21


. The dip pipe


21


has a diameter


44


which permits the pipe


21


to pick up the core flow


14


in the interior of the housing


38


in its radial extension and to direct the core flow out of the axial cyclone


20


. The core flow


14


is then supplied to the air filter


6


in the filter housing


5


at the contaminant space side as shown in FIG.


1


.




A radially and tangentially guided opening


52


is provided in the housing in the region of the axial extension of the dip pipe


21


in the interior of the housing


38


. The opening


52


is preferably cylindrical. In the embodiment of the axial cyclone


20


shown in

FIG. 4

, the opening


52


has a diameter approximately {fraction (1/7)} of the diameter


44


of the housing


38


. The opening


52


serves for directing away the dust


37


, which is contained in the tangential flow


16


, from the axial cyclone


20


and away from the portable handheld work apparatus. Thus, with the intake system


1


for combustion air


2


shown partially in

FIG. 3

, combustion air


2


with dust


37


is supplied via the blower


12


in the axial direction to the axial cyclone


20


and precleaned combustion air


2


is conducted to the air filter


6


in axial direction to the axial cyclone


20


.




It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.



Claims
  • 1. An intake arrangement for the combustion air of an internal combustion engine including an internal combustion engine of a portable handheld work apparatus, the engine including a carburetor and the intake arrangement comprising:a filter housing defining an interior; an air filter mounted in said filter housing for filtering the combustion air supplied to said engine; said air filter being mounted in said filter housing so as to partition said interior into a contaminant space having an inlet opening and a clean space fluidly connected to said carburetor; a cooling air fan of said engine for moving a flow of said combustion air laden with dust toward said filter housing and said cooling air fan having rear-mounted vanes; a centrifugal-force separator for receiving said flow of combustion air and for dividing said flow into a central core flow having a low particle density of said dust and a tangential flow surrounding said core flow with said tangential flow having a particle density of said dust greater than said low particle density; said centrifugal-force separator having discharge means for conducting said tangential flow away from said centrifugal-force separator; said cooling air fan conducting away said tangential flow discharged from said centrifugal-force separator; and, said centrifugal-force separator having conducting means for conducting said central core flow into said inlet opening and said contaminant space.
  • 2. The intake arrangement of claim 1, wherein said centrifugal-force separator is a cyclone.
  • 3. The intake arrangement of claim 1, wherein said centrifugal-force separator is an axial cyclone.
  • 4. The intake arrangement of claim 1, wherein said centrifugal-force separator is a turbofilter.
  • 5. The intake arrangement of claim 1, wherein said conducting means is a dip tube for conducting said core flow away from said centrifugal-force separator and toward said contaminant space of said filter housing.
  • 6. An intake arrangement for the combustion air of an internal combustion engine including an internal combustion engine of a portable handheld work apparatus, the engine including a carburetor and the intake arrangement comprising:a filter housing defining an interior; an air filter mounted in said filter housing for filtering the combustion air supplied to said engine; said air filter being mounted in said filter housing so as to partition said interior into a contaminant space having an inlet opening and a clean space fluidly connected to said carburetor; a blower for moving a flow of said combustion air laden with dust toward said filter housing; a centrifugal-force separator for receiving said flow of combustion air and for dividing said flow into a central core flow having a low particle density of said dust and a tangential flow surrounding said core flow with said tangential flow having a particle density of said dust greater than said low particle density: said centrifugal-force separator having discharge means for conducting said tangential flow away from said centrifugal-force separator; said centrifugal-force separator having conducting means for conducting said central core flow into said inlet opening and said contaminant space; and, said blower being a cooling-air fan of said engine.
  • 7. The intake arrangement of claim 6, wherein said cooling-air fan has rear-mounted vanes.
  • 8. An intake arrangement for the combustion air of an internal combustion engine including an internal combustion engine of a portable handhold work apparatus, the engine including a carburetor and the intake arrangement comprising:a filter housing defining an interior; an air filter mounted in said filter housing for filtering the combustion air supplied to said engine; said air filter being mounted in said filter housing so as to partition said interior into a contaminant space having an inlet opening and a clean space fluidly connected to said carburetor; a blower for moving a flow of said combustion air laden with dust toward said filter housing: a centrifugal-force separator for receiving said flow of combustion air and for dividing said flow into a central core flow having a low particle density of said dust and a tangential flow surrounding said core flow with said tangential flow having a particle density of said dust greater than said low particle density; said centrifugal-force separator having discharge means for conducting said tangential flow away from said centrifugal-force separator; said centrifugal-force separator having conducting means for conducting said central core flow into said inlet opening and said contaminant space; and, said centrifugal-force separator being configured essentially as one piece with said filter housing.
  • 9. An intake arrangement for the combustion air of an internal combustion engine including an internal combustion engine of a portable handheld work apparatus, the engine including a carburetor and the intake arrangement comprising:a filter housing defining an interior; an air filter mounted in said filter housing for filtering the combustion air supplied to said engine; said air filter being mounted in said filter housing so as to partition said interior into a contaminant space having an inlet opening and a clean space fluidly connected to said carburetor; a blower for moving a flow of said combustion air laden with dust toward said filter housing; a centrifugal-force separator for receiving said flow of combustion air and for dividing said flow into a central core flow having a low particle density of said dust and a tangential flow surrounding said core flow with said tangential flow haying a particle density of said dust greater than said low particle density; said centrifugal-force separator having discharge means for conducting said tangential flow away from said centrifugal-force separator; said centrifugal-force separator having conducting means for conducting said central core flow into said inlet opening and said contaminant space: said conducting means being a dip tube for conducting said core flow away from said centrifugal-force separator and toward said contaminant space of said filter housing; and, said filter housing including first and second housing parts and said dip tube being formed as one piece with said first housing part.
  • 10. The intake arrangement of claim 9, wherein said intake arrangement includes a cover for said filter housing facing away from said carburetor; and, said dip tube is formed as one piece with said cover.
  • 11. An intake arrangement for the combustion air of an internal combustion engine including an internal combustion engine of a portable handheld work apparatus, the engine including a carburetor and the intake arrangement comprising:a filter housing defining an interior; an air filter mounted in said filter housing for filtering the combustion air supplied to said engine; said air filter being mounted in said filter housing so as to partition said interior into a contaminant space having an inlet opening and a clean space fluidly connected to said carburetor; a blower for moving a flow of said combustion air laden with dust toward said filter housing; a centrifugal-force separator for receiving said flow of combustion air and for dividing said flow into a central core flow having a low particle density of said dust and a tangential flow surrounding said core flow with said tangential flow having a particle density of said dust greater than said low particle density; said centrifugal-force separator having discharge means for conducting said tangential flow away from said centrifugal-force separator; said centrifugal-force separator having conducting means for conducting said central core flow into said inlet opening and said contaminant space; said centrifugal-force separator being an axial cyclone; and, said blower being mounted for directing said flow of combustion air to said axial cyclone.
  • 12. The intake arrangement of claim 11, wherein said blower is a cooling-air fan of said engine.
  • 13. The intake arrangement of claim 11, wherein said axial cyclone has a length approximately equal to twice the diameter thereof.
Priority Claims (1)
Number Date Country Kind
101 28 790 Jun 2001 DE
US Referenced Citations (8)
Number Name Date Kind
3670480 Petersen Jun 1972 A
3884658 Roach May 1975 A
4028076 Fields Jun 1977 A
4248613 Linhart Feb 1981 A
4276067 Lindman Jun 1981 A
4303423 Camplin et al. Dec 1981 A
5059222 Smith Oct 1991 A
5485817 Dahlberg Jan 1996 A
Foreign Referenced Citations (9)
Number Date Country
44 35 430 Apr 1995 DE
195 20 533 Mar 1996 DE
195 31 504 Feb 1997 DE
1 006 499 Jan 1952 FR
2 326 573 Apr 1977 FR
2 426 499 Dec 1979 FR
2 274 408 Jul 1994 GB
1 477 451 May 1989 SU
1 590 610 Sep 1990 SU