This application claims the benefit of Japanese Patent Application No. 2014-183166, filed Sep. 9, 2014, which is hereby incorporated by reference wherein in its entirety.
1. Field of the Invention
The present invention relates to an intake system of an internal combustion engine and, in particular, to an intake system of an internal combustion engine including a plasma actuator provided in an intake passage.
2. Description of the Related Art
For example, in an internal combustion engine for a vehicle, there is known an intake system including a fuel injection valve that injects fuel to an intake passage. In this case, fuel injected from the fuel injection valve adheres to an inner wall surface of the intake passage.
Japanese Patent Laid-Open No. 2014-001691 discloses that in order to suppress adhesion of injected fuel to an inner wall surface of an intake passage and to promote vaporization of the fuel, gas (an air) is supplied from a gas supply mechanism toward a portion to which the injected fuel adheres in the inner wall surface of the intake passage.
By the way, usually, fuel injection from the fuel injection valve is started before valve opening of the intake valve, i.e., during valve closing. In that case, the fuel injected from the fuel injection valve to adhere to the inner wall surface of the intake passage tends to flow down along the inner wall surface of the intake passage, and to be accumulated in a concave portion sandwiched between the inner wall surface of the intake passage and the intake valve. The accumulated fuel flows into a combustion chamber in a cylinder at once at the time of valve opening of the intake valve. Accordingly, there is a problem that the fuel having become comparatively large droplets vaporizes in the combustion chamber, and thus vaporization of the fuel is delayed, and as a result, much HC as unburned fuel is discharged.
This is particularly remarkable at the time of cold operation of the internal combustion engine. It is because at the time of cold operation, a temperature of the inner wall surface of the intake passage is low, and thus vaporization of adhesion fuel by receiving heat from the inner wall surface of the intake passage is apt to be insufficient.
Note that since the gas supply mechanism described in Japanese Patent Laid-Open No. 2014-001691 supplies high-pressure gas to a portion to which injected fuel adheres from an upstream side of the portion, the supplied high-pressure gas may wash away the adhesion fuel to a downstream side to thereby promote the above-described problem.
Consequently, the present invention has been devised in view of the above-described circumstances, and an object thereof is to provide an intake system of an internal combustion engine that can prevent fuel injected from a fuel injection valve to adhere to an inner wall surface of an intake passage from going to a downstream side of the intake passage.
According to one aspect of the present invention, there is provided an intake system of an internal combustion engine including:
a fuel injection valve that injects fuel to an intake passage;
a plasma actuator provided in a region which is on an inner wall surface of the intake passage and to which the fuel injected from the fuel injection valve adheres; and
a control unit configured to control the plasma actuator,
wherein the plasma actuator is disposed so as to generate an airflow in a predetermined direction not including a component in a direction toward a downstream side of the intake passage at the time of its operation, and
wherein the control unit controls the plasma actuator so as to actuate the plasma actuator in at least a part of a period from start of fuel injection by the fuel injection valve to start of valve opening of an intake valve.
According to the present invention, there is exhibited an excellent effect that can prevent the fuel injected from the fuel injection valve to adhere to the inner wall surface of the intake passage from going to the downstream side of the intake passage.
Further features of the present invention will become apparent from the following description of exemplary embodiments (with reference to the attached drawings).
Hereinafter, embodiments according to the present invention will be explained based on accompanying drawings.
A configuration of the embodiment will be schematically shown in
A piston 3 is reciprocatably housed in a cylinder 2a formed in a cylinder block 2 of the engine 1, and the piston 3 is coupled to a crankshaft (not illustrated) through a connecting rod 4. An intake port 6 forming a part of an intake passage, and an exhaust port 8 forming a part of an exhaust passage are defined in a cylinder head 5 of the engine 1, respectively. An outlet 6B (refer to
An intake manifold or branch pipes (not illustrated) that forms a part of the intake passage is connected to an upstream side of the intake port 6. A surge tank (not illustrated), which is an intake air collection chamber, is connected to an upstream side of the branch pipes, and it also forms a part of the intake passage. The “intake passage” is a general term of a passage through which an intake air flows. Similarly, the “exhaust passage” is a general term of a passage through which an exhaust air flows.
A fuel injection valve (an injector) 19 that injects fuel to the intake passage, particularly to the intake port 6 is attached to the cylinder head 5. As illustrated, the fuel injection valve 19 is disposed so as to inject fuel H in a sprayed manner from an upper part and the upstream side of the intake port 6 toward a lower part and a downstream side thereof, and toward the outlet 63 (refer to
Such a region on the inner wall surface 6A of the intake port 6 against which or to which the injected fuel H from the fuel injection valve 19 collides or adheres is called a “fuel adhesion region” for convenience, and is denoted by a symbol R. As illustrated, a portion in front of the outlet of the intake port 6 is inclined obliquely downward toward the intake port outlet 6B, is curved downward from the upstream side toward the downstream side, and a cross-sectional shape of the portion is substantially circular. Accordingly, the fuel adhesion region R is also inclined obliquely downward toward the intake port outlet 6B, and is formed as a cylindrical region curved downward from the upstream side toward the downstream side. Particularly in the fuel adhesion region R, the lower inner wall surface 6A of the intake port 6 is inclined obliquely downward.
The spark plug IS and the fuel injection valve 19 are electrically connected to the ECU 100, and are controlled by the ECU 100. In addition, a crank angle sensor 41 for detecting a crank angle of the engine 1, and a water temperature sensor 42 for detecting a coolant temperature of the engine 1 are electrically connected to the ECU 100.
Particularly, in the embodiment, a first plasma actuator 20A and a second plasma actuator 20B are provided in the fuel adhesion region R, and a power supply device 30 for supplying electrical energy to these plasma actuators 20A, 20B is provided. The power supply device 30 is also electrically connected to the ECU 100. By controlling the power supply device 30, the ECU 100 changes magnitude of the electrical energy supplied to the plasma actuators 20A, 20B from the power supply device 30, and switches operation states of the plasma actuators 20A, 20B.
Here, the plasma actuators 20A, 20B of the embodiment will be explained. Note that since a plasma actuator itself is known, explanations of basic matters, such as an operation principle, will be mostly omitted here. Since configurations of the first plasma actuator 20A and the second plasma actuator 20B are substantially similar to each other, the first plasma actuator 20A will be first explained in detail, and the second plasma actuator 20B will be next explained focusing on a difference from the first plasma actuator 20A.
As shown in
The first back surface electrodes 22A are aligned in an A direction (a direction toward a left side in
Now, assume that electrical energy, specifically a high AC (alternating-current) voltage was applied between the front surface electrode 21 and the first back surface electrode 22A. In that case, plasma is generated near the opposing-side edge 21E of the front surface electrode 21, and near the surface 23A of the dielectric 23, a drive force (a blowing force) that makes an air flow in the A direction from the front surface electrode 21 side toward the first back surface electrode 22A side is generated due to the plasma, and an airflow in the A direction as shown by FA is generated on the surface 23A of the dielectric 23. The airflow FA is generated in a region extremely near (approximately 1 to 2 mm) from the surface 23A of the dielectric 23. Such an airflow is called an “actuator airflow” for convenience.
Note that although there are various theories on a principle of generation of such an airflow, according to a theory, for example, when the front surface electrode 21 has a positive potential, an insulation breakdown of the air occurs near the surface 23A of the dielectric 23, thereby ionization is caused, and weakly ionized plasma is generated. Since mobility of electrons is high, the electrons move to the front surface electrode 21 in an extremely short time. In that case, positive ions become excessive, and an electrostatic force is generated by applied electrolysis. The electrostatic force received by the ions is transmitted to neutral particles by collision. When this is seen from a viewpoint of a continuous fluid, a body force (the blowing force) is generated in its space. There is a theory that oxygen negative ions play a large role in the generation of the blowing force in the same direction also when the front surface electrode 21 has a negative potential.
The first plasma actuator 20A is installed so that a front surface portion at which the front surface electrode 21 is installed faces an inside of a gas passage in which the airflow is desired to be generated, i.e., an inside of the intake port 6. On the other hand, since it is not necessary to generate the airflow at a back surface portion of the first plasma actuator 20A, and the back surface portion rather serves as an adhesion surface to the intake port inner wall surface 6A, the first back surface electrode 22A is embedded in an insulating layer 25 formed on a back surface 23B of the dielectric 23 in order to electrically insulate the first back surface electrode 22A. The insulating layer 25 is also common to the first and second plasma actuators 20A, 20B. Note that since the dielectric 23 is formed of a resin-based or a ceramic-based insulating material, the first back surface electrode 22A may be embedded in the dielectric 23.
Since each of the first electrode units 24A generates the airflow FA in the A direction as mentioned above, the first plasma actuator 20A as a whole generates the airflow in the A direction over a wide range on its surface, i.e., a first actuator airflow.
As shown in
The second back surface electrodes 22B are aligned in a B direction (a direction toward a right side in
When an AC voltage is applied between the front surface electrode 21 and the second back surface electrode 22B, an airflow in the B direction as shown by FB is generated on the surface 23A of the dielectric 23. Accordingly, the second plasma actuator 20B as a whole generates the airflow in the B direction over a wide range on its surface, i.e., a second actuator airflow.
The first plasma actuator 20A and the second plasma actuator 20B are configured to be symmetrical to a center of a width w of the front surface electrode 21, and are integrally configured by arranging the front surface electrode 21, and the first and second back surface electrodes 22A, 22B at the common dielectric 23. Either of the airflow FA in the A direction and the airflow FB in the B direction can be selectively generated by actuating either of the plasma actuators.
The power supply device 30 includes: a common power supply 31 for applying an AC voltage to the first and second plasma actuators 20A, 20B; and a switch 32 interposed between the first and second plasma actuators 20A, 20B and the power supply 31. Here, the plurality of front surface electrodes 21 are connected to each other, and are connected to the power supply 31. The plurality of first back surface electrodes 22A are also connected to each other, and the plurality of second back surface electrodes 22B are also connected to each other.
The power supply 31 changes an output voltage based on a command signal from the ECU 100. The AC voltage output from the power supply 31 is, for example, a high voltage of approximately 1 to 10 kV, and has a frequency of approximately 1 to 10 kHz. Note that a DC (direct-current) pulse voltage may be output instead of the AC voltage. Not only magnitude of drive forces generated by the plasma actuators 20A, 20B, but strength of the airflow can be changed by changing a voltage value output from the power supply 31, i.e., by changing magnitude of the voltages applied to the plasma actuators 20A, 20B. The higher-value voltages are applied, the larger the strength of the airflows generated by the plasma actuators 20A, 20B becomes. Note that although it is also considered that a frequency of the voltage is changed in addition to or instead of the magnitude of the voltage in order to change the airflow strength, only the magnitude of the voltage will be changed for convenience here.
By using the power supply 31 common to both the plasma actuators 20A, 20B, the number of power supplies is minimized, and cost can be reduced.
The switch 32 is switched based on the command signal from the ECU 100, thereby an operation state of each plasma actuator is switched, and generation states of a first and a second airflow are switched.
The switch 32 has a first switch 32A and a second switch 32B. The first switch 32A has a movable contact 33 and two fixed contacts 34, 35, and the second switch 32B has a movable contact 36 and one fixed contact 37. The movable contact 33 is connected to the power supply 31. The fixed contact 34 is connected to the plurality of first back surface electrodes 22A. The fixed contact 37 is connected to the plurality of second back surface electrodes 22B. The fixed contact 35 is connected to the movable contact 36.
When the movable contact 33 is connected to the fixed contact 34 (an illustrated state), only the first plasma actuator 20A is set to be the operation state (on), and the airflow in the A direction is generated. When the movable contact 33 is connected to the fixed contact 35, and the movable contact 36 is connected to the fixed contact 37, only the second plasma actuator 20B is set to be the operation state, and the airflow in the B direction is generated. When the movable contact 33 is connected to the fixed contact 35, and the movable contact 36 is disconnected from the fixed contact 37, both plasma actuators are set to be non-operation states, i.e., they are turned off.
Note that a configuration of the switch 32 is arbitrary, and that the switch 32 may have a mechanical contact, or may be configured by an electric switching circuit.
A thickness T of the plasma actuator is extremely thin, and it is an order of several μm to several hundreds (the electrodes etc. in
The first and second plasma actuators 20A, 20B extend in the A direction or the B direction, and the respective electrodes 21, 22A, 22B extend in a direction (a paper thickness direction of
Returning to
As is apparent from
Returning to
Now, as mentioned above, fuel injection from the fuel injection valve 19 is usually started during valve closing before valve opening of the intake valve 7 in order to promote vaporization of injected fuel. In that case, the fuel H injected from the fuel injection valve 19 to collide against or adhere to the intake port inner wall surface 6A tends to flow down along the intake port inner wall surface 6A, and to eventually accumulate in a concave portion 60 formed by being sandwiched between the intake port inner wall surface 6A and the intake valve 7 as shown in
The accumulated fuel H flows down and flows into the combustion chamber 14 in a cylinder at once at the time of valve opening of the intake valve 7. Accordingly, there is a problem that the fuel having become comparatively large droplets vaporizes in the combustion chamber 14, and thus vaporization of the fuel is delayed, and as a result, much HC as unburned fuel is discharged.
This is particularly remarkable at the time of cold operation of the engine. It is because at the time of cold operation, temperatures of the intake port inner wall surface 6A and the intake valve 7 are low, and because vaporization of adhesion fuel by receiving heat from the intake port inner wall surface 6A and the intake valve 7 is apt to be insufficient. Note that since a fuel injection amount is more increased at the time of cold operation compared with the time of warm operation, the increased amount also causes delay in fuel vaporization.
However, the problem can be solved according to the embodiment. Namely, as shown in
In addition, the adhesion fuel H is maintained in a state of spreading on the surface of the first plasma actuator 20A in a state of small droplets. Accordingly, vaporization of the adhesion fuel H by receiving heat from the intake port inner wall surface 6A through the first plasma actuator 20A is promoted.
In addition, since the first actuator airflow FA includes plasma or ions, the adhesion fuel is reformed into a more combustible state by the plasma or the ions while being held etc. by the first actuator airflow FA. Accordingly, even when the adhesion fuel flows into the combustion chamber 14 at the time of subsequent valve opening of the intake valve, combustion of the adhesion fuel is promoted, and discharge of HC is suppressed.
Such operation or control of the first plasma actuator 20A is preferably performed at the time of cold operation of the engine. By doing this, an HC discharge amount that is apt to be increased at the time of cold operation of the engine can be suppressed.
When valve opening of the intake valve 7 is started after start of the operation of the first plasma actuator 20A, operation of the first plasma actuator 20A is stopped. This alone allows the adhesion fuel held etc. to flow into the combustion chamber 14 while being carried by the flow of the intake air. However, in the embodiment, the adhesion fuel is made to flow into the combustion chamber 14 more positively using the second plasma actuator 20B.
Namely, the ECU 100 controls the first and second plasma actuators 20A, 208 so as to stop operation of the first plasma actuator 20A and so as to start operation of the second plasma actuator 208 at the time of start of the valve opening of the intake valve 7. In that case, as shown in
Furthermore, since the second back surface electrode 22B is added to the first plasma actuator 20A, and the second plasma actuator 20B is integrally configured with the first plasma actuator 20A, there is an advantage that the above-described operational effect can be obtained by simple structural change.
Specific contents of control of the embodiment will be explained with reference to
Simultaneously with this, the ECU 100 starts operation of the first plasma actuator 20A. Specifically, the ECU 100 switches the switch 32 shown in
Simultaneously when the crank angle detected by the crank angle sensor 41 becomes the predetermined valve opening start timing (t2) of the intake valve, the ECU 100 stops operation of the first plasma actuator 20A, and starts operation of the second plasma actuator 20B. Specifically, the ECU 100 switches the switch 32 shown in
In an illustrated example, fuel injection is continuously executed even after the start of valve opening of the intake valve 7, and so-called synchronous injection is executed. In addition, fuel injection is ended at timing t3 before valve opening end timing (valve closing timing) t5 of the intake valve 7.
Simultaneously when the predetermined injection end timing (t3) is reached, the ECU 100 stops transmission of the injection command signal to the fuel injection valve 19 to thereby stop the fuel injection by the fuel injection valve 19. The ECU 100 then stops operation of the second plasma actuator 20B at timing t4 after elapse of a predetermined delay time from the fuel injection stop timing t3. Specifically, the ECU 100 switches the switch 32 shown in
Here, it is also preferable to execute the above-mentioned operation or control only at the time of cold operation of the engine. In this case, determination of whether or not the engine is under cold operation can be executed by the ECU 100 based on a water temperature detected by the water temperature sensor 42, for example. Specifically, the ECU 100 can determine that the engine is under cold operation on the basis of the fact that the water temperature detected by the water temperature sensor 42 is less than a predetermined water temperature.
Note that a case can also be considered where fuel injection is ended before the start of valve opening (at the time of valve closing) of the intake valve 7 (refer to a dashed line a). In this case as well, similarly to the above, the first plasma actuator 20A is made to operate until the start of valve opening of the intake valve 7, and simultaneously with the start of valve opening of the intake valve 7, operation of the first plasma actuator 20A is stopped, and operation of the second plasma actuator 20B is started.
Hereinbefore, although a basic practical example of the embodiment has been explained, the following modified example of the embodiment can also be carried out.
In the above-described basic practical example, although the first and second plasma actuators 20A, 20B are provided in the whole fuel adhesion region R and the whole circumference of the fuel adhesion region R, it is also possible to provide them partly in the fuel adhesion region R. Particularly, since the injected fuel directly collides against mainly the lower inner wall surface 6A of the intake port 6, it is possible to provide the first and second plasma actuators 20A, 20B only at a lower portion or a lower half portion of the fuel adhesion region R. When the first and second plasma actuators 20A, 20B are provided only at the lower half portion, they are formed in half-pipe shapes.
The first and second plasma actuators 20A, 20B may be dividedly configured instead of being integrally formed.
The second plasma actuator 20B may be omitted, and only the first plasma actuator 20A may be provided.
The first and second electrode units 24A, 24B may be aligned at unequal intervals, respectively.
In the above-described basic practical example, as shown in
Similarly, operation stop timing of the first plasma actuator 20A need not necessarily also be the same as the valve opening start timing of the intake valve 7, and may be timing before the valve opening start timing of the intake valve, or may be timing after the valve opening start timing of the intake valve and before the valve opening end timing thereof. However, it is to be noted that the adhesion fuel holding, etc. may be unable to be sufficiently performed for a period from the stop of operation of the first plasma actuator 20A to the start of valve opening of the intake valve in the former case, and that intake of the adhesion fuel into the combustion chamber may be prevented in the latter case. Of course, it is considered that the latter case has the few above-described disadvantages since adhesion fuel can be forcibly taken in by the flow of the intake air.
The operation start timing of the second plasma actuator 20B can also be changed, and can preferably be changed in accordance with the operation stop timing of the first plasma actuator 20A. The operation start timing of the second plasma actuator 20B may be timing before the valve opening start timing of the intake valve, or can be set as timing after the valve opening start timing of the intake valve and before the valve opening end timing thereof. Although the operation start timing of the second plasma actuator 20B is preferably made to coincide with the operation stop timing of the first plasma actuator 20A, it is not necessarily made to coincide therewith and, for example, can also be set as timing delayed more than the operation stop timing of the first plasma actuator 20A.
Next, other embodiments of the present invention will be explained. Note that the same symbols are attached to portions similar to the first embodiment in the drawings, explanations of the portions will be omitted, and that differences will be mainly explained.
Specifically, the second plasma actuator 20B is configured similarly to the first embodiment. On the other hand, the plurality of front surface electrodes 21 of the first plasma actuator 20A are formed separately from the front surface electrodes 21 of the second plasma actuator 20B, and are disposed between the front surface electrodes 21 of the second plasma actuator 20B with their direction being changed by 90° from the first embodiment. Accordingly, the front surface electrodes 21, 21 of the first and second plasma actuators 20A, 20B are disposed substantially in a lattice shape as illustrated when seen as a whole. The plurality of front surface electrodes 21 of the first plasma actuator 20A is made to be shorter, and are aligned between the respective front surface electrodes 21 of the second plasma actuator 20B along the first alignment direction A. Note that although not illustrated, in the first plasma actuator 20A, the plurality of first back surface electrodes 22A are also aligned keeping a relation offset in the first alignment direction A from the front surface electrodes 21.
In the embodiment, these first and second plasma actuators 20A, 20B are provided only in the lower half portion of the fuel adhesion region R, and accordingly, they are formed in half-pipe shapes.
In a case where the first plasma actuator 20A is configured and disposed as described above, when the first plasma actuator 20A is actuated, the first actuator airflow in the first alignment direction A is generated at an arbitrary point P on the surface of the first plasma actuator 20A. Adhesion fuel is given a drive force toward the circumferential direction of the intake port inner wall surface 6A by the first actuator airflow, and particularly, receives a drive force to cause a rise of the adhesion fuel in the circumferential direction along the intake port inner wall surface 6A. Also as a result of this, the adhesion fuel is prevented from going to the downstream side of the intake port, and an operational effect similar to the first embodiment can be obtained.
Note that the first alignment direction may be set as an A′ direction (shown by a dashed line) opposite to the A direction (shown by a continuous line). In addition, the first alignment direction may be separated into the A direction and the A′ direction with a lowest position of the first plasma actuator 20A as a boundary.
On the contrary to an illustrated example, the front surface electrodes 21 (and the second back surface electrodes 22B) of the second plasma actuator 20B are shortened to be disposed between the respective front surface electrodes 21 of the first plasma actuator 20A (and between the first back surface electrodes 22A), while the front surface electrodes 21 (and the first back surface electrodes 22A) of the first plasma actuator 20A are extended long in the direction of the longitudinal axis Cp, whereby they may be formed substantially in a lattice shape as a whole.
A control method of the embodiment is similar to that of the first embodiment.
However, the embodiment is different from the first embodiment in a point where the direction of the actuator airflow generated for the period from start of fuel injection to start of valve opening of the intake valve is not the first alignment direction A but a vertical upward direction C as shown by a continuous line in
Such an airflow in the direction C can be generated by actuating both the first and second plasma actuators 20A, 20B, and controlling magnitude of voltages applied to them, i.e., strength of the actuator airflows FA, FB generated therein. As shown in
Thus, the first and second plasma actuator 20A, 20B are controlled so that the ascending airflow in the vertical upward direction C as shown in
By such an ascending airflow, the adhesion fuel H can be held in a state of being floated above the first and second plasma actuators 20A, 20B. Also as a result of this, the adhesion fuel H is prevented from going to the downstream side of the intake port, and an operational effect similar to the first embodiment can be obtained.
Note that as shown by a dashed line in
A control method of the embodiment is similar to that of the first embodiment except for a point of performing airflow control as described above.
As is understood from the above explanations, the first plasma actuator 20A is disposed so as to generate, at the time of its operation, the first actuator airflow in the predetermined direction not including the component in the direction toward the downstream side of the intake port 6. This will be explained in more detail using
Hereinbefore, although the preferred embodiments of the present invention have been explained, still other embodiments can be employed in the present invention.
The above-described each embodiment, each practical example, and each configuration can be arbitrarily combined with each other unless inconsistency occurs. All modification examples, application examples, and equivalents that are embraced in the concept of the present invention prescribed by claims are included in the embodiments of the present invention. Accordingly, the present invention should not be restrictively construed, and can be applied also to other arbitrary technologies that belong within the scope of the concept of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014-183166 | Sep 2014 | JP | national |