This invention relates to steam turbines and more specifically, to the design of last-stage steam turbine buckets with integral covers.
The tip areas of last-stage steam turbine buckets or blades with integral covers operate in a wet steam condition, typically with supersonic relative velocity between the steam flow and the buckets. The action of high speed, wet steam flow on the buckets can produce erosion, and can contribute to corrosion damage of the metal surfaces in the tip areas. The covers between adjacent buckets contact each other during operation by virtue of the bucket's rotation caused by the untwisting effect of the applied centrifugal forces. Connection or contact of the integrally covered buckets during operating conditions enhances the rigidity of the bucket structure and improves vibration damping. The presence of moisture on these contact areas can contribute to stress corrosion cracking. The design of the last stage bucket, therefore, must be tolerant of wet steam in existing environmental conditions. Moreover, any flow disturbing elements at the bucket tip region must be avoided to minimize aerodynamic losses.
The tip bucket design for certain last stage turbine buckets results in a pocket area (or simply, pocket) being formed between adjacent bucket tip covers that tends to trap moisture produced by adjacent surfaces of the bucket covers and leading and trailing edges of the adjacent airfoils. The trapped moisture in the pocket area can cause damage to the buckets themselves as well as the damping contact surfaces of the covers.
The present invention identifies an improved bucket tip and cover shape that avoids erosion and corrosion of the steam turbine bucket and reduce aerodynamic losses, thus improving the reliability and efficiency of the steam turbine. This design change is achieved without impacting other features that are critical to the performance of the turbine and reliability of the bucket.
In an exemplary embodiment, the last stage turbine buckets have integral covers disposed at the tip of the buckets that are generally similar to the known covers, but with a subtle yet significant shape change as further described below. To solve the problems experienced with the existing cover design, the cover has been modified to the extent that a radial step is formed between the airfoil leading edge tip and the cover top surface that eliminates the above-described pocket area, thus reducing moisture entrapment potential and also reducing aerodynamic drag force or aerodynamic losses. In one variant, the radial surface portion of the step is curved toward the adjacent bucket cover surface. In a second variant, the radial surface portion of the step is curved more severely to substantially smoothly merge with the adjacent bucket cover surface. The precise shape of the step may be optimized to balance the stress level, addition of mass and the impact on the aerodynamic design.
Accordingly, in one aspect, the invention provides a bucket for use on a steam turbine rotor wheel, the bucket comprising a shank portion and an airfoil portion, the airfoil portion having a radially outer tip with a tip cover adapted to be engaged, in use, by a similar tip cover on an adjacent bucket, wherein a radial step is formed in the tip cover and the airfoil portion along a leading edge of the airfoil portion.
In another aspect, the invention provides a bucket for use on a steam turbine rotor wheel, the bucket comprising a shank portion and an airfoil portion, the airfoil portion having a radially outer tip with a tip cover adapted to be engaged, in use, by a similar tip cover on an adjacent bucket, wherein a radial step is formed in the tip cover and the airfoil portion along a leading edge of the airfoil portion; wherein the step is formed by a first airfoil surface extending in a flow direction away from the leading edge and a second tip cover surface extending radially away from the first airfoil surface; and wherein the leading edge is radially shortened by forming the radial step; and further wherein the tip cover is integral with the airfoil portion.
In still another aspect, the invention provides a method of eliminating a moisture-trapping pocket between adjacent top covers at radially outer ends of respective airfoil portions of turbine buckets comprising: a) radially shortening leading edges of the turbine buckets to create radial steps between the leading edges and top surfaces of the tip covers; and b) cutting radial surface portions of the radial steps such that the radial surface portions more smoothly merge with adjacent radial surfaces at trailing edges of adjacent buckets.
The invention will now be described in detail in connection with the drawings identified below.
With reference to
Blade portions 16, 18 of the buckets 10, 12, respectively, extend upwardly from the dovetail or shank portions 19, 21 to respective tips 20, 22. The tips 20, 22 are formed with respective integral covers 24, 26 which couple the entire row of buckets together, substantially 360° about the wheel described in detail.
With reference to
In
The radial shortening of the leading edge 54 or 154 of the blade portion 50 or 150 does not significantly impact performance, and the substantial elimination of the moisture-trapping pocket prevents moisture from collecting and causing potential corrosion damage to the blades and their respective covers.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5261785 | Williams | Nov 1993 | A |
5509784 | Caruso et al. | Apr 1996 | A |
6679681 | Burnett et al. | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050287004 A1 | Dec 2005 | US |