1. Field of Invention
The invention is directed towards an integral cutting insert clamping mechanism. More particularly, a mechanism for clamping a cutting insert onto a milling cutter during metalworking operations.
2. Description of Related Art
A number of different types of devices have been used in the past for securing cutting inserts to milling cutters to permit replacement when the cutting insert becomes worn. Many insert clamping mechanisms are directed to a screw being inserted through a screw hole in the cutting insert and threadably engaged into a milling cutter, such as U.S. Pat. No. 5,129,767. However, this clamping arrangement is not suitable for many cutting inserts, especially larger cutting inserts over a half-inch in length and/or cutting inserts whose length is at least twice the width.
The cutting insert is susceptible to breakage at the screw hole because of stress localized near the screw hole. First, during metalworking operations, the forces exerted on the cutting insert from the work piece cause the cutting insert to act as a lever and the screw hole, where the insert is attached to the milling cutter, to act as a fulcrum. The longer the cutting insert the more force which is applied at the location of the screw hole and subsequently increased stress at the screw hole. Second, the screw hole, in of itself, causes stress risers around the screw hole. Third, a downward clamping force by the screw onto the insert adds stress at the location of the screw hole. The localization of stresses, due to applied forces from metalworking and clamping of the cutting insert, at the screw hole causes the cutting insert to be susceptible to breakage at the screw hole.
The weight of a cutting insert is an important factor in metal working. First, during milling it is advantageous to increase revolution per minute (RPM) of the milling cutter to decrease the time to manufacture a work piece. One way to increase the RPM of the milling cutter is to decrease the weight of the cutting insert. If the volume of the cutting insert is decreased so is the weight of the cutting insert and subsequently the higher RPM of the milling cutter. Second, it is advantageous to decrease the cost of the cutting insert. If the volume of the insert is decreased, so is the amount of material to make the insert. The less material that is used to make the insert and subsequently the lower the weight of the cutting insert, the lower the cost of the insert.
Therefore, an object of the present invention is to provide an integral cutting insert clamping mechanism. Further objects of the invention are to provide an integral cutting insert clamping mechanism that: disperses the clamping forces evenly away from the screw hole of the insert to reduce the stress at the screw hole and thereby reduce the susceptibility of breakage at the screw hole, has a substantially planar top surface to reduce the chip evacuation interference on the rake face of the cutting insert, and has a chip breaker.
An integral cutting insert clamping mechanism including a cutting insert with a top surface, a bottom surface, a plurality of side surfaces and an indentation in the top surface. At least one cutting edge of the insert defined at an intersection between the top surface and one of the side surfaces. The insert having an axial bore extending between the bottom and top surfaces. A clamp plate seated within the indentation comprising a top surface, bottom surface, a plurality of side surfaces and an axial bore extending between the bottom and top surfaces of the clamp plate. The mechanism further comprising a retaining screw, wherein the retaining screw is inserted into the cutting insert bore and the clamp bore and secured to a milling cutter to create a clamping force on the insert.
An integral cutting insert clamping mechanism including a cutting insert with a top surface, a bottom surface and a plurality of side surfaces. At least one cutting edge of the insert defined at an intersection between the top surface and one of the side surfaces. The insert including an axial bore extending between the bottom and top surfaces. The insert including an indentation in the top surface and the mechanism including a clamping means for applying a clamping force substantially evenly away from the axial bore of the insert.
An integral cutting insert clamping mechanism including a cutting insert having a top surface, a bottom surface and a plurality of side surfaces, at least one cutting edge defined at an intersection between the top surface and one of the side surfaces, an axial bore extending between the bottom and top surfaces and an indentation in the top surface, the indentation having a bottom surface and a plurality of side walls and the transferring of a clamping force substantially evenly away from the insert axial bore.
An integral cutting insert clamping mechanism including a cutting insert having a top surface, a bottom surface and a plurality of side surfaces, at least one cutting edge defined at an intersection between the top surface and one of the side surfaces, and an indentation in the top surface; and mechanism including a clamp plate having a top surface, bottom surface, at least one side surface, and the clamp plate seated within the indentation of the cutting insert.
An integral cutting insert clamping mechanism including a cutting insert having a top surface, a bottom surface and a plurality of side surfaces, at least one cutting edge defined at an intersection between the top surface and one of the side surfaces, and an indentation in the top surface. The mechanism further including a clamp plate having a top surface, bottom surface, at least one side surface and seated within the indentation of the cutting insert, wherein the cutting insert material is different than the clamp plate material.
Further features of the present invention, as well as the advantages derived therefrom, will become clear from the following detailed description made with reference to the drawings which:
In the following description, like reference characters designate like or corresponding parts. Also, in the following description it is to be understood that such terms as “top” and “bottom” and the like are words of convenience employed for describing the positional relationship of the elemental parts of the present invention.
The cutting insert 20 may be utilized for metalworking operations and includes a top surface 21, a bottom surface 22, side surfaces 23 and an axial bore 24 extending between the bottom surface and the top surface. The axial bore 24 is substantially centered with the top surface 21 of the insert 20. The cutting edges 25 of the insert 20 are defined by the intersection of the side surfaces 23 and the top surface 21.
As shown in
As shown in
The clamp plate 40 and the retaining screw 50 are connected together by a retaining clip 60 before the screw is placed within insert bore 24. The screw 50 is initially inserted into the bore 44 of the clamp plate 40 and the clip 60 is then placed around the shaft 51 between the threads 54 and the clamp plate thereby connecting the clamp plate to the retaining screw.
As shown in
The cutting insert 20 is not limited to a parallelogram shape, as shown, it may be appreciated that the cutting insert 20 may be of most any polygonal shape. Regardless of the shape of the insert 20, the shape of the top surface 41 of the clamp plate 40 substantially corresponds to the shape of the perimeter of the indentation 30. In a preferred embodiment, it may be appreciated that the shape of the indentation 30 substantially corresponds to the shape of the insert 20. It may be appreciated that the insert 20 is indexable and the retaining screw 50 may be any standard insert screw. It may be appreciated that the cutting insert is made of, but not limited to, the following materials: ceramic, carbide, cermet and steel.
The milling cutter 100 has a body 104 with a front end 106 and a pocket 102. The pocket 102 has a floor 108, side walls 112 and 113 and a recess 116 positioned rearwardly from the front end 106 of the body 104. The recess 116, also referred to as the apex, is positioned in the area where the side walls 112 and 113, would intersect. The pocket 102 conforms with and provides support to the cutting insert 20. An axial bore 114 with threads 115 is substantially centered on the floor 108 of the pocket 102. A shim (not shown) may position the integral clamping mechanism higher or lower in the pocket 102. It may be appreciated that the milling cutter may be substituted for a tool holder for turning operations, as shown in
To clamp the insert 20 into the pocket 102 of the milling cutter 100 by the combination screw 50 and clamp plate 40, the screw is inserted into the axial bore 24 of the cutting insert and threadably engaged with mating threads 115 of the milling cutter bore 114. As the screw 50 is threadably engaged with the milling cutter 100, a clamping force is applied by the screw head 52 onto the insert 20 via the clamp plate 40. If the insert 20 were retained to the milling cutter 100 only by the screw 50 and without the clamp plate 40, the clamping force applied by the screw head 52 onto the insert would be localized at the bore 24. The clamping force in addition to other forces caused by metalworking may cause the cutting insert 20 to break near the bore 24. The insert 20 is prone to break near the bore because holes in any material create stress risers around the hole. The purpose of the clamp plate 40 is to disperse the clamping force away from the axial bore 24 and minimize breaking of the insert 20 near the bore.
As shown in
The shape of the periphery of the clamp plate 40 is substantially similar to the shape of the periphery of the indentation 30. The substantially similar peripheral shapes allows the clamp plate 40 to be closely fit inside the indentation 30. However, there is a gap 80 between the side surfaces 43 of the clamp plate 40 and the side surfaces 33 of the indentation 30 when the clamp plate 40 is seated within the indentation 30, before the screw 50 is threadably engaged with the milling cutter 100.
In addition to a clamping force applied by the screw head 52 to the insert 20 via the clamp plate 40, the insert is also clamped into the milling cutter pocket 102 towards the apex 116 of the pocket 102 by a lateral clamping force. The lateral clamping force applied by the clamp plate 40 to the insert 20 in the direction of the milling cutter apex 116 is due to an offset (not shown) between the axis of the milling cutter bore 114 and the axis of the combined bore created by the insert bore 24 and the clamp bore 44. The offset of the of the axis of the milling cutter bore is located inward and toward the apex 116 of the milling cutter pocket 102 with respect to the location of the axis of the combined insert bore 24 and the clamp bore 44 when the clamping mechanism 10 is initially placed and aligned in the pocket 102 of the milling cutter 100 before clamping.
The screw shaft 51, when inserted in the clamp plate axial bore 44 and the insert axial bore 24 and threadably engaged with the offset milling cutter bore 114, is forced to be coaxial with the milling cutter bore. The coaxial alignment of the milling cutter bore 114, the screw shaft 51 and the clamp plate bore 44 urges the clamp plate 40 to move in the direction of the milling cutter apex 116, while being seated within the insert indentation 30. The clamp plate side surfaces 43 facing away from the direction of the apex 116 subsequently move away from the indentation side surfaces 33 and the clamp plate side surfaces 43 facing towards the direction of the apex 116 subsequently move towards and come into contact with the indentation side surfaces, as illustrated in
What has been described is an integral cutting insert clamping mechanism capable of encompassing two embodiments. The present invention may, of course, be carried out in other specific ways other than those herein set forth without departing from the spirit and the essential characteristics of the invention. The present embodiments are therefore to be considered in all respect as illustrative and not restrictive, and all changes coming within the meaning and the equivalency range of the appended claims are intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
1926531 | Graham | Sep 1933 | A |
2173772 | Timmons | Sep 1939 | A |
2799079 | Brigner, Jr. | Jul 1957 | A |
2860402 | Proska | Nov 1958 | A |
2870523 | Richard | Jan 1959 | A |
2887760 | Armstrong | May 1959 | A |
2992472 | Paul | Jul 1961 | A |
3028657 | Almen | Apr 1962 | A |
3144795 | Bunnell | Aug 1964 | A |
3191262 | Gustafson | Jun 1965 | A |
3268978 | Reck | Aug 1966 | A |
3518737 | Hood | Jul 1970 | A |
3808655 | Foster | May 1974 | A |
3887974 | Sorice | Jun 1975 | A |
4277206 | Hilton | Jul 1981 | A |
4400116 | Buchmann et al. | Aug 1983 | A |
4400117 | Smith | Aug 1983 | A |
4744703 | Cochran | May 1988 | A |
5033916 | Dunklau | Jul 1991 | A |
5167473 | Barnett | Dec 1992 | A |
5529440 | Schmidt | Jun 1996 | A |
5704734 | Ashley et al. | Jan 1998 | A |
5820311 | Grun et al. | Oct 1998 | A |
5836723 | Von Haas et al. | Nov 1998 | A |
6000885 | Erickson | Dec 1999 | A |
6017172 | Ukegawa et al. | Jan 2000 | A |
6170368 | Oles et al. | Jan 2001 | B1 |
6196774 | Minshall | Mar 2001 | B1 |
6682273 | Sjoo et al. | Jan 2004 | B2 |
6951313 | Frick et al. | Oct 2005 | B2 |
7073986 | Andras | Jul 2006 | B2 |
7313991 | Penkert | Jan 2008 | B2 |
7320563 | Muller et al. | Jan 2008 | B2 |
20050186039 | Muller et al. | Aug 2005 | A1 |
20060018723 | Sjoo et al. | Jan 2006 | A1 |
20060147281 | Nagaya et al. | Jul 2006 | A1 |
20070245535 | Noggle | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
09262706 | Oct 1997 | JP |
2000280106 | Oct 2000 | JP |
2004122262 | Apr 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20090035074 A1 | Feb 2009 | US |