Diverter systems may be used in conjunction with performance of subterranean operations which involve retrieval of hydrocarbons from subterranean formations. Diverter systems are traditionally fixed to the bottom of rotary beams of a drilling rig, below the rig floor. The purpose of a diverter system is to provide low pressure control over a well by diverting well fluids away from the drilling rig when performing subterranean operations such as, for example, during the preliminary stages of drilling. A typical diverter system may include a housing supported with its bore beneath the rotary table on the platform, and having one or more side outlets from the bore for connection with drilling mud return lines on the platform. A typical diverter system may also include a diverter assembly. A typical diverter assembly may include a tubular body adapted to be lowered into a supported position in the bore of the housing. The tubular body may have one or more ports each aligned with a corresponding side outlet from the bore. The typical diverter assembly also may include a spool, having an overshot packer at its lower end. The spool may be suspended from the tubular body for lowering over the upper end of a conductor extending upwardly from the preventer stack as the tubular body is landed in the bore of the housing. More particularly, the tubular body may be sealingly coupled to the housing bore to confine flow within the tubular body into the side outlets with flow normally returning to the rig mud system from which it may be recirculated into the drill string.
Packers may be adapted to be lowered into and landed in the diverter body to seal about a drill string extending downwardly from the rotary table and through the tubular body leading to the conductor. Accordingly, drilling fluid returns may run through the drill string and be “diverted” into overboard lines connected to the outlets in the housing with reservoirs on the platform.
Prior art systems of this type are traditionally used in marine drilling rigs, particularly with floating drilling equipment. In certain applications, it may be desirable to adapt diverter systems to be used with land rigs. It may also be desirable to reduce the costs associated with traditional diverter systems by coupling the diverter assembly to the conductor, thus eliminating the need for a housing.
The present invention relates generally to a diverter apparatus and system for drilling rigs, and more particularly, in certain embodiments, to an integral diverter system for diverting drilling fluid returns into flowlines connected to outlets for return to the drilling fluid reservoirs or other desirable locations.
In one embodiment, the present disclosure is directed to a diverter assembly for performance of subterranean operations comprising: a lower tubular body, wherein the lower tubular body is operable to couple to a conductor; an upper tubular body having one or more diverter flow outlets, and one or more additional outlets; a connecting means, wherein the connecting means secures the lower tubular body to the upper tubular body; one or more additional packer elements disposed within the upper tubular body; and locking means for securing the one or more additional packer elements in position within the upper tubular body.
In accordance with another embodiment, the present disclosure is directed to a diverter assembly for performance of subterranean operations comprising: a tubular body with a lower end and an upper end having an overshot packer at the lower end and one or more diverter flow outlets, one or more additional outlets, and a main packer at the upper end, wherein the tubular body is operable to couple to a conductor; one or more additional packer elements at the upper end of the tubular body; and locking means for securing the one or more additional packer elements in position within the upper end of the tubular body.
In certain embodiments, the present disclosure is directed to an integral diverter system comprising: a conductor extending upwardly from a wellhead; a diverter assembly coupled to the conductor, the diverter assembly comprising: a lower tubular body having an overshot packer, wherein the lower tubular body couples the conductor to the diverter assembly; an upper tubular body having one or more diverter flow outlets, one or more additional outlets, and a main packer; a connecting means, wherein the connecting means couples the lower tubular body to the upper tubular body; one or more additional packer elements disposed within the upper tubular body; locking means for securing the one or more additional packer elements in position within the upper tubular body; and a conduit run through the conductor; wherein the main packer comprises an inwardly inflatable rubber sleeve; wherein the innermost packer element forms a low pressure seal about the conduit; and wherein a fluid flowing through an annulus between the conduit and the conductor or through the conduit may be selectively directed to at least one of the one or more diverter flow outlets and the one or more additional outlets.
In accordance with certain embodiments, the present disclosure is directed to an integral diverter system comprising: a conductor extending upwardly from a wellhead; a diverter assembly coupled to the conductor, the diverter assembly comprising: a tubular body with a lower end and an upper end having an overshot packer at the lower end and one or more diverter flow outlets, one or more additional outlets, and a main packer at the upper end, wherein the tubular body is operable to couple to a conductor; one or more additional packer elements at the upper end of the tubular body; and locking means for securing the one or more additional packer elements in position within the upper end of the tubular body; a conduit, wherein the conduit runs through the conductor; wherein the main packer comprises an inwardly inflatable rubber sleeve; wherein the innermost packer element forms a low pressure seal about the conduit; and wherein a fluid flowing through the conduit or an annulus between the conduit and the conductor may be selectively directed to at least one of the one or more diverter flow outlets and the one or more additional outlets.
In accordance with certain embodiments, the present disclosure is directed to a method of installing an integral diverter system comprising: coupling a diverter assembly to a conductor with an attaching means; directing a drill string having a drill bit at its lower end downhole through the conductor; removing the drill string; running a casing pipe through the conductor and diverter assembly; cementing the casing pipe in place; running one or more additional casing pipes through the conductor and diverter assembly; and cementing the one or more additional casing pipes in place.
The features and advantages of the present invention will be readily apparent to those skilled in the art. While those skilled in the art may make numerous changes, such changes are within the spirit of the invention.
While embodiments of this disclosure have been depicted and described and are defined by reference to exemplary embodiments of the disclosure, such references do not imply a limitation on the disclosure, and no such limitation is to be inferred. The subject matter disclosed is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those skilled in the pertinent art and having the benefit of this disclosure. The depicted and described embodiments of this disclosure are examples only, and are not exhaustive of the scope of the disclosure.
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation may be described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions may be made to achieve the specific implementation goals, which may vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure.
To facilitate a better understanding of the present disclosure, the following examples of certain embodiments are given. In no way should the following examples be read to limit, or define, the scope of the invention. Embodiments of the present disclosure may be applicable to horizontal, vertical, deviated, or otherwise nonlinear wellbores in any type of subterranean formation. Embodiments may be applicable to injection wells as well as production wells, including hydrocarbon wells.
The terms “couple” or “couples” as used herein are intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect mechanical or electrical connection via other devices and connections.
The present invention relates generally to a diverter apparatus and system for drilling rigs, and more particularly, in certain embodiments, to an integral diverter system for diverting drilling fluid returns into flowlines connected to outlets for return to a drilling fluid reservoir or other desirable locations.
Referring to
In certain embodiments, the diverter assembly 10 may include a lower tubular body 11 and an upper tubular body 12, each having a bore therethrough which may house the conductor 40. The diameter of the bore of the lower tubular body 11 and the diameter of the bore of the upper tubular body 12 may or may not be the same. The diameter of the bore of the lower tubular body 11 may vary in size to accommodate various sizes of conductors 40. Accordingly, the lower tubular body 11 may be interchangeable as desired to accommodate different size conductors depending on the system requirements. As would be appreciated by those of ordinary skill in the art, having the benefit of the present disclosure, the lower tubular body 11 and the upper tubular body 12 may be made from any suitable material including, but not limited to, steel.
In certain implementations, the lower tubular body 11 may include an overshot packer 18 sealably engaged about the upper end of the conductor 40. The upper tubular body 12 may include one or more diverter flow outlets 13. The diverter flow outlets 13 permit flowlines 44 to be connected thereto, as shown in
As shown in
Referring now to
As further shown in
Referring now to
Referring now to
Using the methods of certain embodiments of the present disclosure, coupling the diverter assembly 10 directly to the conductor 40 may allow for reduced costs associated with traditional diverter systems. In accordance with certain embodiments of the present disclosure, the diverter assembly 10 may be mechanically coupled directly to the conductor 40, avoiding any attachments to the drilling rig. Further in accordance with certain embodiments of the present disclosure, valves (not shown) and outlets 13, 26 may be located directly on the diverter assembly 10. In this manner, the integral diverter system 20 may eliminate the need for a housing and the costs associated with such a structure.
In addition, in certain embodiments of the present disclosure, the diverter assembly 10 including a lower tubular body 11 and an upper tubular body 12 may be used to accommodate various sizes of conductors 40. Specifically, the diameter of the bore of the lower tubular body 11 may vary in size to accommodate various sizes of conductors 40. In this manner, the lower tubular body 11 may be interchangeable.
In accordance with certain embodiments of the present disclosure, during normal operations, drilling fluid may be pumped down through the drill string 19 and returned to the surface through the annulus between the drill string 19 and the conductor 40. Further during normal operations, one or more diverter flow outlets 13 may be closed and the returned fluid may be directed to a mud pit through the mud pit outlet 26. In the event that an undesired condition occurs downhole (e.g., drill bit hits an area of shallow gas, etc.), the main packer 14 may be activated causing the innermost packer element to collapse on the portion of the drill string 19 that interfaces with the innermost packer element. Additionally, the diverter flow outlet(s) 13 may be opened and the mud pit outlet 26 may be closed. Accordingly, additional fluids may not be directed downhole because the main packer 14 has collapsed onto the drill string 19 and the unwanted fluids in the annulus between the drill string 19 and the conductor 40 (e.g., gas) may be directed out through the diverter flow outlet 13 and safely handled. Once the undesirable condition is handled, the main packer 14 may be deactivated and the conduit returns to original form. Additionally, diverter flow outlets 13 may be closed once again and the mud pit outlet 26 may be re-opened.
In certain implementations, the integral diverter system in accordance with the present disclosure may be used with land rigs. Further, because no housing is required, the integral diverter system may be used with existing land rigs without modification to the rig.
As would be appreciated by those of ordinary skill in the art, with the benefit of this disclosure, in certain implementations an integral diverter system in accordance with embodiments of the present disclosure may not mounted (i.e., permanently fixed) to the drilling rig. Therefore, unlike applications that utilize traditional diverter systems, the upward loads due to internal pressure traditionally transmitted to the bottom of the rig may be eliminated.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, many of the features could be moved to different locations on respective parts without departing from the spirit of the invention. Furthermore, no limitations are intended to be limited to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. Moreover, the indefinite articles “a” or “an”, as used in the claims, are defined herein to mean one or more than one of the element that it introduces. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
Number | Name | Date | Kind |
---|---|---|---|
2546638 | Humason | Mar 1951 | A |
3137348 | Ahlstone et al. | Jun 1964 | A |
20060283633 | Benge et al. | Dec 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20140116700 A1 | May 2014 | US |