The present invention relates generally to riser assemblies suitable for offshore drilling and more particularly, but not by way of limitation, to integrated components of a riser assembly.
Offshore drilling operations have been undertaken for many years. Traditionally, pressure within a drill string and riser pipe have been governed by the density of drilling mud alone. More recently, attempts have been made to control the pressure within a drill string and riser pipe using methods and characteristics in addition to the density of drilling mud. Such attempts may be referred to in the art as managed pressure drilling (MPD). See, e.g., Frink, Managed pressure drilling—what's in a name?, Drilling Contractor, March/April 2006, pp. 36-39.
MPD techniques generally require additional or different riser components relative to risers used in conventional drilling techniques. These new or different components may be larger than those used in conventional techniques. For example, riser segments used for MPD techniques may utilize large components that force auxiliary lines to be routed around those components, which can increase the overall diameter or transverse dimensions of riser segments relative to riser segments used in conventional drilling techniques. However, numerous drilling rigs are already in existence, and it is generally not economical to retrofit those existing drilling rigs to fit larger-diameter riser segments.
Currently, MPD riser segment assemblies and/or components with an overall diameter or other transverse dimension that is too large to fit through a rotary or rotary table of a drilling rig must be loaded onto the rig below the deck (e.g., on the mezzanine level) and moved laterally into position to be coupled to the riser stack below the rotary. This movement of oversize components is often more difficult than vertically lowering equipment through the rotary from above (e.g., with a crane). Solutions to these problems for isolation tool components and flow spool components can found in U.S. patent application Ser. No. 14/888,894 and PCT/US2014/036309, respectively. Although isolation tools and flow spools are frequently used together in MPD riser segment assemblies, they are conventionally manufactured as separate components and coupled together when making up the riser assembly. In addition to the extra time and effort required to couple the isolation tool and flow spool together, the assembly generally also requires extra material in form of connection pieces, such as flanges, to couple these components together. At least some of the embodiments of the present invention can address these issues by permanently coupling the isolation tool and flow spool directly to one another (e.g., via welding). In some embodiments, the isolation tool and flow spool are permanently coupled before being shipping to the well or drill site. In some embodiments the flow spool component can be similar to a flow spool component like that disclosed in PCT/US2014/036309, which is incorporated herein in its entirety. In some embodiments, the isolation tool can be an isolation tool like that disclosed in U.S. patent application Ser. No. 14/888,894, each of which are incorporated herein in their entireties. In some embodiments, the combined isolation tool and flow spool component (also referred to herein as an integral isolation tool and flow spool component) can fit through a rotary table.
In some embodiments of the present riser-component assemblies having a primary lumen, the assembly comprises: a first flange (the first flange comprising: a first mating face configured to mate with a flange of a first adjacent riser segment, and a first central flange lumen in fluid communication with the primary lumen); a housing permanently coupled to the first flange, the housing having a first opening, a second opening, and a central chamber in fluid communication with the primary lumen and configured to receive an annular seal around a primary axis extending through the first and second openings such that the annular seal can selectively seal an annulus in the housing around a drill string extending through the first and second openings; a second flange (the second flange comprising: a second mating face configured to mate with a flange of a second adjacent riser segment, and a second central flange lumen in fluid communication with the primary lumen); and a flow diverter permanently coupled to the second flange between the housing and the second flange, the flow diverter having a collar defining a lateral opening in fluid communication with the primary lumen, the collar having a collar lumen in fluid communication with the primary lumen, a main tube having a main tube lumen in fluid communication with the primary lumen, and a valve in fluid communication with the lateral opening, the valve having a longitudinal flow axis that is more parallel than perpendicular to a longitudinal axis extending through the first and second central flange lumens of respective first and second flanges. Some embodiments further comprise: the annular seal. In some embodiments, the main tube is unitary with the collar. In some embodiments, the flow diverter and housing are permanently coupled together. In some embodiments, the valve comprises a double ball valve.
In some embodiments of the present riser-component assemblies, the flow diverter further comprises a fitting coupled to the valve and to the collar over the lateral opening, the fitting defining a fitting lumen in fluid communication with the lateral opening. Some embodiments further comprise: a first connector secured to the fitting and to a first end of the valve, and a second connector secured to a second end of the valve.
Some embodiments of the present riser-component assemblies further comprise: a first flow line with a first flow line lumen in fluid communication with the lateral opening, the first flow line having a first end. In some embodiments, the first flow line lumen has an inlet through which fluid can enter in a first direction substantially parallel to the longitudinal flow axis of the valve, and an outlet through which fluid may exit in a second direction, the second direction substantially different than the first direction. In some embodiments, the first flow line further comprises curvilinear portions configured to change direction of fluid flow through the first flow line lumen without increasing the maximum transverse diameter of the first flow line. In some embodiments, the first flow line can include a curved portion (e.g., a gooseneck portion) that may increase the maximum transverse diameter of the first flow line. Such curved portion may be removable such that it can be attached to the first flow line after the rest of riser-component assembly passes through a rotary. Such curved portion may include handles that provide protection from inadvertent contact to the curved portion. In some embodiments, the second connector further comprises a recess configured to receive the first end of the first flow line without threads or welding to permit fluid communication between the first flow line lumen and the valve. In some embodiments, the first flow line has a second end, the second end having a flow line flange configured to be coupled a second flow line. In some embodiments, no transverse portion of any of the flow diverter and first flow line extends beyond the maximum transverse dimension of the housing. In some embodiments, the housing further comprises a peripheral portion defining a first passage that is distinct from the first opening, second opening, and central chamber, and configured to receive a first portion of the first flow line. Some embodiments further comprise: a spacer collar permanently coupled to the second flange and housing.
In some embodiments of the present riser-component assemblies, the first flow line is configured to be coupled to the main tube by a retainer. In some embodiments, the retainer includes a body having a passage configured to receive a first portion of the first flow line to restrict lateral movement of the first flow line relative to the main tube. In some embodiments, no transverse portion of any of the flow diverter, first flow line, and retainer extends beyond the maximum transverse dimension of the housing. In some embodiments, the maximum transverse dimension of the housing is less than 60.5 inches. In some embodiments, the housing further comprises a peripheral portion defining a first passage that is distinct from the first opening, second opening, and central chamber, and configured to receive a second portion of the first flow line, where the second portion is distinct from the first portion.
In some embodiments of the present riser-component assemblies, the second flange further comprises a peripheral portion defining a first peripheral flange lumen, the first peripheral flange lumen configured to receive a portion of a pin end a second flow line, the second flow line having a second flow line lumen. Some embodiments further comprise a third flange configured to be coupled to the second flange, the third flange having: a third mating face configured to mate with the second mating face of the second flange; a peripheral portion defining a second peripheral flange lumen, the second peripheral flange lumen configured to receive a portion of the pin end of the second flow line, where the pin end extends through the first and second peripheral flange lumens; and a third flange central lumen configured to be in fluid communication with the primary lumen when the third flange is coupled to the second flange. In some embodiments, the pin end of the second flow line is configured to be coupled to a second end of the first flow line such that the second flow line lumen and first flow line lumen are in fluid communication. In some embodiments, the pin end of the second flow line is configured to be received within a recess of a box connector on the second end of the first flow line. Some embodiments further comprise: a diversion collar permanently coupled to the third flange on a side opposite the third mating face, the diversion collar defining a diversion collar lumen having an inlet through which fluid can enter in a first direction and an outlet through which fluid can exit in a second direction that is different than the first direction, the inlet configured to be coupled to a second end of the second flow line, where the second end is not the pin end.
In some embodiments of the present riser-component assemblies, the valve is further configured to be coupled to a choke line or a kill line, the choke line or kill line configured to prevent fluid flow past the valve when actuated.
Some embodiments of the present methods comprise: lowering an embodiment of the present riser-component assemblies through a rotary of a drilling rig.
In some embodiments of the present methods of assembling a riser-component having a primary lumen, the method comprises: permanently coupling a first flange to a housing, the first flange having a first central flange lumen in fluid communication with the primary lumen and a first mating face configured to mate with a flange of a first adjacent riser segment, and the housing having a first opening, a second opening, and central chamber in fluid communication with the primary lumen; permanently coupling a second flange to a flow diverter, the second flange having a second central flange lumen in fluid communication with the primary lumen and a second mating face configured to mate with a flange of a second adjacent riser segment, and the flow diverter having a collar defining a lateral opening in fluid communication with the primary lumen and having a collar lumen in fluid communication with the primary lumen, a main tube having a main tube lumen in fluid communication with the primary lumen, and a valve in fluid communication with the lateral opening; and permanently coupling the housing to the flow diverter.
Some embodiments of the present methods further comprise: receiving within the central chamber an annular seal around a primary axis extending through the first and second openings such that the annular seal can selectively seal an annulus in the housing around a drill string extending through the first and second openings. In some embodiments, the valve comprises a longitudinal flow axis that is more parallel than perpendicular to a longitudinal axis extending through the first and second central flange lumens of respective first and second flanges. Some embodiments further comprise: coupling a fitting to the valve and to the collar over the lateral opening, the fitting defining a fitting lumen in fluid communication with the lateral opening. Some embodiments further comprise: securing a first connector to the fitting and to a first end of the valve, and securing a second connector to a second end of the valve that is different than the first end of the valve. Some embodiments further comprise: coupling a first end of a first flow line to the valve, the first flow line having a first flow line lumen in fluid communication with the lateral opening. Some embodiments further comprise: receiving the first end of the first flow line within a recess of the second connector without threads or welding, such that there is fluid communication between the first flow line lumen and the valve. In some embodiments, no transverse portion of any of the flow diverter and first flow line extends beyond the maximum transverse dimension of the housing.
Some embodiments of the present methods further comprise: receiving a first portion of the first flow line within a passage of a peripheral portion of the housing, where the passage is distinct from the first opening, second opening, and central chamber. Some embodiments further comprise: coupling the first flow line to the main tube by a retainer. Some embodiments further comprise: receiving a first portion of the first flow line within a passage of a body of the retainer such that lateral movement of the first flow line relative to the main tube is restricted. In some embodiments, no transverse portion of any of the flow diverter, first flow line, and retainer extends beyond the maximum transverse dimension of the housing. In some embodiments, the maximum transverse dimension of the housing is less than 60.5 inches. Some embodiments further comprise: receiving a second portion of the first flow line within a passage of a peripheral portion of the housing, where the passage is distinct from the first opening, second opening, and central chamber, and the second portion of the first flow line is distinct from the first portion of the first flow line. Some embodiments further comprise: permanently coupling a spacer collar to the second flange and housing.
Some embodiments of the present methods further comprise: receiving a portion of a pin end of a second flow line within a first peripheral flange lumen of a peripheral portion of the second flange, the second flow line having a second flow line lumen. Some embodiments further comprise: coupling a third mating face of a third flange to the second mating face of the second flange, such that a third flange central lumen of the third flange is in fluid communication with the primary lumen, and such that a portion of the pin end of the second flow line is received within a second peripheral flange lumen of a peripheral portion of the third flange. Some embodiments further comprise: coupling the pin end of the second flow line to a second end of the first flow line such that the second flow line lumen is in fluid communication with the first flow line lumen. Some embodiments further comprise: further comprising receiving the pin end of the second flow line within a recess of a box connector on the second end of the first flow line. Some embodiments further comprise: permanently coupling a diversion collar to the third flange on a side opposite the third mating face, the diversion collar defining a diversion collar lumen having an inlet through which fluid can enter in a first direction and an outlet through which fluid can exit in a second direction that is different than the first direction; and coupling the inlet of the diversion collar to a second end of the second flow line, where the second end is not the pin end. Some embodiments further comprise: coupling a choke line or a kill line to the valve, where the choke line or kill line is configured to prevent fluid flow past the valve when actuated.
The term “coupled” is defined as connected, although not necessarily directly, and not necessarily mechanically; two items that are “coupled” may be unitary with each other. The terms “a” and “an” are defined as one or more unless this disclosure explicitly requires otherwise. The term “substantially” is defined as largely but not necessarily wholly what is specified (and includes what is specified; e.g., substantially 90 degrees includes 90 degrees and substantially parallel includes parallel), as understood by a person of ordinary skill in the art. In any disclosed embodiment, the term “substantially” may be substituted with “within [a percentage] of” what is specified, where the percentage includes 0.1, 1, 5, and 10 percent.
Further, a device or system that is configured in a certain way is configured in at least that way, but it can also be configured in other ways than those specifically described.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), and “include” (and any form of include, such as “includes” and “including”) are open-ended linking verbs. As a result, an apparatus that “comprises,” “has,” or “includes” one or more elements possesses those one or more elements, but is not limited to possessing only those elements. Likewise, a method that “comprises,” “has,” or “includes” one or more steps possesses those one or more steps, but is not limited to possessing only those one or more steps.
Any embodiment of any of the apparatuses, systems, and methods can consist of or consist essentially of—rather than comprise/include/have—any of the described steps, elements, and/or features. Thus, in any of the claims, the term “consisting of” or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited above, in order to change the scope of a given claim from what it would otherwise be using the open-ended linking verb.
The feature or features of one embodiment may be applied to other embodiments, even though not described or illustrated, unless expressly prohibited by this disclosure or the nature of the embodiments.
Some details associated with the embodiments are described above and others are described below.
The following drawings illustrate by way of example and not limitation. For the sake of brevity and clarity, every feature of a given structure is not always labeled in every figure in which that structure appears. Identical reference numbers do not necessarily indicate an identical structure. Rather, the same reference number may be used to indicate a similar feature or a feature with similar functionality, as may non-identical reference numbers. The figures are drawn to scale for at least the embodiments shown.
Referring now to the drawings, and more particularly to
As shown in
As shown in the cross-sectional view of
Flow spool 120 can include lateral openings 120a in collar 128 that can be in fluid communication with primary lumen 104a. Fittings 140 can each include a fitting lumen 140a and be disposed at one end over lateral openings 120a such that fitting lumens 140a are in fluid communication with lateral openings 120a and primary lumen 104a. Fittings 140 can define a shoulder such that a portion of fitting lumens 140a have a longitudinal flow axis that runs substantially parallel to primary axis 104. Valves 136, which can a known type of valve such as a double ball valve, can be coupled to fittings 140 directly or via a connector, such as first connector 144, such that fitting lumens 140a are in fluid communication with valves 136. For example, first connectors 144 can include first connector lumens 144a that are in fluid communication with both fitting lumens 140a and valves 136. First connectors 144 can be permanently connected (e.g., via welding) or removably connected (e.g., via bolts or threading) to fittings 140 on one end and permanently (e.g., via welding) or removably coupled (e.g., via bolts or threading) to valves 136 on another end. Valves 136 can each include a longitudinal flow axis 136a that can be substantially parallel to primary axis 104. This configuration can advantageously reduce the transverse diameter of flow spool 120 so that flow spool 120 can fit through a rotary or other mechanism as shown in
Valves 136 can also be coupled (e.g., on the end opposite first connectors 144 and/or fittings 140) to first flow lines 152 directly or via a connector such as second connector 148 such that first flow line lumens 152a are in fluid communication with valves 136. For example, second connectors 148 can include second connector lumens 148a that are in fluid communication with both valves 136 and first flow line lumens 152a. Second connectors 148 can be permanently connected (e.g., via welding) or removably connected (e.g., via bolts or threading) to valves 136 on one end. While another end of second connectors 148 can be permanently connected (e.g., via welding) or removably coupled via bolts and/or threads to first flow lines 152, second connectors 148 can also be coupled to first flow lines 152 by receiving a portion of pin ends 152d of first flow lines 152 in recesses 148b of second connectors 148, as shown more clearly in
When connected, fluid can enter first flow line lumens 152a from valves 136 in a first direction, such as direction 152b, and exit first flow line lumens 152a in a second direction that is different than the first direction, such as directions 152c. First flow lines 152 can include flange portions 152e near or at their exit. Flange portions 152e can facilitate coupling of first flow lines 152 to second flow lines (not shown), such as auxiliary lines. The second flow lines can be attached to first flow lines 152 after integral riser-component assembly 38a passes through a rotary (e.g., as shown in
As shown more clearly in
Valve assemblies 234 can include valves 236 having ports 260, fittings 240, first connectors 244, and second connectors 248. The components of valve assemblies 234 can be permanently coupled (e.g., via welding) or removably coupled (e.g., via bolts) together in the configuration shown in
Second flow lines 276 of diversion collar assembly 292 can have ends permanently coupled (e.g., via welding) or removably coupled (e.g., via bolts and/or threads) to diversion collar 292b. Second flow lines can also include pin ends 276b, a portion of which can be received in peripheral flange lumen 280c of flange 280, as shown in
As shown in
As shown in the cross-sectional view of
Flow spool 220 can include lateral openings 220a in collar 228 that can be in fluid communication with primary lumen 204a. Fittings 240 can each include a fitting lumen 240a and be disposed at one end over lateral openings 220a such that fitting lumens 240a are in fluid communication with lateral openings 220a and primary lumen 204a. Fittings 240 can define a shoulder such that a portion of fitting lumens 240a have a longitudinal flow axis that runs substantially parallel to primary axis 204. Valves 236, which can be a known type of valve such as a double ball valve, can be coupled to fittings 240 directly or via a connector, such as first connector 244, such that fitting lumens 240a are in fluid communication with valves 236. For example, first connectors 244 can include first connector lumens 244a that are in fluid communication with both fitting lumens 240a and valves 236. First connectors 244 can be permanently connected (e.g., via welding) or removably connected (e.g., via bolts or threading) to fittings 240 on one end and permanently (e.g., via welding) or removably coupled (e.g., via bolts or threading) to valves 236 on another end. Valves 236 can each include a longitudinal flow axis 236a that can be substantially parallel to primary axis 204. This configuration can advantageously reduce the transverse diameter of flow spool 220 so that flow spool 220 can fit through a rotary or other mechanism as shown in
Valves 236 can also be coupled (e.g., on the end opposite first connectors 244 and/or fittings 240) to first flow lines 252 directly or via a connector such as second connector 248 such that first flow line lumens 252a are in fluid communication with valves 236. For example, second connectors 248 can include second connector lumens 248a that are in fluid communication with both valves 236 and first flow line lumens 252a. Second connectors 248 can be permanently connected (e.g., via welding) or removably connected (e.g., via bolts or threading) to valves 236 on one end. While another end of second connectors 248 can be permanently connected (e.g., via welding) or removably coupled via bolts and/or threads to first flow lines 252, second connectors 248 can also be coupled to first flow lines 252 by receiving a portion of pin ends 252d of first flow lines 252 in recesses 248b of second connectors 248, as shown more clearly in
When connected, fluid can enter first flow lines 252 through pin ends 252d from valves 236 and exit first flow lines 252 through box ends 252c. As shown more clearly in
When connected, fluid can enter diversion collar lumens 292a from second flow line lumens 276a in a first direction, such as direction 292c, and exit diversion collar lumens 292a in a second direction that is different than the first direction, such as directions 292d. Diversion collar 292b can be coupled to third flow lines (not shown), such as an auxiliary line, via, e.g., bolts at joining surfaces 292e (see
As shown in
The above specification and examples provide a complete description of the structure and use of illustrative embodiments. Although certain embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of this invention. As such, the various illustrative embodiments of the methods and systems are not intended to be limited to the particular forms disclosed. Rather, they include all modifications and alternatives falling within the scope of the claims, and embodiments other than the one shown may include some or all of the features of the depicted embodiment. For example, elements may be omitted or combined as a unitary structure, and/or connections may be substituted. Further, where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and/or functions, and addressing the same or different problems. Similarly, it will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments.
While the above specification refers to the embodiments of integral riser-component assemblies 38a and 38b, the invention is not to be so limited. Permanent connection of other riser-components such as rotating control device (RCD) body components (e.g., RCD body component 14) is also contemplated.
The claims are not intended to include, and should not be interpreted to include, means-plus- or step-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase(s) “means for” or “step for,” respectively.
This application is a continuation application of U.S. application Ser. No. 15/947,266, filed on Apr. 6, 2018, which claims priority to U.S. Provisional Application No. 62/482,580, filed Apr. 6, 2017, the entire contents of which applications are specifically incorporated by reference herein without disclaimer.
Number | Date | Country | |
---|---|---|---|
62482580 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15947266 | Apr 2018 | US |
Child | 16841282 | US |