INTEGRAL METER JAW ASSEMBLY MOUNTING RISER

Information

  • Patent Application
  • 20080081510
  • Publication Number
    20080081510
  • Date Filed
    October 02, 2007
    17 years ago
  • Date Published
    April 03, 2008
    16 years ago
Abstract
An integral riser structure for a watt-hour meter enclosure to provide a mounting structure for a pair of meter jaw assemblies includes a pair of laterally spaced riser walls formed integrally with a back wall of the enclosure and positioned in forwardly spaced relation to the back wall. The riser walls are separated by a recessed wall positioned in a recessed plane located between the plane of the riser walls and the plane of the back wall. The riser walls include holes to receive fasteners to secure the meter jaw assemblies to the riser walls.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exploded perspective view of a watt-hour meter jaw assembly and a prior art mounting riser on which the meter jaw assembly is mounted.



FIG. 2 is a perspective view of a conventional watt-hour meter socket enclosure with a conventional riser mounted therein, shown at a reduced scale from FIG. 1.



FIG. 3 is a perspective view of a watt-hour meter socket enclosure incorporating an embodiment of integral meter jaw assembly mounting risers according to the present invention.



FIG. 4 a transverse sectional view taken on line 4-4 of FIG. 3 and illustrates contour details of the integral risers with a meter jaw assembly secured to one of the risers.





DETAILED DESCRIPTION OF THE INVENTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.


Referring to the drawing figures in more detail, the reference numeral 1 generally designates an embodiment of a set of integral or embossed risers according to the present invention. The risers structure 1 is provided in a watt-hour meter enclosure 2 to provide an improved mounting structure for watt-hour meter jaw assemblies 3 to position the assemblies 3 to receive a type of watt-hour meter (not shown) which is standard in the electrical power industry.


Referring to FIGS. 3 and 4, the illustrated enclosure 2 includes a back or rear wall 8, a pair of laterally spaced side walls 10, a top wall 12, and a bottom wall 14. Although not shown, the enclosure 2 includes a front wall with a circular opening through which portions of the watt-hour meter extend. The illustrated side walls 10 are integral with the back wall 8 and are formed by bending side portions of an enclosure blank. The top and bottom walls 12 and 14 are formed as separate members and are secured to the back wall 8 and side walls 10 as by spot welding, fasteners, or the like. It is foreseen that the top and bottom walls 12 and 14 could alternatively be formed integral with the back wall 8. The illustrated top wall 12 is provided with an opening 16 to receive power conductors (not shown) from an electrical utility. The bottom wall 14 and lower portions of the side walls 10 and back wall 8 may be provided with knock-outs 18 which may be selectively opened to enable power conductors (not shown) to exit the enclosure 2. The illustrated back wall 8 is provided with preformed holes 20 which receive fasteners to secure the enclosure 2 to a supporting wall. To accommodate the front wall, the side walls 10 may be provided with in set edges 22 while the top wall 12 and bottom wall 14 include respective flanges 24 and 26. The illustrated bottom wall 14 is also provided with a slotted tab 28 to receive an enclosure tamper seal (not shown).


The illustrated riser structure 1 includes a pair of laterally spaced integral risers 32 separated by a recessed wall 34. Each riser 32 is formed by a planar riser wall 36 which are in a common riser plane spaced forward of a back wall plane in which the back wall 8 is located. The spacing of the riser wall 36 from the back wall 8 is determined to properly position the meter jaw assemblies 3 in relation to the back wall 8. The riser walls 36 are connected to the back wall 8 by angled transition walls 38. Each riser wall 36 may be provided with mounting features such as holes 42 to receive mounting screws 44 or location pins on the meter jaw assemblies 3 to thereby secure a jaw assembly 3 to the riser wall 36. The holes 42 may include extruded holes (not shown) similar to the extruded holes 126 in FIG. 1 which may also be helically tapped.


The recessed wall 34 may simply form a separation between the riser walls 36 or it may be provided with holes or other features to receive a ground conductor connector (not shown). The recessed wall 34 is connected to the riser walls 36 by step walls 46 which may be angular in orientation. The illustrated recessed wall 34 is positioned in a recessed plane located between the plane of the back wall 8 and the plane of the riser walls 36. Although the illustrated structure 1 is shown with the recessed wall 34, it is foreseen that the structure 1 could be provided without the recessed wall 34 with single riser wall (not shown) of sufficient width for proper spacing of the meter jaw assemblies 3. Additionally, while the illustrated riser structure 1 is configured to accommodate two meter jaw assemblies 3, it is foreseen that the structure 1 could be readily modified to mount three or more jaw assemblies comparable to the jaw assemblies 3, such as for use with a three-phase watt-hour meter or the like.


Each of the illustrated meter jaw assembly 3 includes an insulative mounting block 50 with a pair of conductive meter jaw connectors 52 secured thereto. The meter jaw connectors 52 include U-shaped conductor receivers 54 and a pair of resilient meter jaw members 56 into which connector blades of a watt-hour meter are inserted. The riser walls 36 and mounting holes 42 are located to provide the proper spacing between sets of the jaws 56 to fit the spacing of connector blades of standard watt-hour meters. Although the meter jaw assembly 3 illustrated in FIGS. 3 and 4 is different from the meter jaw assembly 102 shown in FIG. 1, the riser structure 1 is capable of having the jaw assembly 102 mounted thereon. Additionally, it is not intended that the riser structure 1 be restricted to use with only the meter jaw assemblies 3 or 102. The riser structure 1 is intended to a provide convenient mounting structure for virtually any configuration of watt-hour meter jaw assembly.


The illustrated riser structure 1 is typically formed by embossing or stamping the back wall 8 between a set of appropriately shaped dies during manufacture of the enclosure 2. The riser structure 1 may be formed by a cold or heated stamping process, either as a single step or progressive stamping process.


Advantages of the integral riser structure include reductions in parts count and in assembly labor. The material costs and labor to install the fasteners to join a separate bridge 106 to the enclosure are not required. Because the riser structure 1 is an integral feature of the enclosure back wall 8, formed in the stamping process of the back, the positional accuracies of the various mounting holes 126 are not reduced by additional components or assemblies. The back 8 of the enclosure 2 is also stiffened by the riser structure 1, and this raised area is not subject to the same displacement as typical separate bridge components.


It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims
  • 1. In a watt-hour meter socket enclosure including a back wall, a pair of opposite side walls, a top wall, and an end wall, the improvement comprising: (a) a meter socket jaw assembly receiving riser formed integrally with said back wall.
  • 2. An enclosure as set forth in claim 1 wherein said riser includes: (a) a mounting wall spaced forward from said back wall, said mounting wall being adapted to receive said meter jaw assembly.
  • 3. An enclosure as set forth in claim 2 wherein: (a) said mounting wall is provided with a mounting feature to receive and secure said meter jaw assembly to said mounting wall.
  • 4. An enclosure as set forth in claim 1 wherein: (a) said riser is formed from said back wall by a stamping process.
  • 5. An enclosure as set forth in claim 1 wherein said riser is a first riser and including: (a) a second meter socket jaw assembly receiving riser formed integrally with said back wall and spaced relation to said first riser.
  • 6. An enclosure as set forth in claim 5 wherein: (a) said back wall forms a back plane;(b) the mounting walls of the first and second risers form a mounting plane spaced from said back plane;(c) a recessed wall is formed between said risers integral with said risers; and(d) said recessed wall forms a recessed plane positioned between said back plane and said mounting plane.
  • 7. A watt-hour meter socket enclosure comprising: (a) a back wall, opposite side walls extending from said back wall, and opposite top and bottom end walls extending from said back wall, ends of said side walls connecting with ends of said end walls; and(b) said back wall including an integral meter socket jaw assembly receiving riser formed integrally with said back wall by a mounting wall spaced forward from said back wall, said riser being adapted to receive a meter jaw assembly.
  • 8. A meter socket enclosure as set forth in claim 7 wherein said riser is a first riser and including: (a) a second integral meter socket jaw assembly receiving riser formed on said back wall in spaced relation to said first riser to receive a second meter jaw assembly.
  • 9. An enclosure as set forth in claim 8 wherein: (a) said back wall forms a back plane;(b) the first and second risers form a mounting plane spaced from said back plane;(c) a recessed wall is formed between said risers integral with said risers; and(d) said recessed wall forms a recessed plane positioned between said back plane and said mounting plane.
  • 10. A meter socket enclosure as set forth in claim 7 wherein: (a) said integral riser is formed from said back wall by a stamping process.
  • 11. An enclosure as set forth in claim 7 wherein: (a) said mounting wall is provided with a mounting feature to receive and secure said meter jaw assembly to said mounting wall.
  • 12. A watt-hour meter socket enclosure comprising: (a) a back wall, opposite side walls extending from said back wall, and opposite top and bottom end walls extending from said back wall, ends of said side walls connecting with ends of said end walls;(b) a pair of laterally spaced meter socket jaw assembly receiving risers formed integrally with said back wall, each of said risers being formed by a mounting wall spaced forward from said back wall; and(c) each of said risers being adapted to receive a respective meter jaw assembly thereon.
  • 13. An enclosure as set forth in claim 12 wherein: (a) said back wall forms a back plane;(b) the mounting walls of said risers form a mounting plane spaced from said back plane;(c) a recessed wall is formed between said risers integral with said risers; and(d) said recessed wall forms a recessed plane positioned between said back plane and said mounting plane.
  • 14. An enclosure as set forth in claim 12 wherein: (a) said risers are formed from said back wall by a stamping process.
  • 15. An enclosure as set forth in claim 12 wherein: (a) each mounting wall is provided with a mounting feature to receive and secure a respective meter jaw assembly to said mounting wall.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority under 35 U.S.C. 119(e) and 37 C.F.R. 1.78(a)(4) based upon copending U.S. Provisional Application, Ser. No. 60/848,948 for AN IMPROVED METER JAW ASSEMBLY MOUNTING METHOD, filed Oct. 3, 2006, which is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60848948 Oct 2006 US