A swell packer typically includes a swellable material positioned around tubular member (e.g., a base pipe). When the swell packer is initially run into a wellbore, an annulus is defined between the swellable material and an outer tubular member such as a liner, a casing, or a wall of the wellbore. The swell packer may be submerged in a liquid in the wellbore, and after a predetermined amount of time in contact with the liquid, the swellable material may swell radially-outward and into contact with the outer tubular member to seal the annulus.
When assembling the swell packer, the swellable material is oftentimes adhered to the outer surface of the tubular member with end rings at a bespoke facility. In other embodiments, the swellable material is sleeved over the tubular member and held in place with end rings. The end rings may be clamped or fastened to the tubular member.
In other cases, the swellable material is bonded to a custom pup joint with end rings installed, specially manufactured for the application. The pup joint is then connected and run as part of the string of tubulars in the well. While pup joint embodiments may be employed successfully in high-pressure environments, the custom design thereof for each different type of tubing string, tubing size, etc., may be expensive and present inventory management issues.
The elastomer in swell packers is designed to swell in a specific medium over a specified time. Once in the medium, the process typically cannot be halted. As a result, any deviation in well construction time as the packers are being run may present a problem as the swell process may occur before the desired time.
A downhole tool is disclosed. The downhole tool includes a sleeve configured to be disposed around a tubular. An expandable sealing member is coupled to and positioned at least partially around the sleeve. An end ring is coupled to and positioned at least partially around the sleeve and axially-adjacent to the expandable sealing member.
In another embodiment, the downhole tool includes a tubular and a sleeve positioned at least partially around the tubular such that a first annulus is formed between the tubular and the sleeve. A first bonding material is positioned in the first annulus. An expandable sealing member is coupled to and positioned at least partially around the sleeve. A first end ring is coupled to and positioned at least partially around the sleeve. A second end ring is coupled to and positioned at least partially around the sleeve. The expandable sealing member is positioned axially-between the first and second end rings.
A method for assembling a downhole tool is also disclosed. The method includes positioning an expandable sealing member at least partially around a sleeve. A first shell is positioned at least partially around the sleeve. A first bonding material is introduced into a first annulus formed between the sleeve and the first shell. The first shell and the first bonding material form a first end ring when the first bonding material cures. The sleeve is positioned at least partially around a tubular. A second bonding material is introduced into a second annulus formed between the tubular and the sleeve.
The present disclosure may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the invention. In the drawings:
The following disclosure describes several embodiments for implementing different features, structures, or functions of the invention. Embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference characters (e.g., numerals) and/or letters in the various embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed in the Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the embodiments presented below may be combined in any combination of ways, e.g., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. In addition, unless otherwise provided herein, “or” statements are intended to be non-exclusive; for example, the statement “A or B” should be considered to mean “A, B, or both A and B.”
In general, the present disclosure provides a downhole tool that includes an expandable (e.g., swellable) member on a sleeve. The sleeve fits around a segment of a standard oilfield tubular, such as a joint of casing, liner, drill pipe, production tubing, etc. In some embodiments, the sleeve may be bonded to the oilfield tubular after assembly with the expandable member. As such, the tool may be installed in the field, e.g., fixed to the oilfield tubular just prior to running into the well. In particular, in some embodiments, the expandable member is bonded around the sleeve, and a pair of end rings are positioned around the sleeve on either axial side of the expandable member. The end rings each include one or more shells, which may be bonded or otherwise fixed to the sleeve.
Turning to the specific, illustrated embodiments,
The downhole tool 100 may include an expandable member 130 that is positioned at least partially around the sleeve 120. The expandable member 130 may be or include a swellable material or an inflatable material. For example, the expandable member 130 may be or include an elastomer that swells radially-outward to seal against a surrounding tubular (e.g., a liner, a casing, or a wellbore wall) when in contact with one or more predetermined fluids for a predetermined amount of time. The fluids may be or include water, hydrocarbons, or other fluids that may be found within, or injected into, a wellbore. In at least one embodiment, an outer surface of the elastomer of the expandable member 130 may have a coating (e.g., sealing material) positioned thereon that prevents the ingress of the fluids to the expandable member 130, such as a swellable material. The coating may be or include urethane. The coating may be degraded or dissolved by circulating a pill into the wellbore, thereby placing the swellable material in contact with the fluid. The pill may be or include formic acid.
The downhole tool 100 may include one or more end rings (two are shown: 140A, 140B) that are positioned at least partially around the sleeve 120. The expandable member 130 may be positioned axially-between the end rings 140A, 140B. The end rings 140A, 140B may be coupled to the sleeve 120 and serve to hold the expandable member 130 axially in-place on the sleeve 120. The end rings 140A, 140B are described in greater detail with respect to
An outer surface of the sleeve 120 may have one or more recesses (four are shown: 124) formed therein. The recesses 124 may be positioned proximate to the axial ends of the sleeve 120. The recesses 124 may extend partially radially through the sleeve 120 or fully radially through the sleeve 120 (e.g., to an inner surface of the sleeve 120). The recesses 124 may be axially-offset from one another, circumferentially-offset from one another, or a combination thereof. In some embodiments, the recesses 124 may be circular holes, but in other embodiments, the recesses 124 may be elongated slots or any other suitable shape.
In at least one embodiment, a KEVLAR® honeycomb layer with the ceramic composite material incorporated may be applied to the resin matrix infused fiber mat. This layer may be placed into the mold along with the other layers of the resin matrix infused fiber mat. The resin matrix infused fiber mat may be introduced to a mold such that surfaces treated with the aforesaid particulates are adjacent to the mold surfaces. Multiple additional layers of the resin matrix infused fiber mat, which may or may not each have been treated with particulates, may be laid up into the mold on to the first resin matrix infused fiber mat lining the mold until a predetermined thickness is attained. Then, the mold may be closed. A resin filler matrix may be introduced into the mold using a low pressure resin transfer molding process. In an example of such a process, a mixed resin and catalyst or resin curing agent are introduced, for example by injection, into the closed mold containing the resin matrix infused fiber and particulates lay up. In this way the composite shell 141 may be formed, according to a specific embodiment. The mold may be heated in order to achieve first cure. After curing the resin to an extent that permits handling of the shell 141, the mold can be opened and the formed shell 141 removed. A post cure of the formed shell 141 may be carried out. The post cure may be or include a heat treatment, for example conducted in an oven. It will be appreciated that the foregoing forming processes for the shell 141 represent merely a few examples among many contemplated.
The shell 141 of the second end ring 140B may be substantially identical to the shell of the first end ring 140A. As shown, the shell 141 may include two circumferentially-adjacent components or portions 142A, 142B. In another embodiment, the shell 141 may include three or more circumferentially-adjacent components. In yet another embodiment, the shell 141 may be a single annular component.
In the embodiment shown, an end profile of each of the components 142A, 142B may extend through about 180° (e.g., the end profile may be semi-circular). In other embodiments, the end profiles may be different. For example, the end profile of the first component 142A may extend through about 270°, and the end profile of the second component 142B may extend through about 90°.
An inner surface 144 of the components 142A, 142B may have one or more protrusions 146 that extend radially-inward therefrom. As described in greater detail below, the protrusions 146 may be inserted into the recesses 124 in the sleeve 120 (e.g.,
An axially-extending surface 148A of the first component 142A may have one or more protrusions 150 that extend therefrom. The axially-extending surface 148A may be, for example, at a circumferential extent of the first component 142A, where an interface will be formed between the first and second components 142A, 142B. The protrusions 150 may be axially-offset from one another along the axially-extending surface 148A. An axially-extending surface 148B of the second component 142B may have one or more recesses (not shown) formed therein that are configured to mate with the protrusions 150 on the first component 142A. The recesses may be axially-offset from one another along the axially-extending surface 148B. In another embodiment, the axially-extending surface 148A of the first component 142A and the axially-extending surface 148B of the second component 142B may each have one or more protrusions 150 and one or more recesses. The protrusions 150 may be aligned with and inserted into the recesses when the components 142A, 142B are coupled together. The insertion of the protrusions 150 into the recesses may help align and position the components 142A, 142B together.
An outer surface 154 of the components 142A, 142B may have one or more openings (two are shown: 156A, 156B) formed therethrough. More particularly, the openings 156A, 156B may be formed radially-through the components 142A, 142B (i.e., from the outer surface 154 to the inner surface 144). As described in greater detail below, one of the openings 156A may serve as an “injection port” through which a bonding material may be introduced, and one of the openings 156B may serve as a “vacuum port” through which air may be removed when the bonding material is being introduced. In some embodiments, the vacuum port may be omitted.
In at least one embodiment, the components 142A, 142B may each include a first portion 158 that is positioned adjacent to (e.g., abuts) the expandable member 130 when the downhole tool 100 is assembled, and a second portion 160 that is positioned distal to the expandable member 130 when the downhole tool 100 is assembled. A radius of the inner surface 144 and/or the outer surface 154 of the first portion 158 may be substantially constant proceeding in an axial direction. The radius of the inner surface 144 of the first portion 158 may be larger than the radius of the outer surface of the sleeve 120 such that a cavity exists between the sleeve 120 and the inner surface 144 of the first portion 158 when the first shell 141 is assembled around the sleeve 120. A radius of the inner surface 144 and/or the outer surface 154 of the second portion 160 may taper down proceeding away from the first portion 158, further defining the cavity. For example, the radius of the inner surface 144 of the second portion 160 may taper down to be within about 1 mm of a radius of the outer surface of the sleeve 120. In other embodiments, the second portion 160 may taper down to other measurements with respect to the sleeve 120. The upper surface of the opposing end of the first portion 158 may taper down to the outer surface of the expandable member 130.
The bonding material introduced via the opening 156A (or 156B) may substantially fill the cavity defined between the inner surface 144 and the sleeve 120 (e.g.,
The method 400 may include positioning the expandable member 130 at least partially around the sleeve 120, as at 404. This is also shown in
Referring now to
Positioning the first shell 141 at least partially around the sleeve 120 may include inserting the protrusion(s) 150 on the axially-extending surface 148A of the first component 142A into the recess(es) in the axially-extending surface 148B of the second component 142B, such that the sleeve 120 is positioned between the first and second components 142A, 142B, as at 410. Additionally or alternatively, positioning the first shell 141 at least partially around the sleeve 120 may also include inserting the protrusion(s) 150 on the axially-extending surface 148B of the second component 142B into the recess(es) in the axially-extending surface 148A of the first component 142A, such that the sleeve 120 is positioned between the first and second components 142A, 142B.
Positioning the first shell 141 at least partially around the sleeve 120 may include inserting the protrusion(s) 146 on the inner surface 144 of the second component 142B into the recess(es) 124 in the outer surface of the sleeve 120, as at 412. In at least one embodiment, this may occur substantially simultaneously with the insertion of the protrusion(s) 150 into the recess(es).
The method 400 may optionally include inserting tubes through the openings 156A, 156B in the first shell 141, as at 414. The tubes may provide a path of fluid communication from the exterior of the first shell 141, through the openings 156A, 156B, and to the annulus formed between the sleeve 120 and the first shell 141. In another embodiment, the tubes may be unnecessary and the openings 156A, 156B may provide the path. In one embodiment, both components 142A, 142B may be put into position before injection of the first bonding material 126.
The method 400 may include applying a sealing material to at least a portion of the first shell 141, as at 416. The sealing material may be, for example, a vacuum sealing tape. The sealing material may be applied to seal the gap between the second (e.g., tapered) portion 160 of the shell 141 and the sleeve 120, the gap between the shell 141 and the expandable member 130, the gaps between the first and second components 142A, 142B of the first shell 141, the gap(s) surrounding the tubes that extend through the openings 156A, 156B, or a combination thereof
The method 400 may include introducing a first bonding material 126 (see
While introducing the first bonding material 126 at 418, the method 400 may include withdrawing/evacuating air from the cavity formed between the sleeve 120 and the shell 141, as at 420. More particularly, air may be withdrawn from the cavity between the sleeve 120 and the first portion 158 of the shell 141 through the tube that extends through the opening 156B. This may create a vacuum effect that causes the first bonding material 126 to flow through and at least substantially fill the cavity more easily.
In some embodiments, the first component 142A of the shell 141 may be affixed to the sleeve 120 prior to the second component 142B, e.g., by introducing the first bonding material 126 into the cavity between the first component 142A and the sleeve 120 prior to receiving the second component 142B onto the sleeve 120. The second component 142B may then be affixed to the first portion 142 and the sleeve 120 in similar fashion.
Again referring to
The method 400 may include preparing at least a portion of the outer surface of the oilfield tubular 110 for bonding, as at 426. For example, the portion of the outer surface of the oilfield tubular 110 over which the sleeve 120 will be placed may be smoothed, for example, by sand blasting or other techniques.
The method 400 may include positioning the sleeve 120 at least partially around the oilfield tubular 110, as at 428. For example, the oilfield tubular 110 may be introduced into the bore of the sleeve 120, and the oilfield tubular 110 and the sleeve 120 may be moved axially with respect to one another until the sleeve 120 is positioned axially-between the axial ends of the oilfield tubular 110. The sleeve 120 may be positioned at least partially around the oilfield tubular 110 in the field (e.g., at the wellsite).
The method 400 may include forming one or more openings 162 that extend radially-through the first end ring 140A (e.g., the first shell 141 and the first bonding material 126) and the sleeve 120 to an annulus formed between the oilfield tubular 110 and the sleeve 120, as at 430. Similarly, the method 400 may also include forming one or more openings 162 that extend radially-through the second end ring 140B (e.g., the second shell 141 and the first bonding material 126) and the sleeve 120 to the annulus formed between the oilfield tubular 110 and the sleeve 120, as at 432. This is shown in
The method 400 may include introducing a second bonding material 116 into the annulus formed between the oilfield tubular 110 and the sleeve 120, as at 434. More particularly, the second bonding material 116 may be pumped through the opening(s) 162 into the annulus between the oilfield tubular 110 and the sleeve 120. The second bonding material 116 may be the same as the first bonding material 126, or it may be different. The second bonding material 116 may couple the sleeve 120 to the oilfield tubular 110 when it cures. In at least one embodiment, an inner surface of the sleeve 120 may have one or more ridges (e.g., positive profile) and/or grooves (e.g., negative profile) 128 to facilitate flow of the second bonding material 116 within the annulus between the oilfield tubular 110 and the sleeve 120. This is shown in
A ring 700 may be positioned between the oilfield tubular 110 and the sleeve 120. The ring 700 may be positioned proximate to an axial end of the sleeve 120 and axially-offset from (e.g., above) the first end ring 140A. In at least one embodiment, the ring 700 may be an inflatable O-ring. The ring 700 may seal the annulus between the oilfield tubular 110 and the sleeve 120 (e.g., to prevent the second bonding material 116 from flowing therepast. The ring 700 may also make the sleeve 120 substantially concentric with the oilfield tubular 110 so the thickness of the second bonding material 116 is substantially uniform around the circumference of the oilfield tubular 110.
The method 400 may include withdrawing/evacuating air from the annulus formed between the oilfield tubular 110 and the sleeve 120, as at 436. More particularly, air may be withdrawn from the annulus between the oilfield tubular 110 and the sleeve 120 through the opening(s) formed at 432. This may create a vacuum effect that causes the second bonding material 116 to flow through the annulus more easily. In at least one embodiment, the air may be withdrawn from the annulus simultaneously with the second bonding material 116 being introduced into the annulus.
The method 400 may include monitoring a level/amount of the second bonding material 116 in the annulus between the oilfield tubular 110 and the sleeve 120, as at 438. The level may be monitored visually or by measuring an amount of the second bonding material 116 introduced into the annulus formed between the oilfield tubular 110 and the sleeve 120 (e.g., with knowledge of the volume of the annulus formed between the oilfield tubular 110 and the sleeve 120).
As used herein, the terms “inner” and “outer”; “up” and “down”; “upper” and “lower”; “upward” and “downward”; “above” and “below”; “inward” and “outward”; “uphole” and “downhole”; and other like terms as used herein refer to relative positions to one another and are not intended to denote a particular direction or spatial orientation. The terms “couple,” “coupled,” “connect,” “connection,” “connected,” “in connection with,” and “connecting” refer to “in direct connection with” or “in connection with via one or more intermediate elements or members.”
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims priority to U.S. Provisional Patent Application No. 62/328,839 filed on Apr. 28, 2016, and to U.S. Provisional Patent Application No. 62/347,904, filed on Jun. 9, 2016. The entirety of both of these priority provisional applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62328839 | Apr 2016 | US | |
62347904 | Jun 2016 | US |