Integrally conductive and shielded coaxial cable connector

Information

  • Patent Grant
  • 8272893
  • Patent Number
    8,272,893
  • Date Filed
    Tuesday, May 25, 2010
    14 years ago
  • Date Issued
    Tuesday, September 25, 2012
    12 years ago
Abstract
The coaxial cable connector has a coupler, a post, and a ring that prevent interfaces from gapping and provide a robust alternative ground path that also RF shields the connector from both ingress and egress. The ring is disposed in between and engages at least a portion of a groove in the body and at least a portion of the channel in the coupler, radial movement of the coupler causes the axial movement of the body relative to the terminal.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to coaxial cable connectors, and particularly to coaxial cable connectors capable of securely connecting a coaxial cable to a terminal.


2. Technical Background


With the advent of digital signal in CATV systems, a rise in customer complaints due to poor picture quality in the form of signal interference resulting in what is known as “tiling” and the like has also occurred. Complaints of this nature result in CATV system operators having to send a technician to address the issue. Frequently it is reported by the technician that the cause of the problem is a loose F-connector fitting. Type F-connector fittings may be loose for many reasons; sometimes they are not properly tightened due to installation rules of system operators that prohibit the use of wrenches in-doors on customer equipment. Other times a homeowner may relocate equipment after the technician departs and may not adequately secure the F connectors. Additionally, some claim that F-connector couplers loosen due to vibration and/or heat and cold cycles.


Regardless, an improperly installed connector may result in poor signal transfer because there are discontinuities along the electrical path between the devices, resulting in a leak of radio frequency (“RF”) signal. That leak may be in the form of signal egress where the RF energy radiates out of the connector/cable arrangement. Alternately, an RF leak may be in the form of signal ingress where RF energy from an external source or sources may enter the connector/cable arrangement causing a signal to noise ratio problem resulting in an unacceptable picture.


Many of the current state of the art F connectors rely on intimate contact between the F male connector interface and the F female connector interface. If for some reason, the connector interfaces are allowed to pull apart from each other, such as in the case of a loose F male coupler, an interface “gap” may result. This gap can be a point of an RF leak as previously described.


To overcome this issue a number of approaches have been introduced including U.S. Pat. No. 7,114,990 (Bence, et al.); U.S. Pat. No. 7,479,035 (Bence, et al.); U.S. Pat. No. 6,716,062 (Palinkas, et al.) and US Patent application 20080102696 (Montena). While these approaches have been successful in varying degrees, it is desirable to provide a functioning connector junction that will operate at various stages of engagement.


To address the issue of loosening Type F couplers a number of approaches have been introduced including a lock-washer design produced by Phoenix Communications Technologies International (PCT), known at the TRS connector. While this approach may be somewhat successful in varying degrees, it is desirable to provide a functioning connector junction that will provide an improved locking mechanism.


It would be desirable therefore to provide a coaxial cable connector that provides a connection without gapping, an alternative ground path, and a way to RF shield both ingress and egress.


SUMMARY OF THE INVENTION

Disclosed herein is coaxial cable connector for coupling an end of a coaxial cable to a terminal, the coaxial cable connector including a body, the body comprising a rear end, a front end, an external surface, and an internal surface extending between the rear and front ends of the body, the external surface having a groove, a coupler disposed proximate the front end of the body, the coupler having a front end and a back end and an opening extending therebetween, the opening having an internal surface and a channel in the internal surface, the opening receiving at least a portion of the body, and a ring having a forward facing surface and a rearward facing surface, the ring disposed in and engaging at least a portion of the groove in the body and at least a portion of the channel in the coupler, wherein radial movement of the coupler causes the axial movement of the body relative to the terminal.


In some embodiments, the coaxial cable connector includes a threaded member disposed in the opening of the coupler, the threaded member axially movable relative to the coupler and elastically biased against the front end of the body, the threaded member having a threaded opening to engage a corresponding threaded portion of the terminal.


In other embodiments, the front end of the body has fingers biased radially inward to engage a portion of the terminal.


In some embodiments, the internal surface of the coupler has a threaded portion to engage a corresponding threaded portion on a terminal.


According to another aspect of the invention, a coaxial cable connector for coupling an end of a coaxial cable to a terminal is disclosed, the coaxial cable connector includes a body, the body comprising a rear end, a front end, and an external surface, the body having a plurality of fingers at the front end of the body and the external surface having a groove and a threaded portion, a coupler disposed proximate the front end of the body, the coupler having a front end and a back end and an opening extending therebetween, the opening having an internal surface and a threaded portion in the internal surface corresponding to the threaded portion of the body, the opening receiving at least a portion of the body, and an elastic ring disposed in the opening of the coupler and adjacent the front end of the body, the elastic ring sealing the front end of the coupler when attached to the terminal.


Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description of the present embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the description serve to explain the principles and operations of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of one embodiment of a coaxial cable connector according to the present invention prior to engagement;



FIG. 2 is a cross-sectional view of the coaxial cable connector of FIG. 1 in partial engagement;



FIG. 3 is a cross-sectional view of the coaxial cable connector of FIG. 1 in full engagement;



FIG. 4 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 1;



FIG. 5 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 1;



FIG. 6 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 1;



FIG. 7 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 1;



FIG. 8 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 1;



FIG. 9 is a cross-sectional view of another embodiment of a coaxial cable connector according to the present invention prior to engagement;



FIG. 10 is a cross-sectional view of the coaxial cable connector of FIG. 9 in partial engagement;



FIG. 11 is a cross-sectional view of the coaxial cable connector of FIG. 9 in full engagement;



FIG. 12 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 9;



FIG. 13 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 9;



FIG. 14 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 9;



FIG. 15 is a cross-sectional view of another embodiment of a coaxial cable connector according to the present invention prior to engagement;



FIG. 16 is a cross-sectional view of the coaxial cable connector of FIG. 15 in partial engagement;



FIG. 17 is a cross-sectional view of the coaxial cable connector of FIG. 15 in full engagement;



FIG. 18 is a partial cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 15;



FIG. 19 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 15;



FIG. 20 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 15; and



FIG. 21 is a cross-sectional view of an alternative embodiment of the coaxial cable connector of FIG. 15.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the present preferred embodiment(s) of the invention, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.


Referring to FIG. 1, a coaxial cable connector 20 has a coupler 30, a body 60, a ring 90, a sealing member 100, a post 110, a gripping member 160, and compression ring 150. The coaxial cable connector 20 is an axial-compression type coaxial cable connector and the connection of the coaxial cable connector 20 to a coaxial cable is known in the art. The coaxial cable connector 20 is illustrated in FIG. 1 in its unattached, uncompressed state. As described in more detail below, the ring 90 is snap fit onto the body 60. The coupler 30 is then disposed over the body 60 and the ring 90. The post 110 is then press-fit into the body 60. Finally, the gripping member 160, with the compression ring 150 disposed therein, is press-fit on to the body 60 to complete the coaxial cable connector 20. The coupler 30 is free to rotate around the post 110 in the front portion of the body 60.


The coupler 30 has a front end 32, a back end 34, and an opening 36 extending there between. The opening 36 of the coupler 30 has an internal surface 38. The internal surface 38 includes a threaded portion 40 and a channel 42. The channel 42 has a bottom surface 44 and a forward facing rear surface 46. The coupler 30 also has a smooth outer surface 48 adjacent the front end 32 and a hexagonal configuration 50 adjacent the back end 34. The coupler 30 is preferably made from a metallic material, such as brass, and it is plated with a conductive, corrosion-resistant material, such as nickel.


The body 60 includes a front end 62, rear end 64, and an opening 66 extending therebetween. The body 60 also has an outer surface 68, the outer surface 68 having a groove 70 near the front end 62. The groove 70 includes a rearward facing surface 72 and a forward facing surface 74. The body 60, and in particular the front end 62, has a plurality of fingers 76. The plurality of fingers 76 have an opening or slot 78 between each of the fingers 76. The plurality of fingers 76 are biased radially inward to engage a terminal, as described in detail below. The body 60 is also made from a metallic material, such as brass, and it is also plated with a conductive, corrosion-resistant material, such as tin.


Ring 90 is preferably a c-shaped tapered cone and is disposed within both the channel 42 and the groove 70. Ring 90 has a front end 92, a back end 94, and an external taper 96 such that ring 90 increases in outside diameter between the front end 92 and the back end 94. Ring 90 engages the channel 42 at the forward facing rear surface 46 and the rearward facing surface 72 of groove 70. Ring 90 is preferably made from a metallic material, such as heat treated beryllium copper.


A sealing member 100 can be included between the coupler 30 and the body 60 to prevent the ingress of moisture and debris, allowing the coaxial cable connector 20 to be used in an outdoor environment.


Turning to FIG. 2, the coaxial cable connector 20 has been installed onto a coaxial cable 180 as is known in the art. The coupler 30 of the coaxial cable connector 20 has been turned a few turns to engage a terminal 190 and, in particular, the threads 192 of the terminal 190. The fingers 76 have begun to engage the terminal 190 providing mechanical and electrical communication between the terminal 190 and coaxial cable connector 20, ensuring acceptable levels of RF performance in terms of grounding, shielding, and picture quality. As the coupler 30 of the coaxial cable connector 20 rotates and is drawn onto the terminal 190, the forward facing rear surface 46 of channel 42 engages the ring 90, which in turn engages the rearward facing surface 72 of groove 70, driving the body 60 forward so fingers 76 engage the terminal 190.



FIG. 3 illustrates the coaxial cable connector 20 fully engaged on the terminal 190, where the terminal 190 makes physical and electrical contact with the body 60 and the cable 180. The coupler 30 has been advanced as far as it can be on terminal 190. Since the body 60 is in contact with the terminal 190, the coupler 30 can not be turned any further due to the ring 90 engaging both the body 60 and the coupler 30.



FIG. 4 illustrates an alternative embodiment of a coaxial cable connector 20a. Coaxial cable connector 20a includes a coupler 30a, a body 60a, a ring 90a, a sealing member 100a, a post 110a, a gripping member 160a, and compression ring 150a. Coaxial cable connector 20a also includes a pin 170a that is disposed within a dielectric member 172a. Although the body 60a and the post 110a have a slightly different configuration from coaxial cable connector 20a, the function of these elements remains the same. As the coupler 30a is rotated, the body 60a is moved axially to engage a terminal (not shown) as discussed above. The remaining elements of coaxial cable connector 20a also function as discussed and described above.


In FIG. 5, another alternative embodiment of a coaxial cable connector 20b is illustrated. Coaxial cable connector 20b has a coupler 30b that is preferably made from a plastic material with an integral ring 90b, rather than having it as an independent part of the coaxial cable connector 20b. The integral ring 90b would be molded at the same time as the coupler 30b.


Another alternative embodiment of a coaxial cable connector 20c is illustrated in FIG. 6. The coaxial cable connector 20c has the plurality of fingers 76c attached to a slightly modified post 110c rather than being attached to the body 60c. The post 110c, having the plurality of fingers 76c, is press fit into the body 60c from the front of the body 60c. The coupler 30c, as it is rotated to engage the terminal (not shown), engages the ring 90c, which in turn pushes the body 60c and the post 110c.


Yet another alternative embodiment of a coaxial cable connector 20d is illustrated in FIG. 7. In this embodiment of coaxial cable connector 20d, the plurality of fingers 76d are attached to a separate element 80d that is compressed between the body 60d and the post 110d. The coupler 30d, as it is rotated to engage the terminal (not shown), engages the ring 90d, which in turn pushes the post 110d, the element 80d with the plurality of fingers 76d, and the body 60d.


Another alternative embodiment of a coaxial cable connector 20e is illustrated in FIG. 8. In this embodiment of coaxial cable connector 20e, the coupler 30e has a projection 90e that functions as the ring from the other embodiments. The projection 90e engages the post 110e and pulls the terminal in to the coaxial cable connector 20e as the coupler 30e is rotated. It should be noted that with this configuration, the coupler 30e is placed on the body 60e and the post 110e is then press-fit into the body 60e, capturing the coupler 30e therebetween. To allow for this assembly, the threads 40e are formed into an insert 98e, which is press-fit into the front portion of the coupler 30e after the coupler 30e, the post 110e and the body 60e are assembled.


Another embodiment of a coaxial cable connector 200 according to the present invention is illustrated in FIG. 9. The coaxial cable connector 200 has a coupler 230, a body 260, a ring 290, a sealing member 300, a post 310, a gripping member 360, and compression ring 350. Coaxial cable connector 200 also has a threaded member 370 and a helical spring 380 disposed in the coupler 230. The coaxial cable connector 200 is an axial-compression type coaxial cable connector and the connection of the coaxial cable connector 200 to a coaxial cable is known in the art. The coaxial cable connector 200, as illustrated in FIG. 9, is in its unattached, uncompressed state.


The coupler 230 has a front end 232, a back end 234, and an opening 236 extending there between. The opening 236 of the coupler 230 has an internal surface 238. The internal surface 238 includes a hexagonal portion 240 and a channel 242. The channel 242 has a bottom surface 244 and a forward facing rear surface 246. The coupler 230 may have either a smooth outer surface 248 or hexagonal configuration. The coupler 230 is preferably made from a metallic material, such as brass, and it is plated with a conductive, corrosion-resistant material, such as nickel. The coupler 230 may alternatively be made of a plastic material.


The body 260 includes a front end 262, rear end 264, and an opening 266 extending therebetween. The body 260 also includes an outer surface 268, the outer surface 268 having a groove 270 near the front end 262. The groove 270 also includes a rearward facing surface 272 and a forward facing surface 274. The body 260 is also made from a metallic material, such as brass, and it is also plated with a conductive, corrosion-resistant material, such as tin.


Ring 290 is preferably a c-shaped tapered cone and is disposed within both the channel 242 and the groove 270. Ring 290 has a front end 292, a back end 294, and an external taper 296 such that ring 290 increases in outside diameter between the front end 292 and the back end 294. Ring 290 engages the channel 242 at the forward facing rear surface 246 and the rearward facing surface 272 of groove 270. Ring 290 is preferably made from a metallic material, such as heat treated beryllium copper.


A sealing member 300 can be included between the coupler 230 and the body 260 to prevent the ingress of moisture and debris, allowing the coaxial cable connector 200 to be used in an outdoor environment.


Threaded member 370 has an external hexagonal configuration 372 that has a sliding clearance fit with the hexagonal portion 240 of coupler 230. The sliding clearance fit of threaded member 370 permits nesting of threaded member 370 within the hexagonal portion 240 of coupler 230 while allowing axial movement of threaded member 370 within coupler 230. Further, this nesting relationship permits internal threaded member 370 to be rotatably moved by the rotation of coupler 230.


Helical spring 380 is housed within coupler 230 between the front end 232 and the threaded member 370. The helical spring 380 biases the threaded member 370 into intimate contact with body 260. Helical spring 380 is preferably made from a heat treated spring steel and is preferably in a coil type arrangement as illustrated, but may alternately be constructed of a plastic material. As a further alternate configuration, helical spring 380 may be formed in stamped, flattened shape such as a wave washer or conical configuration.


As illustrated in FIG. 10, the terminal 190 has been inserted through the opening 236 at the front end 232 of a coupler 230 where the threaded member 370 has been rotated by the rotation of coupler 230 and has engaged the terminal 190 and, more specifically, the threads 192. A coaxial cable 180 has been installed on the coaxial cable connector 200. The helical spring 380 biases the threaded member 370 against the body 260. As the coupler 230 is rotated (and rotating the threaded member 370), the terminal 190 engages even more of the body 260. See FIG. 11. As the coupler 230 is further rotated, the threaded member 370 moves along the terminal 190 towards the front end 232 of the coupler 230. The relative positions of the coupler 230 and the body 260 remain the same during rotation of the coupler 230 because of the ring 290. Ring 290 allows the coupler 230 to rotate about the body 260, but rather than the body 260 moving axially to engage the terminal 190, the threaded member 370 moves. With helical spring 380 positioned between the threaded member 270 and the front end 232 of the coupler, an increasing force on the threaded member 370, due to compression of the spring 380, keeps the terminal 190 in contact with the body 260.


As a further alternate configuration, helical spring 380 may be constructed from a rubber material or conductive rubber material thus providing a combination of spring force, environmental sealing characteristics, RF sealing characteristics, and/or electrical grounding functions as illustrated as ring spring 380a in FIG. 12. The ring spring 380a is constructed from a rubber material or a conductive rubber and is illustrated in FIG. 12 and a compressed or activated condition. As the coupler 230 is rotated and the threaded member 370 is advanced along the terminal 190, the gap “A” is reduced and the ring spring 380a provides a number of advantages. First, the ring spring 380a fills the space between the threaded member 370, the front end 232 of the coupler 230, and the terminal 190. The ring spring 380a also provides environmental sealing of the coaxial cable connector 200a, RF sealing characteristics, electrical grounding functions, and an increased resistance to axial movement of the coupler 230 and the threaded member 370.



FIG. 13 illustrates an alternative embodiment of a coaxial cable connector 200b. In coaxial cable connector 200b, a washer 390b is disposed between the front of the coupler 230b and the helical spring 380b, which is biased against the threaded member 370b.



FIG. 14 illustrates an alternative embodiment of a coaxial cable connector 200c. Coaxial cable connector 200c includes a coupler 230c, a body 260c, a ring 290c, a sealing member 300c, a post 310c, a gripping member 360c, compression ring 350c, and a threaded member 370c and a helical spring 380c disposed in the coupler 230c. Coaxial cable connector 200c also includes a pin 370c that is disposed within a dielectric member 372c, both of which are disposed within the body 260c. Although the body 260c and the post 310c have a slightly different configuration from coaxial cable connector 200, the function of these elements remains the same. As the coupler 230c is rotated, the body 260c maintains contact with the terminal (not shown) as discussed above. The remaining elements of coaxial cable connector 200c also function as discussed and described above.


Another embodiment of the coaxial cable connector 400 according to the present invention is illustrated in FIG. 15. The coaxial cable connector 400 has a coupler 430, a body 460, a ring 490, a sealing member 500, a post 510, a gripping member 560, and a compression ring 550. This connector is also an axial-compression type coaxial cable connector and the connection of the coaxial cable connector 400 to a coaxial cable is known in the art.


The coupler 430 has a front end 432, a back end 434, and an opening 436 extending therebetween. The opening 436 of the coupler 430 has an internal surface 438. The internal surface 438 includes a threaded portion 440. Threaded portion 440 and the corresponding threads on the body 460 are preferably left-handed. The back end 434 is preferably rolled-over toward the body 460 to prevent the coupler 430 from being rotated off the front of the coaxial cable connector 400. The coupler 430 may have either a smooth outer surface 448 or hexagonal configuration. The coupler 430 is preferably made from a metallic material, such as brass, and it is plated with a conductive, corrosion-resistant material, such as nickel. The coupler 430 may alternatively be made of a plastic material.


The body 460 includes a front end 462, rear end 464, and an opening 466 extending therebetween. The body 460 also includes an outer surface 468. The body 460 has at its front end 462 a plurality of fingers 476, between each of the fingers 476 is an opening or slot 478. The front end 462 and the plurality of fingers 476 are encircled by a circlip or a snap ring 482. The snap ring 482 may be constructed from a metallic material such as heat-treated spring steel or, alternatively, from a rubber material or conductive rubber material, thus providing a combination environmental sealing characteristics, RF sealing characteristics, and/or electrical grounding functions. The body 460 is also made from a metallic material, such as brass, and it is also plated with a conductive, corrosion-resistant material, such as tin.


A sealing member 500 can be included between the coupler 430 and the body 460 to prevent the ingress of moisture and debris, allowing the coaxial cable connector 400 to be used in an outdoor environment.


The ring 490 is disposed between the front end of 462 of the body 460 and the front end 432 of the coupler 430. Ring 490 is constructed from a rubber material or a conductive rubber and is illustrated in FIG. 15 in an uncompressed or un-activated condition.


As illustrated in FIG. 16, the terminal 190 has been inserted through the opening 436 at the front end 432 of a coupler 430 where the fingers 476 have engaged the terminal 190, and more specifically, the threads 192. A coaxial cable 180 has been installed on the coaxial cable connector 400. The circlip or a snap ring 482 biases the fingers 476 against the terminal 190. The ring 490 fills the gap “B” as illustrated in FIG. 16. However, after the terminal 190 is inserted into the coupler 430 and as the coupler 430 is rotated (using the left-handed threads), the gap “B” is reduced as the ring 490 fills the space between the front end 432 of the coupler 430, the front end 462 of the body 460, and the terminal 190. See FIG. 17. The ring 490 may also provide environmental sealing of the coaxial cable connector 400, RF sealing characteristics, electrical grounding functions, and an increased resistance to axial movement of the coupler 430.


As the coupler 430 is further rotated as illustrated in FIG. 17, the front end 432 of the coupler 430 moves backward relative to the front end 462 of the body 460 and the terminal 190. This causes the front end 462 of the body 460, and in particular the fingers 476, engage the front end 432 of the coupler 430 forcing the fingers 476 radially inward to apply even more pressure on the terminal 190.


An alternative embodiment of coaxial cable connector 400a is partially illustrated in FIG. 18. The coaxial cable connector 400a has a coupler 430a and fingers 476a that engage the terminal 190. A ring 490a is also disposed between the coupler 430a and the fingers 476a. However, a backing ring 492a is positioned between the ring 490a and the fingers 476a, and assists in keeping the ring 490a from entering the opening or slots 478 between the fingers 476a. The backing ring 492a is preferably made of metal, such as brass, and plated with a conductive, corrosion-resistant material, such as nickel.



FIG. 19 illustrates yet another alternative embodiment of a coaxial cable connector 400b. The coaxial cable connector 400b has a coupler 430b, a body 460b, a sealing member 500b, a post 510b, a gripping member 560b, and a compression ring 550b. Coaxial cable connector 400b also includes a pin 570b that is disposed within a dielectric member 572b, both of which are disposed within the body 460b. Although the body 460b and the post 410b have a slightly different configuration from coaxial cable connector 400, the function of these elements remains the same. As the coupler 430b is rotated, the plurality of fingers 476b maintain contact with the terminal (not shown) as discussed above. The remaining elements of coaxial cable connector 400b also function as discussed and described above.


Another alternative embodiment of a coaxial cable connector 400c is illustrated in FIG. 20. In coaxial cable connector 400c, the plurality of fingers 476c are attached to a separate element 480c, which is then press fit into the front of the body 460c. The post 510c may also partially engage the separate element 480c, having also been press fit into the body 460c. As the coupler 430c is rotated, it engages the body 460c, which moves the separate element 480c (and also the post 510c) forward so the plurality of fingers 476c engage the front of the coupler 430c in the same manner as discussed above. The plurality of fingers 476c are preferably made with heat-treated beryllium copper, which makes the plurality of fingers 476c more elastic and eliminates the need for the circlip or snap ring of the prior embodiments.


Yet another alternative embodiment of a coaxial cable connector 400d is illustrated in FIG. 21. In coaxial cable connector 400d, the plurality of fingers 476d are attached to the post 510d, which is press fit into the body 460d. The coupler 430d, as it is rotated to engage the terminal (not shown), moves the body 460d forward, which also moves the post 510d forward so the plurality of fingers 476d engage the front of the coupler 430d as in the other embodiments. The plurality of fingers 476d are preferably made with heat-treated beryllium copper, which makes the plurality of fingers 476d more elastic and eliminates the need for the circlip or snap ring.


It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A coaxial cable connector for coupling an end of a coaxial cable to a terminal, the coaxial cable connector comprising: a body, the body comprising a rear end, a front end, an external surface, and an internal surface extending between the rear and front ends of the body, the external surface having a groove, the front end of the body having fingers biased radially inward to engage a portion of the terminal;a coupler disposed proximate the front end of the body, the coupler having a front end and a back end and an opening extending therebetween, the opening having an internal surface and a channel in the internal surface, the opening receiving at least a portion of the body; anda ring having a forward facing surface and a rearward facing surface, the ring disposed in and engaging at least a portion of the groove in the body and at least a portion of the channel in the coupler, wherein rotational movement of the coupler causes the axial movement of the body relative to the terminal.
  • 2. The coaxial cable connector according to claim 1, further comprising a threaded member disposed in the opening of the coupler, the threaded member axially movable relative to the coupler and elastically biased against the front end of the body, the threaded member having a threaded opening to engage a corresponding threaded portion of the terminal.
  • 3. The coaxial cable connector according to claim 2, further comprising an elastic ring disposed between the threaded member and the front end of the body to elastically bias the threaded member toward the body.
  • 4. The coaxial cable connector according to claim 2, wherein the internal surface of coupler engages at least a portion of an outer surface of the threaded member, wherein rotation of the coupler about the body causes rotation of the threaded member.
  • 5. The coaxial cable connector according to claim 1, further comprising a sealing member disposed between the coupler and the body.
  • 6. The coaxial cable connector according to claim 1, the internal surface of the coupler having a threaded portion to engage a corresponding threaded portion on a terminal.
  • 7. The coaxial cable connector according to claim 6, wherein rotation of the coupler when engaging a terminal draws the terminal into physical and electrical contact with the body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of, and priority to U.S. Provisional Patent Application No. 61/261,541 filed on Nov. 16, 2009 entitled, “Integrally Conductive and Shielded Coaxial Cable Connector”, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (543)
Number Name Date Kind
1667485 MacDonald Apr 1928 A
1766869 Austin Jun 1930 A
1959302 Paige May 1934 A
2258737 Browne Oct 1941 A
2325549 Ryzowitz Jul 1943 A
2480963 Quinn Sep 1949 A
2544654 Brown Mar 1951 A
2549647 Turenne Apr 1951 A
2694187 Nash Nov 1954 A
2754487 Carr et al. Jul 1956 A
2755331 Melcher Jul 1956 A
2757351 Klostermann Jul 1956 A
2762025 Melcher Sep 1956 A
2805399 Leeper Sep 1957 A
2816949 Curtiss Dec 1957 A
2870420 Malek Jan 1959 A
3001169 Blonder Sep 1961 A
3015794 Kishbaugh Jan 1962 A
3091748 Takes et al. May 1963 A
3094364 Lingg Jun 1963 A
3184706 Atkins May 1965 A
3196382 Morello, Jr. Jul 1965 A
3245027 Ziegler, Jr. Apr 1966 A
3275913 Blanchard et al. Sep 1966 A
3278890 Cooney Oct 1966 A
3281757 Bonhomme Oct 1966 A
3292136 Somerset et al. Dec 1966 A
3320575 Brown et al. May 1967 A
3321732 Forney, Jr. May 1967 A
3336563 Hyslop Aug 1967 A
3348186 Rosen Oct 1967 A
3350677 Daum Oct 1967 A
3355698 Keller Nov 1967 A
3373243 Janowiak et al. Mar 1968 A
3390374 Forney, Jr. Jun 1968 A
3406373 Forney, Jr. Oct 1968 A
3448430 Kelly Jun 1969 A
3453376 Ziegler, Jr. et al. Jul 1969 A
3465281 Florer Sep 1969 A
3475545 Stark et al. Oct 1969 A
3498647 Schroder Mar 1970 A
3517373 Jamon Jun 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3551882 O'Keefe Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3587033 Brorein et al. Jun 1971 A
3601776 Curl Aug 1971 A
3629792 Dorrell Dec 1971 A
3633150 Swartz Jan 1972 A
3646502 Hutter et al. Feb 1972 A
3663926 Brandt May 1972 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3669472 Nadsady Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3678445 Brancaleone Jul 1972 A
3680034 Chow et al. Jul 1972 A
3681739 Kornick Aug 1972 A
3683320 Woods et al. Aug 1972 A
3686623 Nijman Aug 1972 A
3694792 Wallo Sep 1972 A
3706958 Blanchenot Dec 1972 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3744007 Horak Jul 1973 A
3744011 Blanchenot Jul 1973 A
3778535 Forney, Jr. Dec 1973 A
3781762 Quackenbush Dec 1973 A
3781898 Holloway Dec 1973 A
3783178 Philibert et al. Jan 1974 A
3793610 Brishka Feb 1974 A
3798589 Deardurff Mar 1974 A
3808580 Johnson Apr 1974 A
3810076 Hutter May 1974 A
3835443 Arnold et al. Sep 1974 A
3836700 Niemeyer Sep 1974 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3854003 Duret Dec 1974 A
3858156 Zarro Dec 1974 A
3879102 Horak Apr 1975 A
3886301 Cronin et al. May 1975 A
3907399 Spinner Sep 1975 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3953097 Graham Apr 1976 A
3963320 Spinner Jun 1976 A
3963321 Burger et al. Jun 1976 A
3970355 Pitschi Jul 1976 A
3972013 Shapiro Jul 1976 A
3976352 Spinner Aug 1976 A
3980805 Lipari Sep 1976 A
3985418 Spinner Oct 1976 A
4017139 Nelson Apr 1977 A
4022966 Gajajiva May 1977 A
4030798 Paoli Jun 1977 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4059330 Shirey Nov 1977 A
4079343 Nijman Mar 1978 A
4082404 Flatt Apr 1978 A
4090028 Vontobel May 1978 A
4093335 Schwartz et al. Jun 1978 A
4106839 Cooper Aug 1978 A
4125308 Schilling Nov 1978 A
4126372 Hashimoto et al. Nov 1978 A
4131332 Hogendobler et al. Dec 1978 A
4150250 Lundeberg Apr 1979 A
4153320 Townshend May 1979 A
4156554 Aujla May 1979 A
4165911 Laudig Aug 1979 A
4168921 Blanchard Sep 1979 A
4173385 Fenn et al. Nov 1979 A
4174875 Wilson et al. Nov 1979 A
4187481 Boutros Feb 1980 A
4193655 Herrmann, Jr. Mar 1980 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4229714 Yu Oct 1980 A
4250348 Kitagawa Feb 1981 A
4273405 Law Jun 1981 A
4280749 Hemmer Jul 1981 A
4285564 Spinner Aug 1981 A
4290663 Fowler et al. Sep 1981 A
4296986 Herrmann, Jr. Oct 1981 A
4307926 Smith Dec 1981 A
4322121 Riches et al. Mar 1982 A
4326769 Dorsey et al. Apr 1982 A
4339166 Dayton Jul 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4358174 Dreyer Nov 1982 A
4373767 Cairns Feb 1983 A
4389081 Gallusser et al. Jun 1983 A
4400050 Hayward Aug 1983 A
4407529 Holman Oct 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4412717 Monroe Nov 1983 A
4421377 Spinner Dec 1983 A
4426127 Kubota Jan 1984 A
4444453 Kirby et al. Apr 1984 A
4452503 Forney, Jr. Jun 1984 A
4456323 Pitcher et al. Jun 1984 A
4462653 Flederbach et al. Jul 1984 A
4464000 Werth et al. Aug 1984 A
4464001 Collins Aug 1984 A
4469386 Ackerman Sep 1984 A
4470657 Deacon Sep 1984 A
4484792 Tengler et al. Nov 1984 A
4484796 Sato et al. Nov 1984 A
4506943 Drogo Mar 1985 A
4515427 Smit May 1985 A
4525017 Schildkraut et al. Jun 1985 A
4531805 Werth Jul 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
RE31995 Ball Oct 1985 E
4545637 Bosshard et al. Oct 1985 A
4575274 Hayward Mar 1986 A
4580862 Johnson Apr 1986 A
4580865 Fryberger Apr 1986 A
4583811 McMills Apr 1986 A
4585289 Bocher Apr 1986 A
4588246 Schildkraut et al. May 1986 A
4593964 Forney, Jr. et al. Jun 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4613199 McGeary Sep 1986 A
4614390 Baker Sep 1986 A
4616900 Cairns Oct 1986 A
4632487 Wargula Dec 1986 A
4634213 Larsson et al. Jan 1987 A
4640572 Conlon Feb 1987 A
4645281 Burger Feb 1987 A
4647135 Reinhardt Mar 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4655534 Stursa Apr 1987 A
4660921 Hauver Apr 1987 A
4668043 Saba et al. May 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4682832 Punako et al. Jul 1987 A
4684201 Hutter Aug 1987 A
4688876 Morelli Aug 1987 A
4688878 Cohen et al. Aug 1987 A
4691976 Cowen Sep 1987 A
4703987 Gallusser et al. Nov 1987 A
4703988 Raux et al. Nov 1987 A
4717355 Mattis Jan 1988 A
4720155 Schildkraut et al. Jan 1988 A
4734050 Negre et al. Mar 1988 A
4734666 Ohya et al. Mar 1988 A
4737123 Paler et al. Apr 1988 A
4738009 Down et al. Apr 1988 A
4738628 Rees Apr 1988 A
4746305 Nomura May 1988 A
4747786 Hayashi et al. May 1988 A
4749821 Linton et al. Jun 1988 A
4755152 Elliot et al. Jul 1988 A
4757297 Frawley Jul 1988 A
4759729 Kemppainen et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4806116 Ackerman Feb 1989 A
4807891 Neher Feb 1989 A
4808128 Werth Feb 1989 A
4813886 Roos et al. Mar 1989 A
4820185 Moulin Apr 1989 A
4834675 Samchisen May 1989 A
4835342 Guginsky May 1989 A
4836801 Ramirez Jun 1989 A
4838813 Pauza et al. Jun 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4867706 Tang Sep 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4915651 Bout Apr 1990 A
4921447 Capp et al. May 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4938718 Guendel Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4973265 Heeren Nov 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
4992061 Brush, Jr. et al. Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5011422 Yeh Apr 1991 A
5011432 Sucht et al. Apr 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5030126 Hanlon Jul 1991 A
5037328 Karlovich Aug 1991 A
5046964 Welsh et al. Sep 1991 A
5052947 Brodie et al. Oct 1991 A
5055060 Down et al. Oct 1991 A
5059747 Bawa et al. Oct 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gaver, Jr. et al. Nov 1991 A
5073129 Szegda Dec 1991 A
5080600 Baker et al. Jan 1992 A
5083943 Tarrant Jan 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5137470 Doles Aug 1992 A
5137471 Verespej et al. Aug 1992 A
5141448 Mattingly et al. Aug 1992 A
5141451 Down Aug 1992 A
5149274 Gallusser et al. Sep 1992 A
5154636 Vaccaro et al. Oct 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5166477 Perin, Jr. et al. Nov 1992 A
5167545 O'Brien et al. Dec 1992 A
5169323 Kawai et al. Dec 1992 A
5181161 Hirose et al. Jan 1993 A
5183417 Bools Feb 1993 A
5186501 Mano Feb 1993 A
5186655 Glenday et al. Feb 1993 A
5195905 Pesci Mar 1993 A
5195906 Szegda Mar 1993 A
5205547 Mattingly Apr 1993 A
5205761 Nilsson Apr 1993 A
5207602 McMills et al. May 1993 A
5215477 Weber et al. Jun 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5227587 Paterek Jul 1993 A
5247424 Harris et al. Sep 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5281762 Long et al. Jan 1994 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5294864 Do Mar 1994 A
5295864 Birch et al. Mar 1994 A
5316494 Flanagan et al. May 1994 A
5318459 Shields Jun 1994 A
5334032 Myers et al. Aug 1994 A
5334051 Devine et al. Aug 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5354217 Gabel et al. Oct 1994 A
5362250 McMills et al. Nov 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5380211 Kawaguchi et al. Jan 1995 A
5389005 Kodama Feb 1995 A
5393244 Szegda Feb 1995 A
5413504 Kloecker et al. May 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5435751 Papenheim et al. Jul 1995 A
5439386 Ellis et al. Aug 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5474478 Ballog Dec 1995 A
5490801 Fisher, Jr. et al. Feb 1996 A
5494454 Johnsen Feb 1996 A
5499934 Jacobsen et al. Mar 1996 A
5501616 Holliday Mar 1996 A
5516303 Yohn et al. May 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5550521 Bernaud et al. Aug 1996 A
5564938 Shenkal et al. Oct 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5595499 Zander et al. Jan 1997 A
5598132 Stabile Jan 1997 A
5607325 Toma Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632637 Diener May 1997 A
5632651 Szegda May 1997 A
5644104 Porter et al. Jul 1997 A
5651698 Locati et al. Jul 1997 A
5651699 Holliday Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5667405 Holliday Sep 1997 A
5681172 Moldenhauer Oct 1997 A
5683263 Hsu Nov 1997 A
5702263 Baumann et al. Dec 1997 A
5722856 Fuchs et al. Mar 1998 A
5735704 Anthony Apr 1998 A
5746617 Porter, Jr. et al. May 1998 A
5746619 Harting et al. May 1998 A
5769652 Wider Jun 1998 A
5775927 Wider Jul 1998 A
5802710 Bufanda et al. Sep 1998 A
5863220 Holliday Jan 1999 A
5877452 McConnell Mar 1999 A
5879191 Burris Mar 1999 A
5882226 Bell et al. Mar 1999 A
5921793 Phillips Jul 1999 A
5938465 Fox, Sr. Aug 1999 A
5944548 Saito Aug 1999 A
5951327 Marik Sep 1999 A
5957716 Buckley et al. Sep 1999 A
5967852 Follingstad et al. Oct 1999 A
5975949 Holliday et al. Nov 1999 A
5975951 Burris et al. Nov 1999 A
5977841 Lee et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6010349 Porter, Jr. Jan 2000 A
6019635 Nelson Feb 2000 A
6022237 Esh Feb 2000 A
6032358 Wild Mar 2000 A
6042422 Youtsey Mar 2000 A
6048229 Lazaro, Jr. Apr 2000 A
6053743 Mitchell et al. Apr 2000 A
6053769 Kubota et al. Apr 2000 A
6053777 Boyle Apr 2000 A
6083053 Anderson, Jr. et al. Jul 2000 A
6089903 Stafford Gray et al. Jul 2000 A
6089912 Tallis et al. Jul 2000 A
6089913 Holliday Jul 2000 A
6123567 McCarthy Sep 2000 A
6146197 Holliday et al. Nov 2000 A
6152753 Johnson et al. Nov 2000 A
6153830 Montena Nov 2000 A
6210216 Tso-Chin et al. Apr 2001 B1
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6239359 Lilienthal, II et al. May 2001 B1
6241553 Hsia Jun 2001 B1
6257923 Stone et al. Jul 2001 B1
6261126 Stirling Jul 2001 B1
6271464 Cunningham Aug 2001 B1
6331123 Rodrigues Dec 2001 B1
6332815 Bruce Dec 2001 B1
6358077 Young Mar 2002 B1
D458904 Montena Jun 2002 S
6406330 Bruce Jun 2002 B2
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6422900 Hogan Jul 2002 B1
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6439899 Muzslay et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6468100 Meyer et al. Oct 2002 B1
6491546 Perry Dec 2002 B1
D468696 Montena Jan 2003 S
6506083 Bickford et al. Jan 2003 B1
6520800 Michelbach et al. Feb 2003 B1
6530807 Rodrigues et al. Mar 2003 B2
6540531 Syed et al. Apr 2003 B2
6558194 Montena May 2003 B2
6572419 Feye-Homann Jun 2003 B2
6576833 Twiss et al. Jun 2003 B2
6619876 Vaitkus et al. Sep 2003 B2
6676446 Montena Jan 2004 B2
6683253 Lee Jan 2004 B1
6692285 Islam Feb 2004 B2
6705884 McCarthy Mar 2004 B1
6712631 Youtsey Mar 2004 B1
6716041 Ferderer et al. Apr 2004 B2
6716062 Palinkas et al. Apr 2004 B1
6733336 Montena et al. May 2004 B1
6733337 Kodaira May 2004 B2
6752633 Aizawa et al. Jun 2004 B2
6767248 Hung Jul 2004 B1
6780068 Bartholoma et al. Aug 2004 B2
6786767 Fuks et al. Sep 2004 B1
6790081 Burris et al. Sep 2004 B2
6805584 Chen Oct 2004 B1
6817896 Derenthal Nov 2004 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6848941 Wlos et al. Feb 2005 B2
6884113 Montena Apr 2005 B1
6884115 Malloy Apr 2005 B2
6929265 Holland et al. Aug 2005 B2
6929508 Holland Aug 2005 B1
6939169 Islam et al. Sep 2005 B2
6948976 Goodwin et al. Sep 2005 B2
6971912 Montena et al. Dec 2005 B2
7029326 Montena Apr 2006 B2
7070477 Morisawa et al. Jul 2006 B2
7086897 Montena Aug 2006 B2
7097499 Purdy Aug 2006 B1
7102868 Montena Sep 2006 B2
7114990 Bence et al. Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7125283 Lin Oct 2006 B1
7131868 Montena Nov 2006 B2
7144271 Burris et al. Dec 2006 B1
7147509 Burris et al. Dec 2006 B1
7156696 Montena Jan 2007 B1
7161785 Chawgo Jan 2007 B2
7229303 Vermoesen et al. Jun 2007 B2
7252546 Holland et al. Aug 2007 B1
7255598 Montena et al. Aug 2007 B2
7299550 Montena Nov 2007 B2
7375533 Gale May 2008 B2
7393245 Palinkas et al. Jul 2008 B2
7452239 Montena Nov 2008 B2
7455550 Sykes Nov 2008 B1
7462068 Amidon Dec 2008 B2
7476127 Wei Jan 2009 B1
7479035 Bence et al. Jan 2009 B2
7488210 Burris et al. Feb 2009 B1
7494355 Hughes et al. Feb 2009 B2
7497729 Wei Mar 2009 B1
7507117 Amidon Mar 2009 B2
7544094 Paglia et al. Jun 2009 B1
7566236 Malloy et al. Jul 2009 B2
7607942 Van Swearingen Oct 2009 B1
7674132 Chen Mar 2010 B1
7682177 Berthet Mar 2010 B2
7727011 Montena et al. Jun 2010 B2
7753705 Montena Jul 2010 B2
7794275 Rodrigues Sep 2010 B2
7806725 Chen Oct 2010 B1
7811133 Gray Oct 2010 B2
7824216 Purdy Nov 2010 B2
7828595 Mathews Nov 2010 B2
7830154 Gale Nov 2010 B2
7833053 Mathews Nov 2010 B2
7845976 Mathews Dec 2010 B2
7845978 Chen Dec 2010 B1
7850487 Wei Dec 2010 B1
7857661 Islam Dec 2010 B1
7874870 Chen Jan 2011 B1
7887354 Holliday Feb 2011 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7927135 Wlos Apr 2011 B1
7950958 Mathews May 2011 B2
7955126 Bence et al. Jun 2011 B2
8029315 Purdy et al. Oct 2011 B2
8062044 Montena et al. Nov 2011 B2
8075338 Montena Dec 2011 B1
8079860 Zraik Dec 2011 B1
20020013088 Rodrigues et al. Jan 2002 A1
20020038720 Kai et al. Apr 2002 A1
20020146935 Wong Oct 2002 A1
20030214370 Allison et al. Nov 2003 A1
20040077215 Palinkas et al. Apr 2004 A1
20040102089 Chee May 2004 A1
20040209516 Burris et al. Oct 2004 A1
20040219833 Burris et al. Nov 2004 A1
20040229504 Liu Nov 2004 A1
20050042919 Montena Feb 2005 A1
20050170692 Montena Aug 2005 A1
20050181652 Montena et al. Aug 2005 A1
20050181668 Montena et al. Aug 2005 A1
20050208827 Burris et al. Sep 2005 A1
20060014425 Montena Jan 2006 A1
20060110977 Matthews May 2006 A1
20060154519 Montena Jul 2006 A1
20060166552 Bence et al. Jul 2006 A1
20060178046 Tusini Aug 2006 A1
20070026734 Bence et al. Feb 2007 A1
20070123101 Palinkas May 2007 A1
20080102696 Montena May 2008 A1
20090029590 Sykes et al. Jan 2009 A1
20090098770 Bence et al. Apr 2009 A1
20100081321 Malloy et al. Apr 2010 A1
20100081322 Malloy et al. Apr 2010 A1
20100105246 Burris et al. Apr 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20100279548 Montena et al. Nov 2010 A1
20100297871 Haube Nov 2010 A1
20100297875 Purdy et al. Nov 2010 A1
20110021072 Purdy Jan 2011 A1
20110053413 Mathews Mar 2011 A1
20110117774 Malloy et al. May 2011 A1
20110143567 Purdy et al. Jun 2011 A1
20110230089 Amidon et al. Sep 2011 A1
20110230091 Krenceski et al. Sep 2011 A1
20120021642 Zraik Jan 2012 A1
Foreign Referenced Citations (45)
Number Date Country
2096710 Nov 1994 CA
201149936 Nov 2008 CN
201149937 Nov 2008 CN
201178228 Jan 2009 CN
201904508 Jul 2011 CN
47931 Oct 1888 DE
102289 Apr 1899 DE
1515398 Apr 1970 DE
2225764 Dec 1972 DE
2221936 Nov 1973 DE
2261973 Jun 1974 DE
3211008 Oct 1983 DE
9001608 Apr 1990 DE
4439852 May 1996 DE
0072104 Feb 1983 EP
0116157 Aug 1984 EP
0167738 Jan 1986 EP
0265276 Apr 1988 EP
0428424 May 1991 EP
1191268 Mar 2002 EP
1501159 Jan 2005 EP
1701410 Sep 2006 EP
2232846 Jan 1975 FR
2234680 Jan 1975 FR
2312918 Dec 1976 FR
2462798 AI Feb 1981 FR
2494508 May 1982 FR
589697 Jun 1947 GB
1087228 Oct 1967 GB
1270846 Apr 1972 GB
1401373 Jul 1975 GB
2019665 Oct 1979 GB
2079549 Jan 1982 GB
2252677 Aug 1992 GB
2264201 Aug 1993 GB
2331634 May 1999 GB
2477479 Nov 2010 GB
100622526 Sep 2006 KR
427044 Mar 2001 TW
8700351 Jan 1987 WO
02069457 Sep 2002 WO
2004013883 Feb 2004 WO
0186756 Nov 2005 WO
2006081141 Aug 2006 WO
2010135181 Nov 2010 WO
Related Publications (1)
Number Date Country
20110117776 A1 May 2011 US
Provisional Applications (1)
Number Date Country
61261541 Nov 2009 US