Integrally formed stamping sheet-metal blades having 3D structure

Information

  • Patent Grant
  • 6506023
  • Patent Number
    6,506,023
  • Date Filed
    Tuesday, September 5, 2000
    23 years ago
  • Date Issued
    Tuesday, January 14, 2003
    21 years ago
Abstract
Integrally formed stamping sheet-metal blades having 3D structure for impeller or diffuser of a centrifugal pump or blower includes at least two integral forming blade or vane members. Each blade or vane member has a plurality of relatively short 3D blades or vanes extending radially outward and an engaging edge of selected shape. Two or more blade or vane members may be positioned and stacked together through mating the engaging edge and be spot welded to form a complete impeller or diffuser assembly. The blade or vane may be joined to form a completed smooth blade or vane, or may be spaced from each other to form a multi-row blade or vane assembly. The impeller and vane assembly may be made with less number of stamping molds and jigs. Production is less expensive. Positioning and assembly of the blade and vane is easier at a lower cost.
Description




FIELD OF THE INVENTION




This invention relates to integrally formed stamping sheet-metal blades having 3D structure and particularly to 3D metal working blades for an impeller or diffuser of centrifugal pumps and blowers.




BACKGROUND OF THE INVENTION




Conventional impellers and diffusers used in pumps or blowers are generally made by casting or metal working. Products made by casting usually are bulky and heavy, have poorer material properties and often create pollution problems in the production process, hence have gradually been replaced by metal working products.




3D metal working blades and vanes may be formed with accurate curved profile and have improved fluid passage and loading distribution, and may result in enhanced pumping efficiency. It is therefore widely used in high efficiency centrifugal pumps nowadays.




However conventional metal working techniques cannot produce integral blades or vanes with accurate 3D curved profiles. Each blade has to be produced one piece at a time separately, then be positioned and soldered individually between the front and rear covers of the impeller to form a complete impeller or diffuser. The production cost is high, and production time and process are long and tedious. It is because an accurate 3D curved profile for the blades and vanes is difficult or impossible to make integrally by conventional stamping process.




Conventional stamping processes now available can only produce integral forming blades or vanes of simple 2D profile for low priced products. It cannot make accurate 3D curved profile for the blades and vanes needed for high performance pumps and blowers.




To produce accurate 3D profile blades and vanes, the contemporary method is to make each blade and vane individually, then assemble the blades and vanes to a complete impeller or diffuser. It needs a lot of different molds and jigs. Production cost is high. Assembly is difficult and costly.




Furthermore for some special purpose pumps such as those for improved de-swirl function or increased pumping pressure, they need an impeller or diffuser of multi-row blades. U.S. Pat. Nos. 5,310,309, 4,877,370, 5,417,547, 5,516,263 and 4,354,801 have disclosed such examples. Multi-row blades mostly can only be produced by a casting process to form the required 2D curve for creating desirable fluid passage and meeting loading requirement. To produce 3D metal working blades will greatly increase the blades number. The cost of production becomes too high. There are still rooms for improvement.




SUMMARY OF THE INVENTION




It is an object of this invention to provide integrally formed stamping sheet-metal blades having 3D structure that may substitute a plurality of individually made conventional blades to form a complete blade member by a relatively few number of assemblies and that have accurate 3D curved profile to enhance pumping efficiency at a lower production cost and less production time.




It is another object of this invention to provide integrally formed stamping sheet-metal blades that may form a multi-row blade structure with accurate 3D curved profile for producing improved pumping efficiency at a lower assembly time and cost.




In one aspect, the integrally formed stamping sheet-metal blades having 3D structure of this invention includes at least two integral forming blade members. Each blade member has a plurality of relatively short 3D curved blades and engaging means. The engaging means may facilitate positioning and engagement of the blade members to become a final and complete 3D curved blades or spaced multi-row blades assembly. As the complete 3D curved blades assembly is formed by a few numbers of relatively short blades members, total blade number is greatly reduced. The number of molds and jigs that are needed is also reduced. Assembly and production become easier and faster. Product cost is lower. Multi-row blades structure by metal working process may become possible and less expensive.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention, as well as its many advantages, may be further understood by the following detailed description and drawings, in which:





FIG. 1A

is a front view of an inner blade member of this invention.





FIG. 1B

is a crosssectional view taken on line


81





81


of FIG.


1


.





FIG. 1C

is a crosssectional view taken on line


91





91


of FIG.


1


.





FIG. 2A

is a front view of an outer blade member of this invention.





FIG. 2B

is a crosssectional view taken on line


82





82


of FIG.


2


A.





FIG. 2C

is a crosssectional view taken on line


92





92


of FIG.


2


A.





FIG. 3A

is a front view of an impeller of this invention.





FIG. 3B

is a crosssectional view taken on line


83





83


of FIG.


3


A.





FIG. 3C

is a rear view of the impeller shown in FIG.


3


A.





FIG. 4A

is a front view of an outer diffuser of this invention.





FIG. 4B

is a crosssectional view taken on line


84





84


of FIG.


4


A.





FIG. 5A

is a front view of an inner diffuser of this invention.





FIG. 5B

is a crosssectional view taken on line


85





85


of FIG.


5


A.





FIG. 6A

is a front view of a diffuser of this invention.





FIG. 6B

is a crosssectional view taken on line


86





86


of FIG.


6


A.





FIG. 6C

is a rear view of the diffuser shown in FIG.


6


A.





FIG. 7

is a front view of another embodiment of an inner diffuser of this invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




This invention aims at providing a plurality of integrally formed sheet-metal blades of relatively short length by a stamping operation. Then two or more of the integrally formed stamping sheet-metal blades having 3D structures may be engaged to form a complete impeller or diffuser, or to form a multi-row blade structure. As the complicated 3D curved profile of the complete blade is divided into two or more shorter blade sections, a stamping operation for producing the integral multiple blades becomes possible. The conventional technique of producing each blade by stamping operation then assembling the blades to a complete impeller or diffuser may be dispensed with. It saves a lot of molds and jigs for producing the blades. Production time and cost may be greatly reduced. Fluid passage design and construction of the impeller and diffuser may be made easier and more flexible at a lower cost.




Referring to

FIGS. 1A through 3C

, an impeller made by the present invention includes an inner blade member


1


and an outer blade member


2


. Both the inner and outer blade members


1


and


2


are respectively made by an integral stamping process. Of course the impeller may include three or more blade members if desired.




Referring to

FIG. 1A

,


1


B and


1


C, the inner blade member


1


is generally shaped in a hollow dish manner with a plurality of relatively short inner blades


10


(about a half of a conventional blade in length) extending radially outward. Each inner blade


10


has a 3D curved profile which includes (from inward to outward) an inner blade root


13


, an inner blade body


11


and an inner blade shroud


12


formed in substantially a Z-shaped or counter-Z-shaped manner. The 3D curved profile is smooth and has no overlap portion. It thus may be produced by stamping operation easily. The blade root


13


joins inward to form a hub opening


17


in the center. A gear type (or other geometric form) engaging edge


16


is formed at an outer rim of the blade root


13


. Each inner blade body


11


has an inner blade leading edge


14


and an inner blade trailing edge


15


. The inner blade shroud


12


is shaped to mate with the impeller front cover


6


. The inner blade root


13


has a curved side for soldering to the impeller rear cover


7


.




Referring to

FIGS. 2A

,


2


B and


2


C, the outer blade member


2


, like the inner blade member


1


, is also shaped in a hollow dish manner with a plurality of outer blades


20


extending radially outward. Each outer blade


20


has a 3D profile which includes (from inward to outward) an outer blade root


23


, an outer blade body


21


and an outer blade shroud


22


forming in substantially a Z-shaped or counter-Z-shaped manner. The outer blade roots


23


join inward and form a center mate opening


26


which has a mating edge engageable with the engaging edge


16


. Each outer blade body


21


has an outer blade leading edge


24


and an outer blade trailing edge


25


. The outer blade shroud


22


is also shaped to mate with the impeller front cover


6


.




Referring to

FIGS. 3A

,


3


B and


3


C, the inner blade member


1


may be stacked and engage with the outer blade member


2


easily and quickly by mating the hub opening


17


with the mating opening


26


, and aligning the engaging edge


16


with the mating edge. The inner blade trailing edge


15


may be mated and engaged with the outer blade leading edge


24


to form a complete and smooth impeller blade. Then the inner and outer blade shrouds


12


and


22


may be spot welded to the front cover


6


while the inner and outer root


13


and


23


may be spot welded (indicated by black circle spots in

FIG. 3A and 3C

) to the rear cover


7


. The assembly and spot-weld may be done quickly to form a complete impeller. The inner blade trailing edge


15


may also moved away from the outer blade leading edge


24


during assembly and maintains a gap therebetween. Then the assembled blade member becomes a multi-row blade structure. The number of the inner blade


10


may be same or different from the outer blade


20


.





FIGS. 4A through 6C

show this invention for producing metal working diffuser. It is generally structured and produced like the one shown in

FIGS. 1A through 3C

for the impeller. Instead of impeller blades, diffuser vanes are made. Only main difference will be depicted hereunder, details of similar structure and features will be omitted.





FIGS. 4A and 4B

show a hollow dish shaped outer diffuser


3


which includes a plurality of radial and Z-shaped outer diffuser vanes


30


each has an outer vane root


33


, an outer vane body


31


and an outer vane shroud


32


which is shaped and mated with a diffuser rear cover


5


. The outer vane root


33


has an outer vane center hub opening


36


. The outer vane body


31


has an outer vane leading edge


34


and an outer vane trailing edge


35


.





FIGS. 5A and 5B

show an inner diffuser


4


which includes a plurality of radial and L-shaped inner diffuser vanes


40


each has an inner vane root


42


, an inner vane body


41


and a base


43


which forms an inner vane opening


47


in the center. Each inner vane body


41


has an inner vane leading edge


44


and an inner vane trailing edge


45


.




When making the assembly, the outer diffuser


3


is axially stacked on the inner diffuser


3


by mating the outer vane center hub opening


36


with the inner vane opening


47


(shown in

FIGS. 6A

,


6


B and


6


C), and with the inner vane root


42


and base


43


resting on the outer vane root


33


. Then spot welding is done on the root and base (black circle spots in

FIG. 6A

) to bind the inner and outer diffuser


3


and


4


together. Afterward, the outer vane shroud


32


is spot welded or soldered to the diffuser rear cover


5


. This operation may be done easily and quickly without conventional vane positioning problem.




When the outer vane trailing edge


35


mates closely with the inner vane leading edge


44


, the diff-user has a smooth and complete diffuser vane. When the trailing edge


35


is moved away from the leading edge


44


and forms a gap therebetween, it becomes a multi-row vane. The number of the inner diffuser vane


40


may be same or different from the outer diffuser vane


30


.





FIGS. 5A and 5B

show the inner vane body


41


having an outer edge making contact directly with the diffuser rear cover


5


. Such a structure may withstand relatively low fluid pressure. For supporting high fluid pressure, it is preferably to add an inner vane shroud


46


extending beyond the inner vane body


41


(FIG.


7


). The inner vane shroud


46


may be mated and welding to the diffuser rear cover


5


for enhancing pressure sustaining capability.




It may thus be seen that the objects of the present invention set forth herein, as well as those made apparent from the foregoing description, are efficiently attained. While the preferred embodiments of the invention have been set forth for purpose of disclosure, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments, which do not depart from the spirit and scope of the invention.



Claims
  • 1. An integrally formed stamped sheet-metal blade having 3D structure, comprising:an inner blade member formed as a hollow dish and having a plurality of 3D inner blades extending radially outward, each inner blade including from inward to outward an inner blade root and an inner blade body which bends at an angle with respect to the inner blade root, the inner blade roots forming a center hub opening which has an engaging edge, the inner blade bodies having inner blade leading edges and inner blade trailing edges; and an outer blade member formed as a hollow dish and having a plurality of 3D outer blades extending radially outward, each outer blade including from inward to outward an outer blade root and an outer blade body, the outer blade roots forming a center mating opening having a mating edge, the outer blade bodies having outer blade leading edges and outer blade trailing edges; wherein the mating edge engages the engaging edge when the center hub opening mates with the center mating opening to mate and engage the outer blade member with the inner blade member and forming an integral sheet-metal blade assembly, the inner blade trailing edges mating and engaging with the outer blade leading edges.
  • 2. The integrally formed stamped sheet-metal blades of claim 1, further comprising an impeller front cover and an impeller rear cover sandwiching the inner and outer blade members therebetween.
  • 3. The integrally formed stamped sheet-metal blades of claim 2, wherein the inner blade member further comprises an inner blade shroud extending at an angle from the inner blade bodies and mating with the impeller front cover to facilitate positioning of the inner blade member in the impeller assembly.
  • 4. The integrally formed stamped sheet-metal blades of claim 2, wherein the outer blade member further comprises an outer blade shroud extending at an angle from the outer blade bodies and mating with the impeller front cover to facilitate positioning of the outer blade member in the impeller assembly.
  • 5. The integrally formed stamped sheet-metal blades of claim 3, wherein the inner blade has a Z-shaped crosssection.
  • 6. The integrally formed stamped sheet-metal blades of claim 2, wherein the inner and outer blade bodies are fixedly positioned between the impeller front and rear cover by welding.
  • 7. The integrally formed stamped sheet-metal blades of claim 6, wherein the welding is spot welding.
  • 8. The integrally formed stamped sheet-metal blades of claim 1, wherein the engaging edge is a tooth form.
  • 9. An integrally formed stamped sheet-metal blade having 3D structure, comprising:an inner blade member formed as a hollow dish and having a plurality of 3D inner blades extending radially outward, each inner blade including from inward to outward an inner blade root and an inner blade body which bends at an angle with respect to the inner blade root, the inner blade roots forming a center hub opening which has an engaging edge, the inner blade bodies having inner blade leading edges and inner blade trailing edges; and an outer blade member formed as a hollow dish and having a plurality of 3D outer blades extending radially outward, each outer blade including from inward to outward an outer blade root and an outer blade body, the outer blade roots forming a center mating opening having a mating edge, the outer blade bodies having outer blade leading edges and outer blade trailing edges; wherein the mating edge engages the engaging edge when the center hub opening mates with the center mating opening to mate and engage the outer blade member with the inner blade member and forming an integral sheet-metal blade assembly, the inner blade trailing edges being spaced from the outer blade leading edges.
  • 10. The integrally formed stamped sheet-metal blades of claim 9, further comprising an impeller front cover and an impeller rear cover sandwiching the inner and outer blade members therebetween.
  • 11. The integrally formed stamped sheet-metal blades of claim 10, wherein the inner blade member further comprises an inner blade shroud extending at an angle from the inner blade bodies and mating with the impeller front cover to facilitate positioning of the inner blade member in the impeller assembly.
  • 12. The integrally formed stamped sheet-metal blades of claim 10, wherein the outer blade member further comprises an outer blade shroud extending at an angle from the outer blade bodies and mating with the impeller front cover to facilitate positioning of the outer blade member in the impeller assembly.
  • 13. The integrally formed stamped sheet-metal blades of claim 11, wherein the inner blade has a Z-shaped crosssection.
  • 14. The integrally formed stamped sheet-metal blades of claim 10, wherein the inner and outer blade bodies are fixedly positioned between the impeller front and rear cover by welding.
  • 15. The integrally formed stamped sheet-metal blades of claim 14, wherein the welding is spot welding.
  • 16. The integrally formed stamped sheet-metal blades of claim 9, wherein the engaging edge is a tooth form.
US Referenced Citations (3)
Number Name Date Kind
629121 Bicalky Jul 1899 A
2899129 Schwaiger Aug 1959 A
4502837 Blair et al. Mar 1985 A
Foreign Referenced Citations (3)
Number Date Country
58-133498 Aug 1983 JP
423944 Sep 1974 SU
1267058 Oct 1986 SU