1. Field of the Invention
The present invention relates to an antenna for wireless networks, and more particularly, to an integrated antenna for Worldwide Interoperability for Microwave Access (WiMax) and Wireless Local Area Networks (WLAN).
2. Description of the Related Art
Along with the boom in wireless communication technology, various multi-frequency communication products are emerging, and thus the wireless communication products have become a normal part of human life. Almost all of the new products are provided with the wireless transmission function in order to meet the requirements of the public, for example, a data transmission function is required in a notebook computer or a multimedia device. In order to eliminate the trouble in wiring and setting, a wireless transmission antenna setting that achieves wireless transmission has become necessary.
However, the conventional antenna used in wireless communication products may only be operated at a single frequency of 2.4 GHz or a dual-frequency (2.4 GHz and 5 GHz) which fail to cover the frequencies (2.5 GHz and 3.5 GHz) required in WiMax and the frequency required in WLAN.
Therefore, it is necessary to provide an innovative and progressive integrated antenna for WiMax and WLAN to solve the above problem.
The present invention is directed to an integrated antenna for WiMax and WLAN which comprises a substrate, a grounding metal strip, a first radiating metal strip, and a second radiating metal strip. The substrate has a first surface. The first radiating metal strip is disposed on the first surface of the substrate and is not connected to the grounding metal strip. The first radiating metal strip has a first portion for inducing a first resonance mode and a second portion for inducing a second resonance mode on two ends thereof. The second radiating metal strip is disposed on the first surface of the substrate and is connected to the grounding metal strip. The second radiating metal strip is not connected to the first radiating metal strip. The second radiating metal strip is coupled to the first radiating metal strip to induce a third resonance mode.
Therefore, the integrated antenna is adapted to the frequencies (2.5 GHz and 3.5 GHz) of WiMax and the frequency of WLAN. Also, the substrate is used in the present invention as a medium having the function of reducing frequency. Moreover, the integrated antenna in the present invention is a flat planar structure, which may greatly save the space for assembling.
The integrated antenna 2 has at least one connecting structure for fixing the integrated antenna 2 to the screen-housing frame 12. In this embodiment, the connecting structure is an adhesive layer (not shown) located on the backside of the integrated antenna 2 for adhering the integrated antenna 2 to the screen-housing frame 12.
The grounding metal strip 21 is used to ground. In this embodiment, an auxiliary grounding metal strip 24 adhered to the grounding metal strip 21 is further provided. The auxiliary grounding metal strip 24 may be made of aluminum foil.
The first radiating metal strip 22 is disposed on the first surface 201 of the substrate 20. The first radiating metal strip 22 is not connected to the grounding metal strip 21 and not connected to the second radiating metal strip 23. The first radiating metal strip 22 has a first portion 25 and a second portion 26 on two ends thereof. The first portion 25 is used for inducing a first resonance mode, and the second portion 26 is used for inducing a second resonance mode.
The length of the first portion 25 is smaller than that of the second portion 26, and thus the frequency of the first resonance mode is higher than that of the second resonance mode. The frequency of the first resonance mode ranges from 4.9 GHz to 6 GHz, the frequency of the second resonance mode ranges from 3.3 GHz to 3.9 GHz.
In this embodiment, the first radiating metal strip 22 has an opening 221 for distinguishing the first portion 25 from the second portion 26. The first portion 25 is rectangular-shaped and has a first extension portion 251 extending in a first direction (to the right in the figure). The second portion 26 has a first end 261 and a second end 262. The first end 261 is connected to the first portion 25. The width of the second end 262 is larger than that of the first end 261. The second end 262 is rectangular-shaped and has a second end face 2621.
The second radiating metal strip 23 is disposed on the first surface 201 of the substrate 20 and connected to the grounding metal strip 21. The second radiating metal strip 23 is not connected to the first radiating metal strip 22, and the second radiating metal strip 23 is coupled to the first radiating metal strip 22 to induce a third resonance mode. The frequency of the third resonance mode ranges from 2.3 GHz to 2.7 GHz, which covers the frequency of WiMax and the frequency of 2.4 GHz of WLAN.
In this embodiment, the second radiating metal strip 23 has a third end 231 and a fourth end 232, and the third end 231 is connected to the is grounding metal strip 21. The fourth end 232 is perpendicular to the third end 231 and has a fourth end face 2321. The fourth end face 2321 faces the second end face 2621 of the second end 262, and is spaced from the other by a first pitch.
In this embodiment, the first end 261 of the second portion 26 of the first radiating metal strip 22 further comprises a feed-in point 27. The grounding metal strip 21 further comprises a ground point 28, and the feed-in point 27 and the ground point 28 are electrically connected to a signal end and a ground end of the coaxial cable 29 respectively.
In this embodiment, the first radiating metal strip 22 and the second radiating metal strip 23 are adhered to the first surface 201 of the substrate 20.
Therefore, the integrated antenna 2 of the present invention is adapted to the frequencies (2.5 GHz and 3.5 GHz) of WiMax and the frequency (2.4 GHz or 5 GHz) of WLAN. Also, the substrate 20 is used in the present invention as a medium having the function of reducing frequency. Moreover, the integrated antenna 2 in the present invention is a flat planar structure, which may greatly save the space for assembling.
The difference between the integrated antenna 3 in this embodiment and the integrated antenna 2 in the first embodiment (
While several embodiments of the present invention have been illustrated and described, various modifications and improvements can be made by those skilled in the art. The embodiments of the present invention are therefore described in an illustrative but not restrictive sense. It is intended that the present invention should not be limited to the particular forms as illustrated, and that all modifications which maintain the spirit and scope of the present invention are within the scope defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
096146225 | Dec 2007 | TW | national |