1. Field of the Invention
This disclosure is related to the field of devices for repairing asphalt deterioration. Specifically, this disclosure is related to raking tools utilized in the asphalt infrared repair process for the repair of potholes, raveled areas, utility cuts, and alligator cracks, amongst other instances of asphalt concrete degradation.
2. Description of Related Art
Asphalt concrete plays a huge role in the infrastructure of modern day westernized society. From its presence in roads, parking lots, driveways, airport landing strips, and taxiways, asphalt pavement is an integral component in transit infrastructure.
Generally, in the art of asphalt paving, a road, parking lot, driveway or airport landing strip will be paved with an asphalt concrete with certain performance characteristics in terms of surface durability, tire wear, breaking efficiency, and roadway noise for the particular road and the type and degree of traffic the road is expected to bear. However, over time, environmental factors and traffic loads can cause asphalt concrete to deteriorate. Often, both environmental factors and traffic loads contribute to asphalt deterioration and degradation. Environmental factors which cause deterioration include heat and cold, the presence of water in the subbase or subgrade soil underlying the pavement, and frost heaves, among other environmental factors. Traffic damage generally results from trucks and buses, and the damage caused is generally proportional to axle load raised by a certain degree. The deterioration and degradation caused by these factors includes, but is not limited to, crocodile cracking, potholes, upheaval, raveling, rutting, shoving, stripping, and grade depressions, amongst others.
Irrespective of the causing agent, deterioration in asphalt roadways, parking lots, and other surfaces is a major problem. The deterioration can cause damage to cars and vehicles, decrease transit efficiency, and create an unsightly roadway and parking lot infrastructure, among other problems. To avoid these problems, roadways, parking lots, and other asphalt surfaces are regularly maintained to prevent and repair the degradation and deterioration of the asphalt surface that occurs over time.
One method commonly used in the art of asphalt paving to repair damage and degradation is known as infrared repair. The infrared repair process is capable of repairing potholes, raveled areas, utility cuts, alligator cracks, bumps and low spots, and drainage problems, along with many of the other deterioration problems commonly associated with asphalt pavement. The infrared process is generally preferred in the art of asphalt repair due to its low cost and ability to create a seamless repair by thermally bonding the edges of the repair area with the existing asphalt.
The infrared process generally takes place as follows. First, an infrared panel is placed over the area of the asphalt surface to be prepared. The panel is maintained over the repair area until the asphalt reaches a workable hot mix temperature, generally around 280°-300° F. The time required to reach this temperature will vary depending on the ambient temperature of the air and the asphalt pavement. The infrared rays which are utilized are desirable for their ability to heat the asphalt pavement without causing burning or oxidation. Once the repair area is heated to the desired working temperature, the repair area is raked to agitate the top of the asphalt as deep as they can, generally 1″ to 1.5″ of the asphalt, to scarify (i.e., make cuts or scratches in) the remaining asphalt, and to add new surface asphalt to the repair area. After the addition of the new surface asphalt to the repair area, the material is blended together and luted for proper elevation. After the blending and luting, the repair area is compacted with a compacting tool known to those of ordinary skill in the art such as a vibratory compactor, which compacts the edges of the repair area to the existing asphalt surface, thus creating a thermal bond with the existing pavement and eliminating any seams. To complete the process, the area is allowed to cool before it receives any traffic.
Notably, a seamless repair is possible through the infrared process because the entirety of the heated repair area becomes workable again. Stated differently, the heated asphalt and asphaltic cement that holds the rocks together becomes workable again. The new asphalt that is added to the heated area is generally highly concentrated in asphalt cement (the glue that binds the rock particles together) so that it can be redistributed throughout the repair area. When the repair area is compacted, the repaired area is thermally bonded or glued to the older portion of the asphalt pavement, creating a patch that is flush with the original asphalt pavement. Further, this process is significantly better for the environment than simply tearing out the section and replacing it as less new asphalt is needed, and there is less transportation cost for getting the asphalt to and from the worksite.
While the infrared repair process has many benefits over the other processes known to those of ordinary skill in the art for repairing asphalt, including its ability to create a seamless repair, the process as it is currently practiced in the art is latent with inefficiencies generally surrounding the manual raking process. For example, as noted previously, in the infrared process of the prior art, once the repair area reaches a desired temperature after the application of infrared heat, the repair area is raked manually by a laborer. An example of an asphalt rake that is commonly used for this process is provided in Prior Art
Because these processes are labor-intensive jobs that require a great amount of physical strength and stamina, laborers often become fatigued as a day progresses and the quality, depth, and efficiency of their raking becomes compromised. Further, manual raking of the repair area by a laborer with an asphalt rake can be ineffective. Laborers can only apply a finite amount of down pressure on a hand rake. In addition, this pressure can vary across different points in the job and at different points in the day as a laborer becomes more fatigued. This varying amount of pressure applied to the rake generally results in portions of the repair area that are not raked to a required depth, resulting in the reemerging of cracks that will shorten the life of the repair. Generally, deeper raking is desirable and creates a better repair because it results in the removal of additional deep set cracks prior to the time the new asphalt mixture is introduced into the repair area. Thus, deeper raking generally results in a superior repair that will last longer.
Another limitation beyond a given laborer's varying strength throughout the day is the strength of the rake. It is not uncommon for an application of too much downward pressure on the rake to result in the rake breaking, which not only could temporarily comprise the repair but could also be potentially harmful to the worker. Moreover, in the traditional labor-intensive infrared process, if a cold spot is encountered in the repair area, it cannot be raked. Rather, the patch must be reheated, which requires more time and fuel, or the cold spot can simply be ignored, which often results in an inadequate repair.
Accordingly, there is a need in the art of asphalt repair for a device that will eliminate the inefficiencies and variability in quality inherent to the manual raking components of the infrared repair process.
Because of these and other problems in the art, there is described herein, among other things, a mechanized asphalt comb device and method of mechanized asphalt raking that provides a reliable, easy-to-use, and efficient alternative to the traditional manual raking methodologies.
There is described herein, among other things, an integrated asphalt heating and comb unit, the unit comprising: a heating pan, said pan providing heat from a downward side of said pan; and a plurality of teeth extending from said downward side in a downward orientation; wherein said integrated asphalt heating and comb unit is attached to an engineering vehicle such that said engineering vehicle can control and manipulate said integrated unit into a raised inactive position and a lowered active position; and wherein, when in said lowered active position, said integrated asphalt heating and comb unit applies a fixed downward pressure and depth of penetration to a surface.
In an embodiment of the unit, said teeth are attached to a frame surrounding said heating pan.
In an embodiment of the unit, said teeth are attached to a floating frame moveable relative to said pan and said floating frame is arranged below said downward side of said pan.
In an embodiment of the unit, at least one of said plurality of teeth is removable from said unit.
In an embodiment, the unit further comprises: a wing support extending from said heating pan.
In an embodiment of the unit, said wing support supports a propane cylinder which provides energy for at least part of said heat.
In an embodiment of the unit, said wing support supports a battery which provides energy for at least part of said heat.
In such an embodiment of the unit, said wing support comprised of a propane cylinder which provides energy for at least part of said heat.
In an embodiment, the unit further comprises at least two wing supports.
In an embodiment, the unit further comprises a rail connecting said at least two wing supports.
In an embodiment of the unit, said rail includes a control panel.
In an embodiment of the unit, said rail includes a hydraulic motor.
In an embodiment, the unit further comprises a hydraulic motor.
In an embodiment, the unit further comprises a control panel.
In an embodiment of the unit, when said integrated asphalt heating and comb unit is used to heat asphalt, said integrated unit is in a position between said raised inactive position and said lowered active position.
There is also described herein, in an embodiment, a mechanized method for removing and applying asphalt during an asphalt repair, the method comprising: obtaining an integrated heating and comb unit, said unit comprising: a heating pan, said pan providing heat from a first side of said pan; and a plurality of teeth extending from said first side in a downward orientation; attaching said unit to an engineering vehicle such that said engineering vehicle can control and manipulate said unit into a raised position, a lowered position, and an intermediate position between said raised position and said lowered position; moving said engineering vehicle to an asphalt repair site with said unit in said raised position; positioning said unit in said intermediate position; utilizing said heating pan to heat asphalt in said asphalt repair site with said unit in said intermediate position; without moving said engineering vehicle, positioning said unit in said lowered position where said teeth apply a fixed downward pressure and depth of penetration to a surface; and scarifying said asphalt in said asphalt repair site with said teeth while said unit is in said lowered position.
In an embodiment, the method further comprises: not moving said engineering vehicle while scarifying said asphalt in said asphalt repair site.
In an embodiment, the method further comprises: moving said engineering vehicle to scarify said asphalt in said asphalt repair site.
In an embodiment, the method further comprises: prior to said heating being completed, positioning said unit in an additional position where said teeth apply a fixed downward pressure to said surface; and scarifying said surface.
There is also described herein, in an embodiment, a mechanized method for removing and applying asphalt during an asphalt repair, the method comprising: obtaining an integrated heating and comb unit, said unit comprising: a heating pan, said pan providing heat from a first side of said pan; and a plurality of teeth extending from said first side in a downward orientation; attaching said unit to an engineering vehicle such that said engineering vehicle can control and manipulate said unit into a raised position, and a lowered position; moving said engineering vehicle to an asphalt repair site with said unit in said raised position; positioning said unit in said lowered position where said teeth apply a fixed downward pressure and depth of penetration to a surface; utilizing said infrared heating panel to heat asphalt in said asphalt repair site with said unit in said lowered position; and scarifying said asphalt in said asphalt repair site with said teeth while said unit is in said lowered position.
The material that comprises the rake attachment (102) is not determinative. Any material known to those of ordinary skill in the art that can withstand the impact of raking and the heat of the asphalt in the infrared repair process is contemplated. Contemplated materials include, but are not limited to, steel, iron, hardened steel, and other heavy duty metals known to those of ordinary skill in the art. In addition, the length and width of the rake attachment (102) is not determinative. Generally any length and width of the rake attachment (102) that allows the attachment (102) to efficiently and effectively rake an asphalt repair area is contemplated. In one embodiment, it is contemplated that the rake attachment's (102) length will correspond to the length of the infrared heating apparatus used to heat the desired repair area often with a corresponding width to allow the entire area to essentially be raked in one pass. For example, in one embodiment, as depicted in
Further, the length, width and shape of the tines or teeth (103) of the rake attachment (102) are not determinative. Generally any length, width or shape teeth (103) that are capable of effectively raking and scarifying the asphalt repair area are contemplated. In one embodiment, teeth (103) between about 4 inches and 7 inches are contemplated. In one embodiment, the teeth or tines (103) will be prescribed dimensions to maximize the raking of the repair area in order to rake the patch deeper and take out any cold spots in the asphalt to create a more uniform patch. For example, in one preferred embodiment, as depicted in
In the depicted embodiment, the rake tines (103) are designed to be removable and replaceable from the rake spine (104). As can be best seen in
The rake attachment (102) of the mechanized asphalt comb (101) is attached to an engineering vehicle (105). The term “engineering vehicle,” as used herein, shall include any engineering vehicle or heavy equipment machine known to those of ordinary skill in the art, now or in the future, that is capable of moving or transporting materials. Examples of contemplated engineering vehicles (105) include, but are not limited to, skid loaders or skid steers, steamrollers, tractors, compact excavators, backhoe loaders, bulldozers, excavators, forklift trucks, loaders, and heavy-duty trucks. In a preferred embodiment, the engineering vehicle (105) will have one or more lift arms to which the rake attachment will be attached, although this is not determinative. For example, in the embodiment in which the mechanized asphalt comb (101) is attached to a steamroller, the rake attachment would be attached in an appropriate manner to the rolling apparatus.
The form of attachment of the rake attachment (102) to the engineering vehicle (105) is not determinative. For example, the rake attachment (102) may be bolted, screwed, clipped, slotted or attached in another manner known to those of ordinary skill in the art to the engineering vehicle (105). Further, permanent, semi-permanent and temporary forms of attachment of the rake attachment (102) to the engineering vehicle (105) are contemplated. In the embodiments where the engineering vehicle (105) has one or more lift arms, it is contemplated that the rake attachment (102) will be attached to these component parts of the engineering vehicle (105).
In certain embodiments, it is contemplated that the rake attachment (102) of the asphalt comb (101) will be attached directly to the engineering vehicle (105) or a lift arm or lift arms thereof. In other embodiments, as depicted in
In the embodiments of the mechanized asphalt comb (101) in which the mechanized asphalt comb (101) is attached to a lift arm or lift arms of the engineering vehicle (105) (either directly or via an arm (109)), it is contemplated that the mechanized asphalt comb (101) will have a raised inactive (107) position (depicted in
Another contemplated component of the asphalt comb (101) is the dumping container (106). Embodiments of the asphalt comb (101) that contain a dumping container (106) are depicted in
In one preferred embodiment, it is contemplated that the dumping container (106) will be mechanically moveable around a hinge point on the front of the dumping container (106). An embodiment of this hinge point is depicted in
In one embodiment of the mechanized asphalt comb (101) in which the asphalt comb (101) is comprised of an arm (109), it is contemplated that the dumping container (106) will be located at a place generally close to the rake attachment (102) on the arm (109). It should be noted that the location of the dumping container (106) on the mechanized asphalt comb (101) is not determinative and any location on the rake attachment (102) and/or the arm (109) which allows for the dumping container (106) to freely move around its hinge point and distribute the material contained therein at a location generally in front of or behind the rake attachment (102) is contemplated. Similarly, in the embodiments of the mechanized asphalt comb (101) in which the mechanized asphalt comb (101) is directly attached to the engineering vehicle (105), it is contemplated that the dumping container (106) will be attached to either the rake attachment (102) or the engineering vehicle in such a manner that the asphalt or other material contained therein can be easily transported and, if desired, dumped into a position on the ground generally in front of the rake attachment (102). This allows for the material to be dumped in very close time proximity to the initial agitation by the rake, which eliminates the need for a worker to go and get the wheelbarrow of material and then dump it. Further, dumping of the material in proximity to the rake attachment (102) makes it easier for the rake attachment (102) to be used to agitate the new material with the old which can create a more dispersed and uniform blend of old and new asphalt. Improved distribution in the mix will often provide a patch with increased strength and stability.
In additional alternative embodiments, it is contemplated that the asphalt comb (101) will also comprise a cooling element known to those of ordinary skill in the art. Contemplated cooling elements include, but are not limited to, devices that use air and or water to lower the temperature of an exposed material. In these embodiments, it is contemplated that the cooling element will be located at a place on the asphalt comb (101) such that, when engaged, the cooling element can be applied to the recently repaired asphalt repair area. For example, in one embodiment, it is contemplated that the cooling element will be located on the bottom of the arm (109) of the asphalt comb (101) behind the rake attachment (102) (i.e., closer to the engineering vehicle (105)).
In yet another alternative embodiment, it is contemplated that the mechanized asphalt comb will also comprise a compression mechanism, such as a roller or vibratory compressor, known to those of ordinary skill in the art. In these embodiments, the roller will be utilized to compress the newly laid hot asphalt mix after it has been deposited and leveled onto the asphalt repair area.
In still further alternative embodiments, it is contemplated that the asphalt comb (101) will further comprise a heating element known to those of ordinary skill in the art. Contemplated heating elements include, but are not limited to, infrared, gaseous, and electrical modalities. In these embodiments, it is contemplated that the heating element, when activated, will heat the rake attachment (102) such that the rake attachment (102) increases the overall temperature of the asphalt it comes into contact with and rakes.
In an embodiment, it is contemplated that the mechanized asphalt comb will further comprise an infrared heating pan (212).
In the embodiment of
The arrangement of
As can be seen in the embodiment of
There is also provided an elevated rail (404). The rail (404) generally connects housings of the two wing supports (402) to each other, providing the device with improved stability and strength. There is also mounted on the rail (404) a control panel (411) which can provide a visual display on the action of the heating panel (202) as well as providing for an easy positioning of controls for controlling the heating panel (202).
As would be apparent to one of ordinary skill in the art, the control panel (411) can be easily accessed by an individual in the engineering vehicle (105) by the individual simply reaching out to the control panel (411) from the cab of the engineering vehicle (105). In a still further embodiment, the panel (202) may be moveable and may be positioned within the cab of the vehicle (105) when the integrated panel (244) is positioned on a lift arm of the engineering vehicle (105) to provide for remote control.
There is also shown mounted on the rail (404) a hydraulic motor (413). This will generally be a hydraulic motor of a type known to those of ordinary skill in the art which is capable of converting hydraulic force into rotary (or other) motion. The hydraulic motor (413) can attach to the auxiliary hydraulics of the engineering vehicle (105) in a manner understood by those of ordinary skill in the art to provide for further power for the heating pan (212) or for alternative power needs. The hydraulic motor (413) can be attached to an alternator (415) to provide this power depending on what form of power is needed.
As should be apparent from
Generally, an integrated panel (244) or heating panel (202) will not include a dumping container (106) as this adds increased complexity and weight to the device. This can be an issue where a skid steer or other relatively small engineering vehicle (105) is utilized as it can become front heavy. Further, as the auxiliary hydraulics of the vehicle (105) will generally be used as part of the energy supply for the heating pan (212), there may not be any auxiliary available to dump the dumping container (106). While such an arrangement is generally preferred, however, with a supply of asphalt being provided via another engineering vehicle (such as with a load bucket) or by hand, a dumping container (106) is also integrated into the integrated panel (244) or heating panel (202) in an alternative embodiment.
In use, the mechanized asphalt comb (101) provides a mechanized method for removing the top layer of an asphalt repair area, raking and scarifying an asphalt repair area, and/or applying new material to an asphalt repair area—steps which, under the traditional infrared asphalt repair methodology, were performed manually. For example, in one embodiment, the asphalt comb (101) disclosed in
Second, while the mechanized asphalt comb (101) is in the raised inactive position (107), the engineering vehicle (105) is driven to an asphalt repair site (i.e., an area of asphalt that has been heated or will be heated by an infrared panel or other methodology known to those of ordinary skill in the art.).
Then, in a third step, the mechanized asphalt comb (101) is lowered into the active lowered position (108) at the asphalt repair site and, while in the active lowered position, the engineering vehicle (105) is manipulated forwards and backwards in a manner to rake and scarify the asphalt located at the repair site with the rake attachment (102). In this step, the mechanized asphalt comb (101) will generally be maintained at the same angle for each pass on the repair area, however an operator may change the angle if a deeper or shallower scarifying depth is desired. Further, it is contemplated that, in certain instances, only one pass will be needed to sufficiently scarify and agitate the repair area. A pass generally includes lowering the asphalt comb (101) into an asphalt repair area and either reversing the engineering vehicle (105) or putting the engineering vehicle (105) in drive such that the entire asphalt repair area is agitated and raked by the rake attachment (102) in one pass. In certain embodiments, it is preferred that the scarification occur to a depth of about two (2) to four (4) inches to provide for a deep repair.
If an embodiment of
This step of the mechanized asphalt comb (101) process has numerous advantages over the manual raking processes of the prior art. For example, a desired depth and agitation can be maintained throughout a given repair area and can be greater than can be accomplished manually. Further, since the agitation and scarification are accomplished by moving a mechanized asphalt comb (101) equipped engineering vehicle (105) back-and-forth, the time and laborer fatigue associated with the manual processes is eliminated. In addition, contrary to the manual method which inherently requires multiple raking actions and passes, the mechanized asphalt comb (101) is capable of sufficiently agitating and scarifying a repair area in one or two passes.
Once the raking and scarification is completed, the mechanized asphalt comb (101) is raised into the raised inactive position (107). Then, in a fourth step, the asphalt repair material loaded into the dumping container (106) is dumped onto the repair site in front of the rake attachment (102) of the mechanized asphalt comb (101). In one embodiment, this dumping step will take place as follows. First, the mechanized asphalt comb (101) will be maneuvered into a position generally above the repair area and the mechanized asphalt comb (101) will be lowered to a position generally parallel to the repair area. This orientation of the mechanized asphalt comb in the dumping step is depicted in
Once in this position, the dumping container (106) will be raised via its hinged attachment to an angle at which the hot asphalt mix contained therein will begin to be deposited onto the repair area. Next, while the dumping container (106) is in the raised position, the engineering vehicle (105) will be manipulated forwards and backwards in a manner that will allow for generally all of the hot asphalt mixture contained in the dumping container (106) to be dumped onto the repair area. Alternatively, the mixture may be dumped in batches to provide extra mixture at particular points.
After the dumping is complete, in a final step, the dumping container (106) is lowered from the raised position and the mechanized asphalt comb (101) is lowered into the lowered active position (109). Once lowered, the engineering vehicle is manipulated forwards and backwards in a manner to distribute the hot mix asphalt material within in the repair area. It is also contemplated that the mechanized asphalt comb (101) will be used to lute the repair area (i.e., the hot asphalt mix in the repair area is leveled with the surrounding asphalt by having a luting attachment thereon which can swing below the tines (103)). After luting, the repair area will be compressed and allowed to cool. Alternatively, the luting process may still be performed by hand. In the embodiments in which the mechanized asphalt comb (101) comprises a cooling mechanism and a compressor, it is contemplated that these steps may be performed by the mechanized asphalt comb (101).
In sum, the mechanized asphalt comb (101) described herein has numerous advantages over the manual raking process previously utilized in the art of infrared asphalt repairs. Utilizing this method, time is saved and the efficiency of the repair process is increased since an operator can rake a newly heated repair area in as little as one pass. Further, this method and device allows an operator to rake the patch deeper and at a consistent depth throughout the repair area compared to the known manual methodologies. This improvement is feasible because, among other things, the rake attachment generally corresponds in width to the repair area, is heavily constructed, and is attached to a piece of machinery that can provide a consistent downward pressure, i.e., it is not subject to fatigue like laborers in the manual raking process of the prior art.
While the invention has been disclosed in conjunction with a description of certain embodiments, including those that are currently believed to be the preferred embodiments, the detailed description is intended to be illustrative and should not be understood to limit the scope of the present disclosure. As would be understood by one of ordinary skill in the art, embodiments other than those described in detail herein are encompassed by the present invention. Modifications and variations of the described embodiments may be made without departing from the spirit and scope of the invention.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 13/932,702, filed Jul. 1, 2013, which is in turn a Continuation of U.S. patent application Ser. No. 13/587,485, now U.S. Pat. No. 8,491,220. The entire disclosure of all the above documents is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
637713 | de Camp | Nov 1899 | A |
1195387 | Moyer | Aug 1916 | A |
1254859 | Siemann | Jan 1918 | A |
2199884 | Kennedy | May 1940 | A |
3053311 | Nottage | Sep 1962 | A |
3066582 | Cutler | Dec 1962 | A |
3108426 | Rugg | Oct 1963 | A |
3470964 | West et al. | Oct 1969 | A |
3851921 | Makishima | Dec 1974 | A |
3989401 | Moench | Nov 1976 | A |
4492490 | Christine et al. | Jan 1985 | A |
4793730 | Butch | Dec 1988 | A |
4793733 | Chiba et al. | Dec 1988 | A |
4967850 | Bargfrede et al. | Nov 1990 | A |
5054278 | Thorndike | Oct 1991 | A |
5387051 | Valente | Feb 1995 | A |
6227762 | Van Velsor | May 2001 | B1 |
7077601 | Lloyd | Jul 2006 | B2 |
7470082 | Lloyd | Dec 2008 | B2 |
7500803 | Gillard et al. | Mar 2009 | B2 |
7712999 | Huckabee | May 2010 | B1 |
8491220 | Rees | Jul 2013 | B1 |
20140050526 | Rees | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
41 29 336 | Mar 1993 | DE |
Entry |
---|
“Asphalt concrete,” http://en.wikipedia.org/wiki/Asphalt—concrete, printed on Aug. 9, 2012, 7 pages. |
“Backhoe loader,” http://en.wikipedia.org/wiki/Backhoe—loader, printed on Aug. 10, 2012, 3 pages. |
“Bulldozer,” http://en.wikipedia.org/wiki/Bulldozer, printed on Aug. 10, 2012, 6 pages. |
“Compact excavator,” http://en.wikipedia.org/wiki/Compact—excavator, printed on Aug. 10, 2012, 3 pages. |
“Excavator,” http://en.wikipedia.org/wiki/Excavator, printed on Aug. 10, 2012, 5 pages. |
“Forklift truck,” http://en.wikipedia.org/wiki/Forklift, printed on Aug. 10, 2012, 15 pages. |
“Grader,” http://en.wikipedia.org/wiki/Grader, printed on Aug. 10, 2012, 3 pages. |
“Loader (equipment),” http://en.wikipedia.org/wiki/Loader—(equipment), printed on Aug. 10, 2012, 6 pages. |
“Rake (tool),” http://en.wikipedia.org/wiki/Rake—(tool), printed on Aug. 10, 2012, 2 pages. |
“Skid-steer loader,” http://en.wikipedia.org/wiki/Skid-steer—loader, printed on Aug. 10, 2012, 5 pages. |
“Tractor,” http://en.wikipedia.org/wiki/Tractor, printed on Aug. 10, 2012, 22 pages. |
Asphalt Restoration, http://asphaltrestore.com, printed on Aug. 9, 2012, 2 pages. |
Asphalt Repair, PLM Industries, Inc., http://www.potholepro.com/asphalt-repair.html, printed on Aug. 9, 2012, 2 pages. |
“Infrared Asphalt Equipment,” KASI Infrared, http://www.kasiinfrared.com/Infrared-Asphalt-Equipment.php, printed on Aug. 14, 2013, 4 pages. |
“Ray-Tech Infrared Tech-78,” Ray-Tech Infrared Corp., www.raytechinfrared.com, undated, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140119828 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13587485 | Aug 2012 | US |
Child | 13932702 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13932702 | Jul 2013 | US |
Child | 14016759 | US |