Integrated audio and modem device

Information

  • Patent Grant
  • 6661848
  • Patent Number
    6,661,848
  • Date Filed
    Friday, September 25, 1998
    26 years ago
  • Date Issued
    Tuesday, December 9, 2003
    21 years ago
Abstract
An audio modem provides both the functionality needed for audio processing and that needed for implementing one or more modems. A digital signal processor utilizes a plurality of serial ports to interface with one or more codecs used for interfacing an analog audio channel and with one or more modem codecs used for interfacing an analog communications channel.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to communication devices and more particularly to a digital signal processor which handles digital audio and modem processing.




2. Description of Related Art




The use of modems to transmit digital signals across an analog channel, such as a telephone line, is well known in the art. Modem capabilities and performance have increased dramatically as the digital technology utilized to handle information has exploded with a variety of new applications and with large quantities of content. This technology explosion has resulted in increasing complexity for modems required to handle increasingly complex protocols.




Recent generations of modems utilize different signaling rates at different times or stages during their operation. Typically, a modem utilizes a dedicated processor or controller to carry out the operations required for modem transmission and reception. Software which drives such dedicate processors is often convoluted, containing many branches and jumps. Frequently, the dedicated modem processor is controlled by a sequencer implemented as a finite state machine. The state of the finite state machine changes as samples arrive and are sent in such a way as to implement the modem functionality. Typically, incoming signals from an analog channel are sampled by an analog to digital coder/decoder (codec) and signal samples are processed as they arrive from the codec. This imposes certain demanding real time performance requirements since processing of a given sample must be completed by the time the next sample arrives.




Incoming signal levels to a modem are often adjusted by an automatic gain control (AGC) circuit. However, incoming signals are often subject to a line “hit” which causes a momentary deviation from the desired gain level which cannot be compensated for by the AGC circuit.




Controllerless modems are also known which run as a separate process on the host which they service. An example of such a controllerless modem is shown in the referenced co-pending application.




Modern computers are processing real time audio in digital form more and more frequently. This audio processing can take the form of, for example, telephone applications, stored audio files, audio files accompanying real time motion images and the like. Often, this processing is ongoing at the same time as modem functions are occurring.




Digital signal processors are also known. These are relatively memory limited devices which are designed for high performance processing of digital signals. They typically operate as an adjunct to the host processor and can be configured to receive and handle processing assignments from the host computer and then return the results either to the host or to a memory location specified by the host. Digital signal processors are now available which handle multiple streams of digital signals.




A variety of techniques are used to adjust the timing of two digital signal streams so that important events from both streams coincide in time. These techniques are called synchronization techniques. Frequently, synchronization is required when undertaking modem applications or digital signal processing applications.




BRIEF SUMMARY OF THE INVENTION




The invention is directed to an audio modem which processes digital audio as well as providing signal processing needed for modem functionality.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a block diagram showing an architecture suitable for integrating audio and modem functionality in accordance with one aspect of the invention.





FIG. 2

is a block diagram illustrating swapping of code between a host and a DSP in accordance with one aspect of the invention.





FIG. 3

is a flow chart of a process for swapping code in and out of a DSP in accordance with one aspect of the invention.





FIG. 4

is a high level block diagram of an exemplary modem carrying out aspects of the invention.





FIG. 5

is a block diagram of an exemplary data encoder illustrated in FIG.


4


.





FIG. 6

is a block diagram of an exemplary training encoder illustrated in FIG.


4


.





FIG. 7

is a block diagram of an exemplary transmit engine illustrated in FIG.


4


.





FIG. 8

is a block diagram of an exemplary receive engine illustrated in FIG.


4


.





FIG. 9

is a block diagram of a far-near (F-N) echo canceller shown in FIG.


8


.





FIG. 10

is a block diagram of a receiver shown in FIG.


8


.





FIG. 11

is a block diagram of an equalizer having a fast gain tracker shown in FIG.


8


.





FIG. 12

is a block diagram of a listener (L-echo) echo canceller shown in FIG.


8


.





FIG. 13

is a block diagram of a debwarp and noise whitening filter shown in FIG.


8


.





FIG. 14

is a block diagram of a phase corrector shown in FIG.


8


.





FIG. 15

is a block diagram of a sync recovery circuit shown in FIG.


8


.





FIG. 16

is a block diagram of a tone detector shown in FIG.


8


.





FIG. 17

is a block diagram of a data decoder illustrated in FIG.


4


.





FIG. 18

is a block diagram of a training decoder shown in FIG.


4


.





FIG. 19

is a block diagram of an alternative phase corrector to that shown in FIG.


14


.





FIG. 20

is a diagram used to illustrate the operation of carrier tracking as it occurs in FIG.


19


.





FIG. 21

is a diagram of yet another alternative phase corrector shown in

FIGS. 14 and 19

.





FIG. 22

is an illustration of an exemplary sample command format used in accordance with one aspect of the invention.





FIG. 23

is a list of commands used in carrying out one aspect of the invention.





FIG. 24

is a block diagram of the memory space of a DSP in accordance with one aspect of the invention.





FIG. 25

is a flow chart of a load and execution sequence of modules on a DSP in accordance with one aspect of the invention.





FIG. 26

is a flow chart showing more detail of the transmit init module shown in FIG.


25


.





FIG. 27

is a flow chart showing in more detail the receive unit module shown in FIG.


25


.





FIG. 28

is a flow chart showing more detail of a Transmit Sequencer shown in FIG.


25


.





FIG. 29

is a flow chart showing more detail of a Receive Sequencer shown in FIG.


25


.





FIG. 30

is a block diagram of an alternative memory space arrangement to that shown in FIG.


24


.





FIG. 31

is flow chart of a process for batch processing of received samples in accordance with one aspect of the invention.





FIG. 32

is a flow chart of a process for batch processing of samples to be transmitted in accordance with one aspect of the invention.





FIG. 33

is a flow chart of a process for controlling modem processing functions based on received symbol rate.





FIG. 34

is a block diagram showing use of both host based controllerless modems and DSP based modems.











DESCRIPTION OF THE INVENTION





FIG. 1

is a block diagram showing an architecture suitable for integrating audio and modem functionality in accordance with one aspect of the invention. This diagram is symbolic in that it shows a separate host domain


100


separated from a bus device domain


110


by a bus, such as PCI bus


105


. A plurality of devices on the bus can be managed by the host. Typically, each of those devices will have a device driver


120


which serves as the interface to that device. The interface of each of the virtual device drivers


120


to the PCI bus


105


is through a stream processing virtual device driver


130


which can manage the plurality of streams originating and terminating in virtual device drivers


120


. A number of devices may be connected to the PCI bus


105


. One such device, namely device


140


, is shown in FIG.


1


. Device


140


is a digital signal processor capable of handling multiple digital streams. Preferably, the multiple stream digital signal processor is a DSP identified as CS4610 available from Cirrus Logic.




The digital signal processor has a stream processing operating system


150


which manages a variety of tasks which can be run either in foreground, midground or background (


160


). The digital signal processor manages a plurality of serial ports


170


and a plurality of general purpose input/output ports


175


. Connected to the serial ports


170


is an audio codec array


180


. The audio codec array performs analog to digital conversion and digital to analog conversion of analog signals from line drivers


195


and from digital data arriving over a serial port


170


, respectively. Many of the audio sources feeding audio codec array


180


are high quality audio sources requiring an elevated sampling rate to maintain the fidelity during the digital signal processing. A plurality of codecs


185


form a modem codec array. Modem signals on a modem line are sampled, converted to digital and applied to the digital signal processor over the serial ports


170


. Digital information from the digital signal processor can pass over serial port


170


to the modem codec array which converts the digital into analog and applies the analog output to the modem line. A telephone line connects to a data access arrangement (DAA)


190


. The DAA


190


serves as a line interface between a telephone line and the DSP


140


. The signalling portion of telephone signals is handled in the DAA


190


and control lines between the DAA


190


and the general purpose input/outputs


175


are used to passing ringing information to the DSP and receive control signals from the DSP. The non-signaling portion of the information is applied to the modem codec array as another modem input signal, where it is sampled and applied to the serial ports


170


like any other modem signal.





FIG. 2

is a block diagram illustrating swapping of code between a host and a DSP in accordance with one aspect of the invention. A host memory space


200


is shown and a corresponding memory space


210


for the DSP is also shown. A DMA controller


220


can manage a transfer of information from the host memory space


200


to and from the DSP memory space


210


without host intervention. The DMA controller can also be arranged to transfer information from mass storage


225


into the host memory space and back. In some digital signal processors, where memory space is limited overall or in which memory space is limited for use by a particular application, it may be desirable to load and execute only the modules of code that are necessary for a particular state of the modem. A plurality of such modules


230


is stored in host memory space


200


. As discussed more hereinafter, when the DSP is initialized with a modem application, a pre-init module is loaded into the DSP and stays resident until the modem application completes. The pre-init is accompanied by a transmit sequencer and a receive sequencer which also stay resident. Associated with each modem application is a swappable space in the DSP which can be utilized to bring in and execute one or more of the modules


230


as may be required for modem execution. Once a particular module finishes executing, it can be overwritten by a DMA transfer of another module to be executed in the DSP.

FIG. 2

illustrates only the transfer of code modules for a modem application in and out of the DSP memory space. This figure does not illustrate signal processing, but only the use of code swapping to implement the modem applications in the DSP. Signal processing is discussed more hereinafter.





FIG. 3

is a flow chart of a process for swapping code in and out of a DSP in accordance with one aspect of the invention. When a modem application is required, the base code including a pre-initialization sequence is loaded to the DSP memory space (


300


). The Rxinit and Txinit modules are swapped in from the host memory space into the DSP memory space and are executed (


310


,


320


). The Rxinit and Txinit process established the transmit and receive sequencers in the DSP memory space and prepares them for handling modem functions. The encoder-init and decoder-init modules (


330


,


340


) are swapped in, run and swapped out. These set up the initial operating conditions for the various functional blocks of the modem, discussed more hereinafter. Once the initialization phase is completed (after


340


), encoder run and decoder run processes execute sequentially and continuously to process the signal samples going to and from the codecs.




The encoder run and decoder run modules are each designed to do batch processing on a group of symbols. Typically, the symbols will be processed in eight symbol batches. This reduces the processing requirements considerably over signal sample oriented processing. A plurality of signal samples is normally required in order to identify each symbol.




Functional Description





FIG. 4

is a high level block diagram of an exemplary modem carrying out aspects of the invention.




The modem operates in two modes, a training phase and a data phase. During the data phase, bitstream data from the host is encoded into symbols by the data encoder (


400


). The symbols are then modulated and filtered into samples by the transmit engine (


410


). These samples are transferred back to the host (to be transmitted on the line). The host manages the sample rate conversion and the code. On the receive side, samples from the host (received from the line) are demodulated and filtered into symbols by the receive engine (


420


). The receive engine uses symbols from the transmit engine to perform the echo-cancellation and uses symbols from the decoder to do channel equalization and samples from the receive base band filter to do listener echo cancellation. The symbols are decoded by the data decoder (


430


) into bitstream data which is transferred back to the host.




During a training phase, the modem sequencer triggers the training encoder (


440


) to generate the appropriate training sequences. The symbols generated by the training encoder go through the same transmit engine as in the data phase. Similarly, the training decoder (


450


) is fed symbols by the receive engine. The sequencer also controls various parameter settings in the transmit and receive engine, like step sizes, etc. which are different in the training and data phases. Initially, the sequencer connects the transmit/receive engines to the training encoder/decoder. After training is complete, the engines are switched to the data encoder/decoder. The sequencer re-enters the training phase, if requested by the host controller.




Data Encoder





FIG. 5

is a block diagram of an exemplary data encoder illustrated in FIG.


4


. Bitstream data from the host is scrambled (


500


) to randomize it. The data framer (


510


) distributes the incoming bits 1 into separate streams to the shell mapper (


520


), the constellation mapper (


530


), the differential encoder (


540


) and the subset labeler (


550


). The shell mapper maps the input bits into 8 ring indices. These indices are used to pick the rings in the constellation used by the next 8 symbols. The constellation mapper uses the ring index and bits from the data framer to pick the appropriate point in the constellation. This point is then rotated by 0, 90, 180 or 270 degrees (


555


), depending on the input from the subset labeler. The subset labeler uses information from the differential encoder and the trellis encoder (


560


) to pick the desired rotation angle. The symbol is pre-coded (


570


) to aid the remote equalizer and subjected to a non-linear transfer function (to combat non-linear distortion on the channel. The symbol is used by the transmit engine to generate the samples to be transmitted.




Training encoder





FIG. 6

is a block diagram of an exemplary training encoder illustrated in FIG.


4


. The training encoder encodes the various training sequences sent by the modem in phase


3


and phase


4


. The timing and order of generation of the training sequences is controlled by the overall modem sequencer. A brief description of the various sequences generated is as follows.




PP sequence (


610


): This is a constant amplitude zero auto-correlation sequence sent for fast training of the equalizer. It consists of six periods of 48 symbols and is sent in training phase


3


.




S/


S


sequence (


620


): This consists of two alternating points in the four point constellation and a phase reversed version. It is used as a marker in both phase


3


and


4


.




TRN sequence (


630


): This consists of a sequence of ones. It is used for training in both phase


3


and


4


.




J sequence (


640


): This is a 16 bit pattern which specifies whether phase


4


training will use a 4 point constellation or a 16 point constellation.




J' sequence (


650


): This is a 16 bit pattern and is used to indicate the beginning of phase


4


.




E sequence (


660


): This is a 20 bit sequence of ones. It is used to indicate the end of phase


4


.




MP sequence (


670


): This sequence is an 88/188 bit pattern with a 16 bit header and 15 bit CRC. It is used by the modems to exchange data phase parameters like bit rate, precoder coefficients, etc. All sequences, except PP and S/


S


are scrambled and differentially encoded before being mapped to symbols. The sequence B


1


which is sent just before data phase is part of the data phase initialization.




Transmit Engine





FIG. 7

is a block diagram of an exemplary transmit engine illustrated in FIG.


4


. Symbols from the data encoder are up-sampled to 3× the symbol rate. The base-band filter (BBF


700


) also serves as the up-sampling anti-aliasing filter. The BBF is a 48-tap, real FIR filter. The filtered samples are then passed through a pre-emphasis filter (


710


) which does the pass-band spectral shaping specified by the remote modem in the training phase. There are 11 sets of 6-tap complex FIR filters, one for each of the specified spectral shapes. The samples are then modulated by the carrier (


720


) before being transferred by the host for final up-sampling and transmission.




Receive Engine





FIG. 8

is a block diagram of an exemplary receive engine illustrated in FIG.


4


. Input samples from the host (received on the channel) are first passed through the F-Necho canceller (


800


). The cancellers remove the near and far end echo of the transmitted signal from the received signal. ,The signal is then de-modulated and filtered by the receiver (


810


). The receiver uses the Tx-Rx time difference computed by the sync recovery section (


820


) to match the receive sample time to the transmit sample time of the remote modem. The distortion introduced by the channel is removed by the equalizer (


830


). The equalizer uses error symbols from the phase corrector (


840


) for tap-update and the rotated error symbols for gain tracking.




The listener echo, which is the echo of the received signal itself is removed (


850


) before the signal is passed through the non-linear decoder and noise-whitening filter (


860


). The phase corrector tracks the phase jitter and the frequency offset of the carrier and corrects for phase errors introduced. The corrected symbols are then sent to the data decoder or the training decoder for final decoding to bitstream. During data phase, a tone detector (


870


)is used to detect requests from the remote modem for rate negotiation or retrain.




F-Necho Canceller





FIG. 9

is a block diagram of a far-near (F-N) echo canceller shown in FIG.


8


. The echo cancellers remove near-end and far-end echos of the transmitted signal from the received signal. The received samples from the host are passed through a hum filter (


905


) which removes DC and power-line hum. The near-end and far-end echo is then subtracted from the signal. This subtraction is performed on double precision samples. The samples are then sent to the receiver for de-modulation and filtering. The echo is generated using symbols from the transmit engine.




Symbols from the transmit engine are pre-modulated (


900


) to the pass-band and fed to the bulk delay line (


910


) and the Necho filter (


920


). The bulk delay line matches the delay experienced by the far end echo on the channel. The Necho is generated by passing the symbols through the 2 120-tap real adaptive FIR filters operating on the real and complex parts of the symbol respectively. Since the received samples are at 3×symbol rate, 40 taps of the canceller are used and updated at each sample. The Fecho is generated in a similar fashion using another set of 120 tap real adaptive FIR filters (


930


).




A Fecho carrier tracker (


940


) is used to correct for phase shifts experienced by the Fecho due to FDM (if any) on the line. The carrier tracker measures the phase difference between the input and output of the Fecho filter and uses it to generate a phase correction (


950


)(in a PLL-type configuration).




Receiver





FIG. 10

is a block diagram of a receiver shown in FIG.


8


. The receiver de-modulates the received samples to the base-band (still at 3×symbol rate). The AGC (


1000


) produces a near constant signal power by tracking the gain of the channel. The gain is tracked by comparing the received signal power to a fixed reference. The sampling rate of the received signal is locked to the local transmit clock and needs to be matched to the remote transmit clock. The sample time adjust (


1010


) feeds two or four samples to the demodulator depending on whether the remote clock leads or lags the local transmit clock. The signal is then demodulated into the base band. The interpolator (


1020


) is a 3-tap FIR filter. The filter taps are set depending on the estimated difference between the Tx and Rx clocks. The interpolated signal is band limited by the base band filter (


1030


). The receive base-band filter is a 48-tap FIR filter, identical to the transmit filter.




Equalizer





FIG. 11

is a block diagram of an equalizer, having a fast gain tracker, shown in FIG.


8


. The distortion due to the channel is removed by the equalizer. The equalizer (


1120


) is a 60 tap complex adaptive FIR filter. The taps are updated (


1110


) twice every three samples using the error symbols from the phase corrector. The equalizer taps are used by the sync recovery section to estimate the Tx-Rx sample rate difference. The gain tracker (


1100


) is used to track sudden changes in the gain of the channel. The rotated error symbols from the phase corrector and the current gain is used to update the new gain value.




Lecho Canceller





FIG. 12

is a block diagram of a listener (L-echo) echo canceller shown in FIG.


8


. The Lecho canceller removes the echo of the received signal from the received signal. A 16-tap complex adaptive FIR filter is used to cancel the listener echo (


1200


). The bulk delay line (


1210


) matches the delay experienced by the signal on the channel. The Lecho canceller taps are updated using the error signal from the phase corrector.




Dewarp, NWF





FIG. 13

is a block diagram of a dewarp and noise whitening filter shown in FIG.


8


. The dewarpingand noise whitening filters do the inverse operation of the non-linear encoder and filter at the remote transmitter. The non-linear decoder (


1300


) uses a polynomial of degree 4 as an approximation to the inverse of the non-linear encoding function specified in the standard. It also scales the signal to the slicing grid. The noise whitening filter (


1310


) is a 3 tap complex FIR filter, whose co-efficients are sent to the remote modem during the training phase. The co-efficients are trained using a complex version of the Levinson-Durbin algorithm. An example of this is shown in co-pending U.S. application Ser. No. 08/775,769 referenced above now U.S. Pat. No. 6,134,265.




Phase Corrector





FIG. 14

is a block diagram of a phase corrector shown in FIG.


8


. The phase corrector corrects for the frequency offset in the carrier and the carrier phase jitter. The carrier frequency offset is tracked by a second order PLL (


1400


), which uses the phase error (


1410


) between the symbols from the decoder and the input symbols. The phase jitter is tracked by a 60 tap real adaptive FIR filter (


1420


). Since the jitter is not very large, ⅓


rd


of the filter taps are updated each symbol.




The amplitude error between the output of the phase corrector and the decision symbols from the decoder is sent to the gain tracker in the equalizer. The decision symbol from the decoder is then rotated (


1420


) by the same amount as the input symbol, but in the reverse direction. The error between the rotated decision symbols and the input symbols is used to update the equalizer taps.




Sync Recovery





FIG. 15

is a block diagram of a sync recovery circuit shown in FIG.


8


. The sync recovery section estimates the frequency difference between the local and remote sample clocks. This delay will appear as a constant frequency offset introduced by the channel and reflected in the equalizer taps. To compute this constant shift, a DFT (


1500


) is done on the equalizer taps to generate the B/4 and −B/4 spectral components, where B is the baud rate. The phase difference between the components is the sync error, which is filtered through a second order PLL (


1510


) to get the time difference between the clocks.




Tone Detector





FIG. 16

is a block diagram of a tone detector shown in FIG.


8


. The remote modem sends tone A (answer modem) or B (call modem) to initiate a retrain. The modem is supposed to go to training phase


2


on receipt of this tone. The tones are at the frequencies 2400 Hz and 1200 Hz respectively. Since the normalized frequency will be different for the various symbol rates, an adaptive tone detector (


1600


) is used to detect these tones. The detector is a complex adaptive FIR filter of the form 1−z−


1


. If a tone is being transmitted the tap will converge to the frequency of the tone. The amplitude of the tap is used to detect whether the tone is being transmitted.




The remote modem sends the sequence S to initiate a rate negotiation. The modem is supposed to go to training phase


3


on receipt of this sequence. The spectrum of the sequence S has peaks at the three complex roots of 1. It is detected by comparing the energy at the input and output of a notch filter which has zeros at these frequencies. The notch filter used is a simple FIR filter of the form 1−z


−6


.




Data Decoder





FIG. 17

is a block diagram of a data decoder illustrated in FIG.


4


. The data decoder section converts the symbols into bitstream data. It performs the inverse of the operations done by the data encoder. The Viterbi decoder (


1700


) only supports the


16


state convolution code at the remote encoder. The Viterbi decoder picks the path through the trellis with the maximum likelihood. The final decision is generated after a delay of 16 4D symbols, i.e. 32 symbols. A zero-delay 4D decision, i.e. a delay of 1 symbol is used for the equalizer tap update. After preceding reconstruction (


1710


), the ring indices, the uncoded bits and the differentially encoded bits are extracted and packed appropriately before transferring them to the host.




Training Decoder





FIG. 18

is a block diagram of a training decoder shown in FIG.


4


. The training decoder (


1820


) decodes the received symbols (


1810


) into received sequences. These sequences are then compared against the desired received sequences (


1830


) in order to trigger error procedures.





FIG. 19

is a block diagram of an alternative phase corrector to that shown in

FIG. 14

that will be used in the following discussion.




V.34 Phase & Amplitude Correction




1. Introduction:




As an example, this section will discuss the implementation of carrier tracker, phase jitter tracker, and amplitude jitter tracker for V.34. Although the names of the submodules are similar to their V.32bis counterparts, due to a very large constellation and high performance requirement for V.34, the actual implementation has to be modified and improved significantly, as discussed herein.




At the equalizer output, there is an adaptive gain tracker (


1900


) to bring signal towards slicing grid. This is especially useful for V.34 since there are many possible signal constellations and preceding may also change the signal power. As a result, the received data signal power may not be exactly equal to the power in training. Regular AGC is not fast enough to adjust. After the gain adjustment, the signal passes through dewarper (


1910


—nonlinear decoder) and noise whitening filter, and is scaled to 80H grid. ROTOR (


1920


) rotates the signal to remove carrier frequency offset. JTOTOR (


1930


) rotates the signal again to remove phase jitter. Then the signal is sent to Viterbi decoder (


1940


). The Viterbi decoder in V.34 is 4D-based, and the final decision is delayed by 16 4D intervals (32 bauds). If we compute the error signals based on the final decision, the errors will have a long delay, and we have to use the delayed least mean square LMS algorithm to update all the adaptation loops. This is possible, but not convenient. A different approach is used here. In addition to the regular Viterbi decoder decision, we compute an early decision—a delay


0


decision. Namely, in the Viterbi decoder, before we trace back, we make a decision for the current 4D, i.e., at the end of each 4D, we have the early decision for the two 2D symbols in this 4D. Since the decision for the first 2D in the 4D is not available until the second 2D, we have one-baud decision delay (delay 1 decision in the figure). Therefore, we still have to use DLMS, but its delay is only one baud. In the figure, each “D” block means one baud delay, and they are necessary in the DLMS algorithm.




Next, each function unit will be discussed in detail.




2. Carrier Tracker (FIG.


20


):




Note that the constant β_


2


(


2010


) should be inversely proportional to the baud rate. It is initialized in the beginning of phase


3


. In the V.34 implementation, both f and τ have double precision to improve the accuracy. In V.32bis code, only f uses double precision.




A new algorithm for computing the phase difference between two complex vectors is implemented for v.34. This algorithm is different from the one used in V.32bis, where the phase difference α between two complex vector S and D is computed as follows.






α≈sin α=(


S




r




*D




i




−S




i




*D




r


)/|


D||S


|≈(


S




r




*D




i




−S




i




*D




r


)/|


D|




2








where a is the angle between D and S. A look-up table for 1/|D| is prestored in memory to facilitate the computation. This is feasible in V.32bis since the signal constellation is limited. As a result, such a table is quite small. This is no longer feasible for V.34. V.34 has a signal constellation up to


1664


. Furthermore, the preceding may expand the constellation even further. Even though we store only a quarter of it, we still need a large memory space, and its dynamic range is big.




A new algorithm is as follows.








x


=tan α=(


S




r




*D




i




−S




1




*D




r


)/(


S




r




*D




r




+S




r




*D




r)








α=arctan (x)




26




0.999960426x-0.331837378x**3+0.184496733x**5−0.079428803x**7




Note that here we have to make sure that −1≦x′<1, i.e., −45°≦α≦45°. Hence, we can scale a such that 45° becomes 7ff. Note that this scale is 4 times bigger than the normal scaling where 7fff means 180°. This larger scale is very helpful in improving jitter tracker and carrier tracker precision. This new algorithm is more accurate than the one in V.32bis. The subroutine for this algorithm is called several times to compute the phase errors between different signals. After we get the angle, we can call another subroutine to compute the sine and cosine values, which will be used in the rotation. This subroutine is also based on power series expansion, hence no prestored table is needed. Note that the scaling for the phase error is 4 times bigger, hence should be shift right by 2 bits before calling sin/cos routine.




3. Phase Jitter Tracker:




Phase jitter is compensated in JROTOR, which rotates the signal by an angle θ, which is the output of an adaptive FIR filter(phase jitter estimator), whose input is jeph, which is the phase error between the delayed ROTOR output and delay


1


decision. The phase error jeph is actual the same as eph for the 2nd order PLL discussed above. The correction angle θ can be considered as the linear prediction of the phase error for the current baud signal based on the previous phase errors. Note that we compute the phase jitter estimator output θ before we shift in new phase error jeph.




To update the phase jitter estimator coefficients, we compute the phase error between the delayed JROTOR output and delay


1


decision. The phase error obtained is named jitt_err, and is used to update the tap coefficients.




Since phase jitters are usually very small, jout is typically very small. Also, jit_out is even smaller.




Here it is very important to fully utilize the available dynamic range. An effective technique is to scale down the filter output before storing to jout. In that way, the filter output should be bigger, so are the filter tap coefficients. Thus, for the same adaptation noise in jout, we can use a bigger step size so that underflow can be avoided. In the previous V.32bis implementation, the filter output is shift-left twice before storing to jout. This makes situation even worse. In the new implementation, the filter output is shift-right twice, and the accuracy has been improved considerably.




In V.32bis code, the adaptive phase jitter estimator has 60 taps. Since the phase jitter frequency is no larger than 300 Hz, it is possible to reduce the number of taps by down sampling. In V.34 implementation, we down sample the input jeph by 3, thus reduce the number of taps to 20 for the same filter span. The input delay line is still the same (


64


long) since we have to compute the output once every baud.




For the tap coefficient updates, since there is one baud decision delay, we have to use the DLMS algorithm. This is implemented by moving back the input buffer read pointer by 1 step in the adaptation.




4. Adaptive Gain Tracker:




In the figure above, there is an adaptive gain tracker to adaptively adjust the equalizer output gain when there is a sudden signal level hit. Besides the normal gain hit from the channel, it is very useful in the beginning of B


1


of the V.34 standard. Normally, the AGC before equalizer normalizes the signal power. However, the signals are rescaled in nonlinear decoder and after noise whitening filter. Modems from different manufacturers may differ slightly in the scaling. Although equalizer coefficient update can bring signal after scaling to the slicing grid, such an adaptive gain tracker is much quicker to adjust. Note that B


1


lasts only 35 or 40 ms, which is typically not long enough for normal equalizer adaptation.




The gain tracker (

FIG. 11

) is turned on in the beginning of B


1


. If the received signal power or the scale value in the receiver is slightly off, the signal point at the input to the Viterbi decoder will be off from the constellation grid. Since the phase errors are already compensated, the signal point and the decision point should ideally differ by the magnitude plus noise. We compute the approximate magnitude error as follows:








e


(


n


)=[


abs


(


D




r


(


n


))−


abs


(


S




r


(


n


))]+[


abs


(


D




i


(


n


))−


abs


(


S




i


(


n


))]






where D(n) and S(n) are the decision point and the signal point, respectively, and the subscript r and i mean the real and imaginary part, respectively.




Note that when the gain is too small, e(n) should be positive while if the gain is too big, e(n) should be negative. We then use e(n) to update the gain g(n):








g


(


n


)=(1


−w


)*


g


(


n


−1)+


c*e


(


n


)






where w is a leakage constant and c is the step size. g(n) is used to scale the equalizer output y(n):








y


′(


n


)=


y


(


n


)(1


+g


(


n


))






g(n) is initialized to 0. If there is a sudden gain hit, g(n) will change quickly to its proper value so that mean square value of e(n) is minimized. A small leakage constant w is used to enhance the numerical stability. After the gain is stabilized, g(n) will slowly leak to zero or a small fixed value. The gain hit is transferred gradually to the equalizer coefficients.




If AGC is running at the same time, it will adjust the signal power slowly to the nominal value, and g(n) will track the signal power accordingly.




5. Amplitude Jitter Tracker:




The adaptive gain tracker can compensate gain hit properly. However, it is not designed for compensating the amplitude jitter. In V32bis, there is a amplitude jitter canceller. It is not implemented for V.34 now. However, a design is provided below.




Firstly, the amplitude error is determined.




In order to update the adaptive phase jitter estimator, one computed the phase error between the delayed JROTOR output and delay


1


decision. Based on this phase angle, one can rotate the delayed JROTOR output signal exactly towards the delay


1


decision. After the rotation, the two signals have exactly the same phase, and they differ only by the magnitude. We can simply subtract one from the other to obtain the amplitude error vector.




A Note that the amplitude error vector is a complex vector. We can compute its magnitude as the amplitude error. We can simply compute the sum of the absolute values of its real and imaginary parts as the amplitude error. If necessary, more accurate approximation of the magnitude can be obtained by:






|


E


|≈max(


E




r




,E




i)


)+0.3.006 min(


E




r




,E




i


)






We also have to find out the sign of the amplitude error. Note that the amplitude error vector and the decisions vector are always on the same line, i.e. the angle between these two vectors is either 0 degrees or 180 degrees. If we compute the dot product of them, the result will be positive if the angle is 0 degrees and negative if the angle is 180 degrees. We then combine the amplitude error calculated above with this sign information to form the final amplitude error. Suppose one denotes the delayed JROTOR output signal by S, the delay


1


decision by D and the amplitude error vector by E we can write:







S′=Sd




j(jit


_err)








E=D−S″










amp_err=sign[


Er,*Dr+Ei*Di


]*(|


E




r




|+|E


|)






where the subscript r and I denote the real and imaginary part, respectively.




Note that this algorithm is completely different from the one used in V.32bis, where the amplitude error is computed as follows.








E=D−S










amperr=|


D|−|S|≈|D|−|S


|cos α








=(|


D|




2




−|D||S


|cos α)/|


D


|








=(


D




r




*D




r




+D




i




*D




i




−S




r




*D




r




−S




i




*D




i


)/|


D


|








=(


E




r




*D




r




+E




i




*D




i


)/|


D|








where α is the angle between D and S.




Since the look-up table 1|D| is no longer available in V.34 (it is too big to store), it is hard to use that formula. Note that there is an approximation |D|−|S|≈|D|−|S| cos α in that implementation. As a result, if there is a phase jitter, and no amplitude jitter, such an approximation will show a false amplitude jitter. In the new algorithm, there is no such an approximation, and one does not need the table for 1|D|.




The simplified amplitude error calculation algorithm discussed in the adaptive gain tracker may also be used. It is much simpler, and quite effective.




In V32bis implementation, the error signal amperr then passes through a low-pass filter, whose output is used to scale the signal before ROTOR to compensate the amplitude jitter. The low-pass filter is as follows:






amp_int=amp_int+(0.5−amp_int)/128+amperr*3/16.






It is a one-pole IIR integrator with time constant about 128 bauds.




The performance of the amplitude jitter tracker has been tested. When the amplitude jitter canceller has to track a low-frequency sinusoid amplitude jitter, the performance is not good enough to compensate the amplitude jitter, because the low-pass filter can only filter out the low frequency jitter, but can not adjust the output phase to exactly match the low frequency jitter in signal. A better design is to add an adaptive amplitude jitter estimator similar to the phase jitter estimator. Namely, we can use the previous amplitude errors to estimate the amplitude error for the current baud. Such a structure is shown in the figure below. Note the amplitude jitter is compensated at the output of equalizer so that we don't need an inverse for the equalizer error calculation. This makes the implementation more efficient. Such an adaptive amplitude jitter canceller needs some memory space and cycles, and may not be desired.




6. Error Signal for EO Update:




In

FIGS. 19 and 21

, one has shown two different alternatives for calculating error signal for updating equalizer. In the first figure, the error signal is calculated at the output of noise whitening filter, while in the second figure, the error is computed at the equalizer (


2110


) output. The 2


nd


approach seems to be ideal, however, this approach may have error propagation problem in the inverse noise whitening filter since it has an IIR structure. Therefore, in actual V.34 implementation, the first approach has been used.





FIG. 22

is an illustration of an exemplary sample command format used in accordance with one aspect of the invention. The preferred command format includes a mnemonic


2200


together with a signal table index


2210


and one or more parameters


2220


. The particular mnemonics utilized in generating code for the modem application modules are part of a language that is customized for modem applications. That is, the mnemonics cover commands relating to the various types of signals that need to be generated or processed rather than utilizing general programming commands. An op-code is associated with each mnemonic and the modem functions programmed using the modem specific language as pseudo code can be either interpreted or compiled to run as machine code on the DSP.




A list of high level state machine commands useful in implementing a modem or signal based language is shown in FIG.


23


. The command shown in Table 1 provide an extremely powerful language which expresses the generation and recognition of the necessary signals for carrying out a modem protocol. This greatly facilitates development time of modem applications and reduces code size through a terseness of expression that is very powerful.





FIG. 24

is a block diagram of the memory space of a DSP in accordance with one aspect of the invention. The DSP memory space


2400


includes a library of commands


2410


which specify the actions to be taken by the module when a particular command is asserted. There is a data area


2420


which contains a data structure for each of the modules. The data structure has two components. The first is a parameter portion MPB and the second is a data result portion MDB. As each module is called, the sequencer extracts needed information from the data area and passes an MPB data structure containing the parameters required for the call to the module. The module executes and returns an MDB portion of the data structure containing the results of execution. Thus, all data required for execution of the modem functionality is contained in a separate data area and is selectively extracted for use in execution of the modules. All state information is contained within the data area. Thus, as events occur in the DSP, the contents of particular fields of the data area may change, which then results in changed data when a module is called for execution.




A particularly advantageous way of arranging the programming flow for the DSP when using a modem application involves the way in which the transmit sequencer and receive sequencer are generated. Each of these modules is implemented without any branching. That is, every statement is executed every time in the same sequence. As shown in

FIG. 24

, as reflected in

FIG. 3

, the transmit sequencer is executed and then followed by the receive sequencer


2440


on a repetitive ongoing basis. Thus, the transmit sequencer


2430


will execute every one of its statements and then the receive sequencer


2440


will execute every one of its statements and then return to the transmit sequencer


2430


for execution of each one of its statements again and so on. The combination of batch processing of symbols, the avoidance of any branching or conditional commands together with the arrangement of all data in a common data area in memory ensures very high performance execution of modem functionality.





FIG. 25

is a flow chart of a load and execution sequence of modules on a DSP in accordance with one aspect of the invention. When modem services are required on the DSP, it will be initiated by an operating system call (


2500


). When


1


that occurs, the transmit init module


2510


and the receive init module


2520


will execute setting up the respective sequencers optionally at this point the transmit and receive init modules have been overwritten or removed from the DSP providing additional memory space. The transmit sequencer


2530


and the receive sequencer


2540


then operate substantially continuously in a loop until the state of the data in the data area indicates that the communications have ended. At which time they will terminate operation.





FIG. 26

is a flow chart showing more detail of the transmit init module shown in FIG.


25


. When the transmit init module is called, it will initialize the training encoder (


2600


), initialize the modulator (


2610


), initialize the echo canceller (


2620


) and initialize the analog transmit interface (


2630


).




The functional modules discussed earlier in conjunction with the operation of a modem are for the most part implemented in software. Thus the initialization of these functional blocks is discussed in FIG.


26


and subsequent figures involves the loading of the software for a particular functional module and setting up the appropriate relationships among the modules so that the modem functions can occur. Some of the modules interface with hardware devices. For example, the codec arrays which provide the samples of signal levels on an incoming analog line and convert digital samples to analog for placement on that line have a hardware aspect to them in that they are initialized and readied for operation by software commands issued from, typically, a device driver or equivalent.





FIG. 27

is a flow chart showing in more detail the receive unit module shown in FIG.


25


. When the receive init module is called, it initializes the train decoder (


2700


), the a tone detector (


2710


), the receive demodulator (


2720


), the equalizer (


2730


), the echo canceller (


2740


), the phase corrector (


2750


) and the analog receive interface (


2760


).





FIG. 28

is a flow chart showing in more detail the transmit sequencer (TxSequencer) shown in FIG.


25


. The transmit sequencer calls the encoder for processing one or more signal samples into symbols for transmission (


2800


). When that is done, the sequencer checks for a new state (


2810


) and then calls the modulator (


2820


) to prepare one or more symbols for transmission (


2820


). The sequencer then calls the echo canceller to provide the signal values necessary for echo cancellation in the modem (


2830


).





FIG. 29

is a flow chart showing in more detail the receive sequencer (RxSequencer) shown in FIG.


25


. Like the transmit sequencer, the receive sequencer calls a plurality of modules in sequence. It first calls the receive demodulator module. The receive demodulator will check to see if the number of signal samples received is equal to some number N. N can, of course, be 1 but preferably is larger than 1 to permit batch processing of the samples. Then the sequencer calls detect tone to determine whether or not certain tones exist within the incoming signal. Typically, these are control tones such as S used in the V.34 sequences. The sequencer then calls the equalized (


2910


), recover signal (


2915


), cancel echo (


2920


), phase control (


2925


), parse new state (


2930


), phase correct update (


2935


), and disposition of data (


2940


) in sequence.





FIG. 30

is a block diagram of an alternative memory space arrangement to that shown in FIG.


24


. In this arrangement, transmit sequencer


2430


and the receive sequencer


2440


do not operate sequentially but rather in parallel. Synchronization between the two running sequencers is achieved through reference to the data area. It is sometimes the case that, when processing modem sequences such as V.34, that certain symbols or tones must be transmitted until a response is received from the receiver. Thus the transmitter might be transmitting tone of a given duration which can be interrupted when the proper tone or response is received from the receiver. Since the DSP is a multi stream DSP, separate streams can be processed through the transmit sequencer and the receive sequencer so that each can operate relatively independently of the other, except when needed.





FIG. 31

is flow chart of a process for batch processing of received samples in accordance with one aspect of the invention. As discussed above, the analog signal from the analog line is sampled utilizing a codec and the receive samples are stored in a buffer (


3100


). Once the number of samples received equal sum value N (


3110


) the receive sequencer will detect that the number of samples has reached the level required for processing and will process those samples as described above. If the number of samples received is less then N, the receive sequencer will detect that, and no samples will be processed. Although this appears to be a branching operation, in implementation it is not. As the codec is serviced and samples are found in the buffer, the count of samples will be stored in the data area of the DSP and incremented as new samples are received and processed. The receive sequencer will refer to that value. If the value is less than N, subsequent steps will not have arguments and nothing will occur. The next module will then run. However, if the number of samples received is N or more, there will be proper arguments for the code handling the received samples and the samples will be processed as described above.





FIG. 32

is a flow chart of a process for batch processing of transmitted samples in accordance with one aspect of the invention. This process is analogous to that described in conjunction with FIG.


31


. Samples are received over the bus for sending over an analog line and storing in a buffer (


3210


). If the number of samples to be sent is equal to N (


3220


), the transit sequencer is called (


3230


).





FIG. 33

is a flow chart of a process for controlling modem processing functions based on received symbol rate. As discussed previously, various symbol rates are appropriate to corresponding phases or time intervals of modem operation. For example, in various training phases, the symbol rate is specified to be a fixed value. However, when transmitting data outside of the training phases, the symbol rate is preferably much higher. This is one point where the:symbol base language, described previously, has considerable advantages. By structuring the modem functionality in terms of a symbol based language, when incoming samples are received from an analog line (


3300


) those samples will be converted to symbols (


3310


). Those symbols can arrive quickly or those symbols can arrive slowly depending on the symbol rate on the communications line. Since the modem functions are based on arriving symbols, the modem processing functions automatically adapt to the symbol rate. If many symbols arrive in a given unit of time, they will be processed quickly. If fewer symbols arrive in a given unit of time, they will be processed more slowly. Thus, the signal processing operations adapt automatically to the incoming symbol rate and execute only when needed based on the arrival of the symbols. Thus, many of the difficulties associated with programming modems to account for various symbol rates are eliminated. The modem processing functions adapt automatically based on symbol rate because of the symbol processing language utilized in the modem code.





FIG. 34

is a block diagram showing use of both host based controllerless modems (


3410


) and DSP based modems (


3420


).




As discussed in the aforementioned co-pending application, one or more controllerless modems may be resident on the host and operate from the memory space of the host. Similarly, as described herein, one or more modems may be loaded into the DSP and run from the memory space of the DSP. The fact that DMA transfer can be utilized to swap code in and out of the DSP as needed to operate modems suggest that not only individual modules of modem code may be swapped in and out but in fact entire modem code stacks could be swapped in and out of the DSP as required. This creates a very flexible architecture in which a modem can be run either using the host processor or using the DSP. If one desired to use a common language for all modem code, differences in instruction sets for the host and the DSP processors can be accommodated by different command libraries which would handle the common command language mapping to the machine instructions appropriate for the host or the DSP. In this way, a very flexible modem architecture is achieved in which a plurality of communication functions can occur in an ongoing manner using the resources of either the host or the DSP or both.




There has thus been described a number of significant improvements in modem technology which provide both high performance and excellent quality modem processing but ease of design and implementation as well.




Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims and their equivalents.



Claims
  • 1. A device comprising:a digital signal processor comprising: a plurality of serial ports, a plurality of general purpose input-output ports, and a stream processing operating system to manage operation of signal processing by the digital signal processor; an audio portion to receive audio data comprising one or more audio codecs; and a modem portion to receive communications data comprising: one or more modem codecs, and a data access arrangement coupled with at least one of the plurality of the general input-output ports, and coupled with one or more of the modem codecs, the data access arrangement to transmit ringing information from a signaling portion of the communications data to the digital signal processor via the at least one of the plurality of general input-output ports, and to transmit a non-signaling portion of the communications data to the one or more modem codecs.
  • 2. The device of claim 1, wherein the stream processing operating system manages a plurality of tasks.
  • 3. The device of claim 1, wherein the audio portion further comprises one or more line drivers to transmit audio data to the one or more audio codecs.
  • 4. A digital signal processor comprising:a plurality of serial ports, wherein the digital signal processor is to receive audio data and a non-signaling portion of communications data from the serial ports; a plurality of general purpose input-output ports, wherein the digital signal processor is to receive ringing information from a signaling portion of communications data from the general purpose input-output ports; and, a stream processing operating system to manage operation of signal processing by the digital signal processor.
  • 5. The device of claim 4, wherein the stream processing operating system manages a plurality of tasks.
  • 6. A method comprising:receiving audio data; receiving communications data; converting the audio data; separating the communications data into a signaling portion and a non-signaling portion; converting the non-signaling portion; processing the signaling portion; processing the converted audio data and the converted non-signaling portion; transmitting the processed audio data; transmitting the processed non-signaling portion; and transmitting ringing information from the signaling portion.
  • 7. The method of claim 6, wherein converting the audio data comprises converting an analog audio signal to a digital audio signal.
  • 8. The method of claim 6, wherein converting the non-signaling portion comprises converting an analog communications signal to a digital communications signal.
  • 9. The method of claim 6, wherein converting the audio data comprises converting a digital audio signal to an analog audio signal.
  • 10. The method of claim 6, wherein converting the. non-signaling portion comprises converting a digital communications signal to an analog communications signal.
  • 11. A system comprising:a computer host; a bus coupled to the computer host; and a device coupled to the bus comprising: a digital signal processor comprising: a plurality of serial ports, a plurality of general purpose input-output ports, and a stream processing operating system to manage operation of signal processing by the digital signal processor, an audio portion to receive audio data comprising one or more audio codecs; and a modem portion to receive communications data comprising: one or more modem codecs; and a data access arrangement coupled with at least one of the plurality of the general input-output ports, coupled with one or more modem codecs, to transmit ringing information from a signaling portion of the communications data to the digital signal processor via the at least one of the plurality of general input-output ports, and to transmit a non-signaling portion of the communications data to the one or more modem codecs.
  • 12. The system of claim 11, wherein the stream processing operating system manages a plurality of tasks.
  • 13. The system of claim 11, wherein the bus is a PCI bus.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to U.S. patent application Ser. No. 08/832,622 filed Mar. 31, 1997, by inventors Jim Bader, Scott Deans, Rob Miller, Richard P. Tarquini, Bankim Wani and Jack Waters, entitled “CONTROLLERLESS MODEM”, now U.S. Pat. No. 6,353,857. This application is related to U.S. patent application Ser. No. 08/775,769 filed Dec. 31, 1996, by inventor Guozhu Long, entitled “PRECODING COEFFICIENT TRAINING IN A V.34 MODEM”, now U.S. Pat. No. 6,134,265. It is also related to: U.S. patent application Ser. No. 09/160,332, filed Sep. 25, 1998 by inventors Amir Hindie and Karl Leinfelder, and entitled “MODEM USING A DIGITAL SIGNAL PROCESSOR AND A SIGNAL BASED COMMAND SET”, now U.S. Pat. No. 6,490,628. U.S. patent application Ser. No. 09/160,576, filed Sep. 25,1998 by inventors Amir Hindie and Karl Leinfelder, and entitled “MODEM USING A DIGITAL SIGNAL PROCESSOR AND SIMPLIFIED EXECUTION CODE”, U.S. Pat. No. 6,557,061. U.S. patent application Ser. No. 09/160,578, files Sep. 25, 1998, by investor Amir Hindie and Karl Leinfelder, and entitled “MODEM USING A DIGITAL SIGNAL PROCESSOR AND SEPARATE TRANSMIT AND RECEIVE SEQUENCERS.” U.S. patent application Ser. No. 09/160,571, filed Sep. 25, 1998, by inventors Amir Hindie and Karl Leinfelder, and entitled “A MODEM USING BATCH PROCESSING OF SIGNAL SAMPLES.” U.S. patent application Ser. No. 09/160,570, filed Sep. 25, 1998, by inventors Amir Hindie and Karl Leinfelder, and entitled “A MODEM WITH CODE EXECUTION ADAPTED TO SYMBOL RATE”, now U.S. Pat. No. 6,502,138. U.S. patent application Ser. No. 09/160,331, filed Sep. 25, 1998, by inventors Sebastian Gracias and Jim Beaney, and entitled “CODE SWAPPING TECHNIQUES FOR A MODEM IMPLEMENTED ON A DIGITAL SIGNAL PROCESSOR”, now U.S. Pat. No. Ser. 6,351,781. U.S. patent application Ser. No. 09/160,572, filed Sep. 25, 1998, by inventors David Pearce, Wesley Smith, Karl Nordling, Amir Hindie, Karl Leinfelder, Sebastian Gracias and Jim Beaney, and entitled “A MULTI-MODEM IMPLEMENTATION WITH HOST BASED AND DIGITAL SIGNAL PROCESSOR BASED MODEM”, now U.S. Pat. No. 6,374,321. U.S. patent application Ser. No. 09/160,587, filed Sep. 25, 1998, by inventors Guozhu Long and Jim Beaney, and entitled “SYNCHRONIZATION TECHNIQUES USING AN INTERPOLATION FILTER”, now U.S. Pat. No. 6,560,176. U.S. patent application Ser. No. 09/160,577, filed Sep. 25, 1998, by inventors Guozhu Long and Jim Beaney, and entitled “A MODEM WITH A FAST GAIN TRACKER.” U.S. patent application Ser. No. 09/160,538, filed Sep. 25, 1998, by inventor Jim Beaney, and entitled “A TONE DETECTOR FOR USE IN A MODEM.”

US Referenced Citations (163)
Number Name Date Kind
3872437 Cross Mar 1975 A
4077021 Csajka et al. Feb 1978 A
4285061 Ho Aug 1981 A
4355388 Deal, Jr. Oct 1982 A
4365331 Biba et al. Dec 1982 A
4521643 Dupuis et al. Jun 1985 A
4549302 Heatherington Oct 1985 A
4644561 Paneth et al. Feb 1987 A
4665519 Kirchner et al. May 1987 A
4675863 Paneth et al. Jun 1987 A
4718082 Parker et al. Jan 1988 A
4742482 Inskeep et al. May 1988 A
4797898 Martinez Jan 1989 A
4800559 Florea et al. Jan 1989 A
4870370 Hedberg et al. Sep 1989 A
4890316 Walsh et al. Dec 1989 A
4891806 Farias et al. Jan 1990 A
4910610 Utsugi Mar 1990 A
4943980 Dobson et al. Jul 1990 A
4965641 Blackwell Oct 1990 A
4989232 Tsumura Jan 1991 A
5005168 Cummiskey et al. Apr 1991 A
5014269 Picandet May 1991 A
5023869 Grover et al. Jun 1991 A
5040190 Smith et al. Aug 1991 A
5050075 Herman et al. Sep 1991 A
5115451 Furlong May 1992 A
5119403 Krishnan Jun 1992 A
5146472 Hallman Sep 1992 A
5170470 Pindar et al. Dec 1992 A
5185763 Krishnan Feb 1993 A
5189663 Williams Feb 1993 A
5212774 Grider et al. May 1993 A
5216519 Daggett et al. Jun 1993 A
5222077 Krishnan Jun 1993 A
5283811 Chennakeshu et al. Feb 1994 A
5283900 Frankel et al. Feb 1994 A
5295156 Heep et al. Mar 1994 A
5313580 Remion May 1994 A
5317594 Goldstein May 1994 A
5331416 Patel et al. Jul 1994 A
5339416 Nakagami et al. Aug 1994 A
5347304 Moura et al. Sep 1994 A
5384780 Lomp et al. Jan 1995 A
5388124 Laroia et al. Feb 1995 A
5392348 Park et al. Feb 1995 A
5392448 Frankel et al. Feb 1995 A
5396519 Betts et al. Mar 1995 A
5418778 Cummiskey et al. May 1995 A
5432794 Yaguchi Jul 1995 A
5442694 Chitrapu et al. Aug 1995 A
5442789 Baker et al. Aug 1995 A
5446759 Campana, Jr. Aug 1995 A
5450530 Snyder et al. Sep 1995 A
5463661 Moran, III et al. Oct 1995 A
5495246 Nichols et al. Feb 1996 A
5511067 Miller Apr 1996 A
5535417 Baji et al. Jul 1996 A
5541955 Jacobsmeyer Jul 1996 A
5557762 Okuaki et al. Sep 1996 A
5572675 Bergler Nov 1996 A
5579305 Norrell et al. Nov 1996 A
5598433 Kaku et al. Jan 1997 A
5600712 Hanson et al. Feb 1997 A
5604870 Moss et al. Feb 1997 A
5615298 Chen Mar 1997 A
5625678 Blomfield-Brown Apr 1997 A
5627539 Lynch et al. May 1997 A
5633890 Ahmed May 1997 A
5634058 Allen et al. May 1997 A
5638400 Yaguchi Jun 1997 A
5644593 Bailey et al. Jul 1997 A
5654983 Sauser, Jr. Aug 1997 A
5673392 Nakashima et al. Sep 1997 A
5678059 Ramaswamy et al. Oct 1997 A
5687222 McLaughlin et al. Nov 1997 A
5693901 Matsunaga et al. Dec 1997 A
5694428 Campana, Jr. Dec 1997 A
5710768 Ziv et al. Jan 1998 A
5715238 Hall, Jr. et al. Feb 1998 A
5719922 Bremer et al. Feb 1998 A
5721830 Yeh et al. Feb 1998 A
5722040 Bjerede et al. Feb 1998 A
5724534 Boursier et al. Mar 1998 A
5727233 Lynch et al. Mar 1998 A
5734577 Chesir et al. Mar 1998 A
5734676 Dingsor Mar 1998 A
5742641 Dingsor Apr 1998 A
5742644 Campana, Jr. Apr 1998 A
5761240 Croucher et al. Jun 1998 A
5764708 Glass Jun 1998 A
5765025 Morimoto et al. Jun 1998 A
5768311 Betts Jun 1998 A
5784597 Chiu et al. Jul 1998 A
5787305 Chen Jul 1998 A
5790594 Peng Aug 1998 A
5790895 Krontz et al. Aug 1998 A
5796958 Koenzen Aug 1998 A
5799169 Kalapathy Aug 1998 A
5802153 Sridhar et al. Sep 1998 A
5802307 Melo Sep 1998 A
5802544 Combs et al. Sep 1998 A
5812820 Loram Sep 1998 A
5815707 Krause et al. Sep 1998 A
5864710 Sands et al. Jan 1999 A
5870429 Moran, III et al. Feb 1999 A
5872810 Philips et al. Feb 1999 A
5889982 Rodgers et al. Mar 1999 A
5892980 Tal et al. Apr 1999 A
5896449 Oshidari et al. Apr 1999 A
5905476 McLaughlin et al. May 1999 A
5907842 Mennemeier et al. May 1999 A
5909463 Johnson et al. Jun 1999 A
5909559 So Jun 1999 A
5912895 Terry et al. Jun 1999 A
5925114 Hoang Jul 1999 A
5937348 Cina et al. Aug 1999 A
5946348 Mizutani et al. Aug 1999 A
5953534 Romer et al. Sep 1999 A
5954811 Garde Sep 1999 A
5968158 Andrews et al. Oct 1999 A
5982814 Yeh et al. Nov 1999 A
5983255 Musicus et al. Nov 1999 A
5987590 So Nov 1999 A
5991634 Hui et al. Nov 1999 A
5995540 Draganic Nov 1999 A
5995557 Srinivasan Nov 1999 A
6002682 Bellenger et al. Dec 1999 A
6002684 McVerry Dec 1999 A
6023150 Frank et al. Feb 2000 A
6023493 Olafsson Feb 2000 A
6026120 Betts Feb 2000 A
6026150 Frank et al. Feb 2000 A
6038629 Ogilvie et al. Mar 2000 A
6041140 Binns et al. Mar 2000 A
6061779 Garde May 2000 A
6088326 Lysejko et al. Jul 2000 A
6091722 Russell et al. Jul 2000 A
6105119 Kerr et al. Aug 2000 A
6111710 Feyh et al. Aug 2000 A
6111919 Yonge, III Aug 2000 A
6111949 Sheets et al. Aug 2000 A
6112260 Colterjohn et al. Aug 2000 A
6125399 Hamilton Sep 2000 A
6128370 Barazesh et al. Oct 2000 A
6134233 Kay et al. Oct 2000 A
6134605 Hudson et al. Oct 2000 A
6138190 Nordling Oct 2000 A
6141706 Thornton et al. Oct 2000 A
6154489 Kleider et al. Nov 2000 A
6154499 Bhaskar et al. Nov 2000 A
6179489 So et al. Jan 2001 B1
6181258 Summers et al. Jan 2001 B1
6185628 Sands et al. Feb 2001 B1
6212566 Vanhoof et al. Apr 2001 B1
6256723 Hudson et al. Jul 2001 B1
6298370 Tang et al. Oct 2001 B1
6327264 Terry et al. Dec 2001 B1
6333974 Liang et al. Dec 2001 B1
6339613 Terry Jan 2002 B2
6490628 Hindie et al. Dec 2002 B2
6496572 Liang et al. Dec 2002 B1
6502138 Hindie et al. Dec 2002 B2
Foreign Referenced Citations (6)
Number Date Country
472386 Feb 1992 EP
0 740 253 Oct 1996 EP
0 788 057 Aug 1997 EP
227108 Aug 1989 JP
03187512 Aug 1991 JP
WO96-35286 Nov 1996 WO
Non-Patent Literature Citations (6)
Entry
Conklin Systems, Analysis on MOS, Dec. 26, 1990.
Intel Corporation, Audio/Modem Riser Specification, Rev. 101, Sep. 10, 1998. pp. 1-24.
“A Modem Operating at Data Signalling Rates of up to 33600 bit/s for Use on the General Switched Telephone Network and on Leased Point-to-Point 2-Wire Telephone-Type Circuits”, ITU 1993-1996, V.34 pps. 1-70.
Yeung et al., Design of Multi-Channel Modem for Remote Access Server.
IBM Technical Disclosure Bulletin, NN8306261, Jun. 1983.
“Host Signal Processing, Part II”, Motorola, 1996, downloaded from http://www.mot.com/MIMS/ISG/Papers/host_signal_proc_wp/page2.html, pps. 1-3.