The embodiments as disclosed herein relate to a vehicle suspension arrangement, and in particular to a vehicle suspension arrangement for a heavy duty, commercial-type vehicle that includes a trailing arm-type suspension arrangement, where the suspension arrangement includes a trailing arm connection assembly providing a connection between the trailing arm and the other elements of the suspension assembly.
One embodiment includes a vehicle suspension arrangement that includes a mounting bracket configured to be secured to a vehicle frame member, a trailing arm having a first end and a second end, an air spring assembly configured to bias the second end of the trailing arm from the vehicle frame member, an axle assembly couple to the trailing arm along a length thereof, and a trailing arm connection assembly pivotably coupling the first end of the of the trailing arm to the mounting bracket. The first trailing arm connection assembly includes a first connector having a first portion received within a first aperture of the mounting bracket, and a second portion extending outwardly from the first portion and including an aperture, a bushing member received within the first end of the trailing arm, a pin member received within the bushing member and including a first aperture, and a first mechanical fastener received within the first aperture of the pin member and within the aperture of the second portion of the first connector, thereby pivotably securing the trailing arm to the mounting bracket.
Another embodiment includes a vehicle suspension arrangement that includes a mounting bracket configured to be secured to a vehicle frame member, a trailing arm having a first end and a second end, an air spring assembly configured to bias the second end of the trailing arm from the vehicle frame member, an axle assembly couple to the trailing arm along a length thereof, and a trailing arm connection assembly pivotably coupling the first end of the of the trailing arm to the mounting bracket. The first trailing arm connection assembly includes a first connector having a cylindrically-shaped first portion received within a first aperture of the mounting bracket, and a second portion extending outwardly from the first portion and including an aperture, a second connector having a cylindrically-shaped first portion received within a second aperture of the mounting bracket, and a second portion extending outwardly from the first portion of the second connector and including an aperture, and a bushing member received within the first end of the trailing arm. The first trailing arm connection assembly further includes a pin member received within the bushing member and including a first aperture located proximate a first end of the pin member and a second aperture located proximate a second end of the pin member, and a first mechanical fastener received within the first aperture of the pin member and within the aperture of the second portion of the first connector, and a second mechanical fastener received within the second aperture of the pin member and within the aperture of the second portion of the second connector, thereby pivotably securing the trailing arm to the mounting bracket.
Yet another embodiment includes a connector member configured to pivotably couple a trailing arm to a mounting bracket of a heavy duty vehicle suspension arrangement that includes a cylindrically-shaped first portion configured to be received within an aperture of a mounting bracket, the first portion including a longitudinally extending bore, an arm portion extending in an axial direction from the first portion and including an aperture configured to receive a mechanical fastener therein, and at least one tab member extending radially outward from the first portion, wherein the at least one tab member is configured to be received within a notch of the aperture of the mounting bracket thereby preventing misalignment of the connector member with the mounting bracket.
The embodiments of the vehicle suspension arrangement as shown and described herein provide a relatively uncomplicated design for connecting a trailing arm of the suspension arrangement with other elements of the suspension arrangement, may be easily and quickly assembled without the use of specialized tools, is economical to manufacture, is capable of being used across various suspension platforms, is capable of a long operating life, and is particularly well adapted for the proposed use.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following written specification, claims, and appended drawings.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and the embodiments thereof shall relate to the embodiment as oriented in
The reference numeral 10 (
The trailer 14 includes a trailer body 18 supported by a trailer frame assembly 20 in turn supported by a trailer suspension arrangement 22. As best illustrated in
As best illustrated in
The trailer suspension arrangement 22 further includes a trailing arm connection assembly 56 that includes a lower trailing arm connection assembly 58 and an upper trailing arm connection assembly 60 that pivotably couple to the lower trailing arm 32 and the upper trailing arm 30 to the mounting bracket 24, respectively. As the lower trailing arm assembly 58 and the upper trailing arm connection assembly 60 are relatively similar in configuration, only the lower trailing arm connection assembly 58 is described in detail herein. The lower trailing arm connection assembly 58 includes a pair of connectors including a first connector 62 and a second connector 64. As each of the connectors 62, 64 are similar in construction and configuration only the first connector 62 is described in detail herein. The connector 62 (
The lower trailing arm connection assembly 58 further includes an elastomeric bushing member 78 having a central aperture 80, and a pin member 82 having a first aperture 84 located proximate a first end 85 and a second aperture 86 located proximate a second end 87.
In assembly the first and second connectors 62, 64 are aligned with and inserted into the corresponding apertures 50, 52 of the mounting bracket 24, such that the alignment tabs 71 are aligned with and received within the alignment notches 54. The alignment tabs 71 and the alignment notches 54 assure proper alignment of the connectors 62 and 64 within the apertures 50, 52. It is noted that the radial location of the notches 54 about the associated apertures 50, 52 may be varied to account for and better support loads exerted on the connection assembly 58. For example, as illustrated in
The reference 56a generally designates an alternative embodiment of the trailing arm connection assembly. Since the trailing arm connection assembly 56a is similar to the previously described trailing arm connection assembly 56, similar parts appearing in
The embodiments of the vehicle suspension arrangement as shown and described herein provide a relatively uncomplicated design for connecting a trailing arm of the suspension arrangement with other elements of the suspension arrangement, may be easily and quickly assembled without the use of specialized tools, is economical to manufacture, is capable of being used across various suspension platforms, is capable of a long operating life, and is particularly well adapted for the proposed use. These embodiments further allow integration of one half of a bar-pin or pin member casting connection into a stamped clevis wall, a bar-pin casting that allows for a load optimization orientation, a connection arrangement that may be configured to prevent incorrect alignment between components, a bar-pin that may be tapped or machined to accept standard fasteners, may include elastomeric bushings that transmit load forces from the trailing arm to the associated bar-pin while absorbing vibration and noise, allow for unlimited rotational movement while limiting or preventing bushing wind-up, and may be configured for both fixed and alignment adjustment applications.
In the foregoing description, it will be readily appreciated by those skilled in the art that modifications may be made to the embodiments as disclosed herein without departing from the concepts as disclosed herein. Such modifications are to be considered as included in the following claims, and unless these claims by their language expressly state otherwise.
Number | Date | Country | |
---|---|---|---|
62631162 | Feb 2018 | US |