The invention relates to the field of microwave tunable devices.
(Ba,Sr)TiO3 (BST), Ni or Mn doped BST, (Ba,Zr)TiO3 (BZT) (Ba,Hf)TiO3 (BHT), SrTiO3 (ST), Bi2(Zn1/3Nb2/3)O7 (BZN) and related thin films are promising materials for tunable microwave devices applications such as electronically tunable mixers, oscillators, and phase shifters and filters. From this point on, when BST is mentioned, it is understood that it is representative of one or more related perovskite-like tunable dielectric materials. These days, the majority of research and development related to ferroelectric thin films for microwave tunable device applications are based on the BST series films grown on single crystal substrates such as MgO, LaAlO3, SrTiO3 and Al2O3. These substrates promote epitaxial growth of the ferroelectric thin films and provide lower substrate loss. To conveniently exploit the advantages of miniaturization and Si process compatibility, it is essential to integrate BST onto Si substrates.
According to one aspect of the invention, there is provided a tunable microwave device. The tunable microwave device includes a SOI (Silicon-On-Insulator) structure. A buffer layer is formed on the SOI structure. A microwave film layer is formed on the buffer layer. The microwave film layer comprises BST related materials.
According to another aspect of the invention, there is provided a method of developing a tunable microwave device. The method includes providing a SOI structure. A buffer layer is formed on the SOI structure. Also, the method includes forming a microwave film layer on the buffer layer. The microwave film layer comprises BST related materials.
In order to integrate BST and related films onto Si substrates, several key criteria must be satisfied. First the films must be of high quality to optimize the high tunability and low dielectric loss. Higher tunability and lower loss tangent are highly desired in a high-efficiency tunable device. However, as it is not easy to obtain high tunability and low loss tangent simultaneously, compromises are needed in order to achieve both acceptable levels of tunability and loss tangent. Second, the films must be sufficiently separated from the lossy Si substrate. In principle, one could utilize high resistivity Si substrates or utilize micromachining to remove the lossy Si areas from below the microwave devices. However, these solutions lack compatibility with current Si processes and complicate integration with Si electronics on the same wafer.
A buffer layer 6 is formed on the SOI structure 4 using techniques described herein.
The SOI substrates 4, 20, 34 used in the invention can have typical dimensions of e.g. Si (less than 50 nm)/SiO2(3000 nm)/Si substrate. The thin Si layer 22,38 used in the invention may be initially thicker if the oxidation steps are successful in reducing the residual Si thickness to less than or equal to approximatedly 50 nm. The 3000 nm thick SiO2 will ultimately serve to isolate the microwave film layers 14, 28, 44 from the lossy Si substrates 12, 26, 42. Also one can use high resistivity (>2 kΩ) Si as a Si layer in the SOI substrates 4, 20, 34 in order to reduce conducting loss by a Si substrate. The buffer layers 6, 27, 36 have a thickness less than 200 nm, and prevent chemical reactions between the Si layers 8, 22, 38 and the microwave layers 14, 28, 44. Also, the buffer layers 6, 27, 36 are used to control the orientation and quality of the microwave film layers 14, 28, 44. The buffer layers can be comprised of MgO, LaAlO3, Al2O3, YSZ, CeO2, MgAl2O4, or some combination of these materials.
Also a very thin Ba1-xSrxTiO3 (x=1˜0.7) seed layer (thickness less than 50 nm) can be used to control the microwave film layer orientation and film quality. If the starting SOI substrate has a Si layer thickness of greater than ˜50 nm, oxidation of the Si layer can be carried out by diffusion of the oxygen from the atmosphere through the deposited layers either following the buffer layer growth or a microwave film layer film growth. Obviously, the oxidation step may be carried out even if a Si layer is less than 50 nm thick.
Although the present invention has been shown and described with respect to several preferred embodiments thereof, various changes, omissions and additions to the form and detail thereof, may be made therein, without departing from the spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
60607690 | Sep 2004 | US |