1. Technical Field
The present disclosure relates to a carbon canister as part of a fuel vapor management system on an automotive vehicle.
2. Background
For many years, carbon canisters containing activated carbon pellets have been used on automotive vehicles to reduce or prevent fuel vapors from a vehicle fuel tank escaping to atmosphere. In a typical application, the vapor storage canister is coupled to the vehicle fuel tank as well as the vehicle engine with a vent valve to atmosphere. The activated carbon pellets in the canister absorb fuel vapors from the fuel tank during a storage mode, such as when the fuel tank is being filled. The stored fuel vapors are periodically purged from the carbon pellets during a purge mode by passing air from atmosphere over the pellets to desorb the fuel, with the fuel vapor inducted by the engine and combusted during engine operation. The carbon pellets are added to the canister during assembly. Typically, a permanent filter, such as a foam filter, is installed at each entry/exit port to retain the pellets and any small particles that may break off of the pellets during assembly or subsequent operation. The size of each port is determined in conjunction with the filter characteristics to maintain a desired flow rate through the filter/port while accommodating some reduction in flow rate due to anticipated filter clogging. A decreased filter/port flow rate may result in incomplete purging of the stored fuel vapors during certain, regulated driving events. It is known in the prior art to provide a filter at each entry/exit port of the carbon canister to prevent the activated carbon pellets from migrating out of the carbon canister. It is also known in the prior art to affix tubes to the carbon canister housing to provide entry/exit ports. The resulting carbon canister is assembled of many parts. It is desirable to reduce the number of parts to be assembled to reduce cost and parts complexity and to increase robustness of the carbon canister.
To overcome at least one problem in the prior art, a carbon canister is disclosed in which a strainer and a tube for making connections to the carbon canister are molded integrally with the carbon canister housing. The strainer has orifices with a width less than a width of the average carbon pellet to prevent carbon pellets from exiting the carbon canister. By molding the tube and strainer integrally with the carbon canister, the need for affixing separate tube and filters is obviated. According to one embodiment of the present disclosure, the strainer extends into the carbon canister cavity in 3 dimensions to provide a large surface area with orifices so that pressure drop across the strainer is minimized.
An advantage of the present disclosure is that by integrally molding in the tube and the strainer with the carbon canister housing, the number of individual parts to assembly a carbon canister is reduced. This makes assembly simpler, less prone to assembly mistakes, and cheaper. The carbon canister is more robust by having the parts integrally molded with the carbon canister housing. Any one tube, such as the tube coupled to the fuel tank, can be integrally molded with the canister housing. Alternatively, any combination of the strainers and tubes can be integrally molded.
Yet another advantage of the present disclosure is that because the strainer extends into 3 dimensions, the surface area of the strainer is greater than it would be if the strainer surface was planar. A planar strainer configuration is able to accommodate fewer orifices than a strainer with a more convoluted surface. Because the 3-dimensional strainer has more orifices, it can accommodate more occlusion of orifices by carbon pellets without suffering such a large pressure drop across the strainer as compared to a filter or a planar strainer configuration.
As those of ordinary skill in the art will understand, various features of the embodiments illustrated and described with reference to any one of the Figures may be combined with features illustrated in one or more other Figures to produce alternative embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. However, various combinations and modifications of the features consistent with the teachings of the present disclosure may be desired for particular applications or implementations. Those of ordinary skill in the art may recognize similar applications or implementations whether or not explicitly described or illustrated.
When an automotive fuel tank is filled, fuel vapor laden air is displaced by fuel. To prevent those fuel vapors from entering the atmosphere, fuel tank 10 is provided with a fuel vent 12 communicating to a carbon canister 14 filled with activated carbon pellets via port 16, as shown schematically in
The activated carbon pellets have a limited ability to store fuel and, therefore, must be purged so that they can once again absorb fuel vapor displaced from fuel tank 10. This is accomplished by pulling fresh air through the carbon pellet bed within carbon canister 14 and inducting that air, which contains desorbed fuel, through port 22 into an operating internal combustion engine 20, as shown in
In
In
In
According to one embodiment, strainer 32 of
Referring to
In
Surfaces of strainers 32, 32′, 34, 37, and 39 are 3-dimensional. Each of these embodiments is generally convex as viewed from cavity 28. However, these are non-limiting examples. A strainer having a surface with a concave portion as viewed from cavity 28 is a further alternative.
In
As such, the present disclosure provides a tube for attachment and a strainer integrally molded with the carbon canister housing to obviate the need for a separate filter element or a separately attached tube, thereby reducing system complexity and cost. Because the strainer extends into 3 dimensions, the surface area is increased and can accommodate more openings to provide a desired flow rate while tolerating some blockage by pellets or particles such that purge times are not adversely impacted due to strainer blockage.
While the best mode has been described in detail with respect to particular embodiments, those familiar with the art will recognize various alternative designs and embodiments within the scope of the following claims. While various embodiments may have been described as providing advantages or being preferred over other embodiments with respect to one or more desired characteristics, as one skilled in the art is aware, one or more characteristics may be compromised to achieve desired system attributes, which depend on the specific application and implementation. These attributes include, but are not limited to: cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. The embodiments described herein that are characterized as less desirable than other embodiments or prior art implementations with respect to one or more characteristics are not outside the scope of the disclosure and may be desirable for particular applications.
Number | Name | Date | Kind |
---|---|---|---|
3683597 | Beveridge et al. | Aug 1972 | A |
4437322 | Ertinger | Mar 1984 | A |
4657186 | Shapiro | Apr 1987 | A |
5058693 | Murdock et al. | Oct 1991 | A |
5912368 | Satarino et al. | Jun 1999 | A |
6237574 | Jamrog et al. | May 2001 | B1 |
6357673 | Condon | Mar 2002 | B1 |
6860267 | Capon et al. | Mar 2005 | B2 |
7086383 | Ivens et al. | Aug 2006 | B2 |
7250387 | Durante et al. | Jul 2007 | B2 |
7311764 | Friday et al. | Dec 2007 | B2 |
7316726 | Schwindt | Jan 2008 | B2 |
20070056589 | Capon et al. | Mar 2007 | A1 |
20070107702 | King | May 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20100282220 A1 | Nov 2010 | US |