Many packaged products currently utilize a carton in a case arrangement for shipment, storage, and display. This method is used extensively as it allows products sized and shaped for individual sale to be stored and shipped in a single container. This arrangement may provide additional benefits such as protection, organization, compactability, and stackability without needing to alter the product packaging itself.
For example, cartons may contain paper products, hygiene products, incontinence products, cleaning products, or any other product that may be contained in a carton or similar container. The cartons are designed for individual sale and use such that it would be undesirable to add additional packaging to make them suitable for commercial shipment or storage. Instead, the cartons may be oriented in a larger container which is designed to withstand shipping and/or storage, or may be designed to display the products upon arrival at a retailer.
Additional benefits of the carton in a container method include space saving attributed to fewer and more uniform containers. By placing cartons, some of which may have various shapes depending on the product, into containers made for shipping or storage, stackability may be increased as well as compactability. Less containers and more uniform containers allows for increased space-use efficiency as well as potential increased efficiency in loading, unloading, shipping and storage.
The problem faced by many using a carton in a case method is that it requires two stand-alone machines. One machine fills cartons with various products, and then filled cartons need to be reoriented before proceeding to a second machine where cases are packed. This two-step process has low operational efficiencies through high processing time, high waste and delay, as well as high material and labor costs.
Additional problems faced by the carton in a case method include inefficient packing. Inefficiently packed cartons may move about within the case during transit leading to damaged product or packaging. This problem may be compounded by cases or containers which are difficult to open. Cases which are difficult to open may lead to additional damage as well as unpacking inefficiencies, particularly if a product has shifted during transit, often leading to a need for reorganization such as restacking or repacking.
As there are many benefits with continuing to use a carton in case arrangement, there exists a need to provide integrated containers or cases which are pre-formed to contain a plurality of cartons which may have various shapes, sizes, and arrangements. There also exists a need to provide an integrated carton and container which may be filled using a single apparatus. There would also be benefit in providing an integrated container and carton in which the cartons and container may be filled and sealed using a single apparatus. Similarly, it would be beneficial to provide a product or method which decreases the amount of time, materials, or space needed to fill a carton and pack a container. There is also a need to provide integrated containers which are pre-formed with a plurality of cartons such that an interior volume of the container is filled with the cartons in an efficient manner which may minimize shifting and increase packing efficiency. A further need may be to provide an integrated case and carton which may be easily opened.
In general, the present disclosure is directed to an integrated carton and container comprising a collapsible container. The collapsible container may have sidewalls, a first end and an opposite second end. The collapsible container may also define an interior volume and comprise a plurality of collapsible cartons. Each carton may have at least one sidewall, a first end and an opposite second end. Each carton may have a folded position and an open position, wherein the folded position may be substantially flat and the open position may be an expanded position defining an interior volume.
The plurality of collapsible cartons may be arranged and positioned in the interior volume of the container such that the at least one sidewall of each carton is parallel with at least one of the sidewalls of the container. At least some of the cartons may be releasably attached to the container or to an adjacent carton in a manner that integrates the cartons to the container such that when the container is in a collapsed position, all of the cartons are in the folded position and when the container is transitioned from the collapsed position to an open position, all of the cartons similarly transition from the folded position to the open position. The second end of each carton may be configured to close automatically when the container is transitioned from the collapsed position to an open position.
An integrated carton and container of the present disclosure may have cartons which are positioned within the container such that the first end of every carton faces the first end of the container. The integrated carton and container may further have an arrangement wherein there are at least two rows of cartons and two columns of cartons. In a further embodiment, the integrated carton and container may have an arrangement wherein there are at least three rows of cartons and three columns of cartons. Each carton may also have flaps that close each carton and the container may have flaps that close the container.
An integrated carton and container of the present disclosure may have at least one point of releasable attachment between every carton and the container or an adjacent carton. For every carton that is adjacent to a container sidewall, the at least one point of releasable attachment may be to a container sidewall. In one embodiment, the container has a first sidewall and an opposed second sidewall, and each carton has a first sidewall and an opposed second sidewall, and each carton has two points of releasable attachment. A first point of releasable attachment may be between the first sidewall of a carton and the first sidewall of the container or the second sidewall of an adjacent carton. The second point of releasable attachment may be between the second sidewall of a carton and the second sidewall of the container or the first sidewall of an adjacent carton.
An integrated carton and container of the present disclosure may further comprise a second plurality of collapsible cartons positioned within the container. Each of the cartons in the second plurality include at least one sidewall, a first end, and a second and opposite end. The second end of the first plurality of cartons faces the second end of the second plurality of cartons within the container such that the first end of each carton in the second plurality of cartons faces the second end of the container. The second end of each carton in the first or second plurality may be configured to close automatically when the container is transitioned from the collapsed position to an open position.
The present disclosure may further include a method for filling and closing an integrated carton and container. The method may include placing an integrated carton and container on a case assembly apparatus and holding the container and carton or cartons in an open position. Filling some or all of the cartons with a product or products, closing the carton or cartons, and closing the container. A container leading side minor flap and container trailing side minor flap may be held in an open position with a releasable attachment mechanism. In yet a further embodiment, guide bars may be used to hold container major flaps and carton major flaps in an open position, and then using guide bar transitions, close the container and carton major flaps.
A carton leading side minor flap may contain a notch which is sized and positioned to correspond with a closing mechanism to allow the closing mechanism to pass through the notch, leaving the carton leading side minor flap in an open position. The closing mechanism may close the carton trailing side minor flap. After the carton trailing side minor flap has been closed, then the carton leading side minor flap may be closed by the same or different closing mechanism.
The method for closing an integrated carton and container may comprise filling the integrated carton and container with a side load mechanism or by a top load mechanism. A side load mechanism may fill the integrated carton and container from a first end, an opposed second end, or both ends. This method may be used when more than one plurality of cartons are arranged in the container.
In a further embodiment, the integrated carton and container may be filled with products that comprise facial tissues or feminine care products.
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Reference now will be made in detail to embodiments, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the embodiments, not limitation of the present disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments without departing from the scope or spirit of the present disclosure. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that aspects of the present disclosure cover such modifications and variations.
The present disclosure is generally directed to an integrated carton and container. An integrated carton and container of the present disclosure may contain a plurality of cartons which have been releasably integrated into a collapsible container. The cartons may generally fill an interior volume of the container and may be integrated in such a way that the cartons may be in a folded position when the container is in a collapsed position and may be expand from the folded position into an open position when the container is expanded into an open position. The cartons may further be integrated in a way that they remain in an open position during processing so that they may receive a product while remaining integrated with the container.
The integrated carton and container of the present disclosure may also generally be directed to cartons releasably integrated into a container which have a flap configuration that allows the carton flaps to be closed by an apparatus, which may be a combined fill and closure apparatus.
The present disclosure may also generally be directed to a method for filling and closing an integrated carton and container such that the entire process may be completed on a single apparatus. Integrated cartons and containers may be placed on a combined filling and closing apparatus such that the cartons are filled with a product and both carton and container flaps are closed on the same apparatus.
A filling apparatus for filling an integrated carton and container may further be generally disclosed. A filling apparatus for filling an integrated carton and container may contain a plurality of interior and exterior guide bars so as to restrain both carton and container flaps. A filling apparatus for filling an integrated carton and container may also contain a secondary restraining mechanism, such as fingers or clips to restrain some or all of the carton and/or container flaps. A filling apparatus for filling an integrated carton and container may further generally contain a multi-tiered packer which is configured to hold a plurality of products and place the products into cartons.
The integrated carton and container of the present disclosure may have an embodiment such as the embodiment generally portrayed in
As shown in
While the cartons and container may be formed according to this embodiment, any form known in the field may be used to produce cartons and containers. Further, known methods may be used to produce cartons and containers which may be substantially flat in one position and which may open into a cross section as discussed above. Additionally, other known forms for closing an end or ends of a carton or containers may be used, or alternatively cartons or containers may be used which only have a single open end.
Cartons of the present disclosure may be integrated into the container such that the first end of a carton faces the first end of a container. In this manner, container flaps and carton flaps may also extend in a substantially similar direction. Cartons may be arranged in the container in at least two rows, such as at least three rows, such as at least four rows, such as at least five rows, such as at least six rows, such as at least eight rows, such as at least ten rows, such as less than twenty rows, such as less than fifteen rows, such as less than twelve rows, such as less than ten rows. Cartons may also be arranged in the container in at least two columns, such as at least three columns, such as at least four columns, such as at least five columns, such as at least six columns, such as at least eight columns, such as at least ten columns, such as less than twenty columns, such as less than fifteen columns, such as less than twelve columns, such as less than ten columns. The number of columns and rows may be selected in any combination of the above.
In an alternate embodiment, a second plurality of cartons are integrated within the container. The second plurality of cartons having at least one sidewall, a first end, and a second opposite end. The second plurality of cartons may be arranged such that the second end of the first plurality of cartons faces the second end of the second plurality of cartons within the container. In this way, the first end of the second plurality of cartons may face the second end of the container. Cartons in the second plurality may be arranged in the container in at least two rows, such as at least three rows, such as at least four rows, such as at least five rows, such as at least six rows, such as at least eight rows, such as at least ten rows, such as less than twenty rows, such as less than fifteen rows, such as less than twelve rows, such as less than ten rows. Cartons may also be arranged in the container in at least two columns, such as at least three columns, such as at least four columns, such as at least five columns, such as at least six columns, such as at least eight columns, such as at least ten columns, such as less than twenty columns, such as less than fifteen columns, such as less than twelve columns, such as less than ten columns. The number of columns and rows may be selected in any combination of the above, and may be arranged in the same manner and number as the first plurality of cartons.
Cartons of the present disclosure may be releasably attached to one or multiple other cartons, or alternatively all or some cartons may be releasably attached to the container. In a further embodiment, none of the cartons may be attached to another carton or alternatively none of the cartons may be attached to the container. In yet a further embodiment, the cartons may not be attached to any other cartons and instead may be arranged spatially to support one another or be arranged within an internal support. In another embodiment, cartons may be further subdivided such that individual cartons may include several sub-cartons. Alternatively, cartons may be grouped, either permanently or releasable, to one or multiple other cartons.
Specifically, cartons may be attached to an adjacent carton or the container at a point of to releasable attachment. A point of releasable attachment may be an area where a releasable attachment composition or a releasable attachment mechanism has been applied or affixed to a carton or a container. A point of releasable attachment may be located on an interior portion of a container sidewall and an exterior portion of a carton sidewall such that the point of attachment is either between a carton sidewall and a container sidewall or between two carton sidewalls.
A container may have multiple points of attachment, such as a single point of attachment for each carton that the container is adjacent to, multiple points of attachment for each carton that the container is adjacent to, or may only have attachment points for a portion of the cartons that the container is adjacent to. In one embodiment, a container may only have attachment points at a first sidewall and an opposed second sidewall, and no points of attachment on the other sidewalls.
A carton may have multiple points of attachment, no points of attachment or a single point of attachment. A carton may only have a point or points of attachment to a container, or may have a point or points of attachment to only a carton, or may have points of attachment to both a carton and a container. In one embodiment, cartons may only have a point or points of attachment to adjacent cartons in the same row, in an alternate embodiment, cartons may only have a point of attachment to an adjacent carton in the same column. In an embodiment where cartons are only attached in a single row or column, the attachment, if any, to the container may be to cartons at the ends of the row or column. In such an arrangement, cartons would only be attached to the container at a first container sidewall and an opposed second container sidewall, so as to maintain attachment orientation of only within the same column or same row.
A point of attachment may be positioned spatially in any location on the sidewall of the desired carton or container. For example, in one embodiment the point of attachment may be substantially centered on a sidewall or may be near any edge of the sidewall. The spatial location does not need to be identical or even similar from carton to carton or carton to container. A point of attachment between two cartons may be substantially centered, and a point of attachment between the one of the previous cartons and an adjacent carton on an opposite side may be off centered or below or above the substantially centered point of attachment. In one embodiment, a spatial variation of attachment points may be used in a manner that further stabilizes the integrated carton and container.
A releasable attachment composition or mechanism may be any releasable attachment composition or mechanism known in the field. A non-inclusive list for example may be adhesives or co-adhesives such as fugitive glue, or other tacky substances. Any number of suitable and commercially available adhesives or tacky substances may be used in this regard, and the adhesive material or tacky substance may have adhesive and release characteristics to ensure that a carton may remain in place to but can be removed without being damaged when the container is opened or unpacked.
Integrated carton and containers may also utilize an opening and separation mechanism such as a container with a strip either integrated into the container or a strip located between the container and cartons which may be releasably attached to both the container and some or all of the cartons. A strip integrated into the container may be a perforated strip which may have a tab that can be grasped and pulled along the perforation, completely separating the strip from the container and separating the container into two pieces above and below the strip. In a further embodiment the container may have more than one such strip, dividing the container into more than two pieces. In yet a further embodiment the cartons may be releasably attached to the interior portion of the container which corresponds to the strip such that when the strip is removed, the releasable attachment composition is also removed or separated. Similarly, in an alternative embodiment, more than one row of cartons may be used and each row may be attached to a separate strip.
In a further embodiment, the releasable strip may generally be located between the cartons and the container in the interior of the container and may be releasably attached to some or all of the cartons and the container. In such an embodiment, the strip may be accessible when the container is opened, either by an extended side portion or other similar methods. The strip, when pulled may separate from both the carton or cartons and the container and may also remove the adhesive composition such that the cartons may now be separated from the releasable attachment composition.
Generally, a container for use in the present disclosure may define an internal volume which decreases when the container is collapsed towards a closed position. Cartons may be arranged in the interior volume so as to fill the interior volume. In one embodiment, cartons may be arranged in a highly efficient manner such that substantially all of the interior volume is filled by the cartons. In another embodiment, the cartons may not fill all of the volume, or a small amount of volume may be left unfilled by the cartons. Interior volume that remains unused by the cartons may be filled with additional packaging or cushioning materials, heat or cold resistant or insulating materials, display or decorative materials, or other similar packaging materials. Volume unused by the cartons may be along the outer edge or may be located between cartons. Alternatively, volume unused by the cartons may be between some cartons but not all of the cartons or may be located between some or all of the cartons and some or all of the container. Materials used to fill volume that remains unused by cartons may be integrated at the time the container is produced or alternatively may be added at a later time, such as during processing before or after filling the cartons, or at any other time prior to sealing of the containers.
A carton or container of the present disclosure may also have an opposed second end which can be closed by an alternate mechanism. An alternate mechanism may be an automatic bottom wherein, when the carton or container is in a closed position the carton or container is substantially flat, and when the carton or container is opened, the front, back, and sidewalls interact so as to automatically close the opposed second end as the carton is opened. This may be accomplished by the sidewalls having a triangle like extension which interacts with the front and back walls, or may instead utilize hook type interactions, or alternatively projections which may be pre-formed to fold inwardly in places as the carton is opened, closing one or both ends of the carton. Other types of automatic bottom containers known in the may be used in the present disclosure.
When an automatic bottom closure is utilized, it may be utilized on an opposed second end of a carton. In this embodiment, the opposed second end of a carton may be opposite the end in which a container may be filled with a product. The opposed second end may have an automatic bottom closure, where the first end of the carton which receives the product may have more traditional flaps which may be closed by machine processes. In yet another embodiment, both ends may be open such that the carton may be filled from both ends. Filling from both ends may happen simultaneously in one embodiment, or may alternatively be used to fill adjacent containers from opposite ends, or may fill from opposite ends in any pattern selected.
Integrated carton and containers as described in any of the proceeding embodiments may be filled by a side load mechanism or by a vertical mechanism. Containers utilizing a side load mechanism may be loaded onto the apparatus on a side such that a first end and second opposed end are facing a horizontal direction. Side load mechanisms may load from either end or both ends. Side load mechanisms filling from both ends may load either simultaneously or in alternating fill patterns. Containers utilizing a vertical load mechanism may be loaded onto the apparatus on a first end or a second opposed end which may be sealed or folded into a closed position with a first end or a second opposed end facing in an upwards direction. Containers utilizing a vertical fill mechanism may only contain a single plurality of cartons or they may contain multiple pluralities of cartons. A container utilizing a vertical fill mechanism may first fill from one end and then another end, or may use any other method which is known in the field.
Cartons for use in the present disclosure may have any flap arrangement known in the art including a traditional four side tuck and fold arrangement. In one embodiment, the cartons may have a flap arrangement such that at least one end may be closed by a mechanical apparatus. In yet a further embodiment, a flap on a leading side of a carton may contain a notch which is sized and positioned such than a mechanical closing mechanism may pass through the notch, leaving the leading side flap closed and instead closing the trailing side flap prior to closing the leading side flap.
A filling apparatus such as a case assembly conveyor for use in the present disclosure may include a section which contains integrated cartons and containers in a closed position. Such a section may include a compressed queue, stack, or sorting section. Alternately, integrated cartons and containers may be loaded, stacked or queued in an alternate mechanism which may be located above or below the case assembly conveyor, or in line with a case assembly conveyer.
A picking mechanism, such as a case picker may be used to place integrated cartons and containers onto an assembly conveyer. Alternatively, mechanisms such as conveyers, lifts, or other picking mechanisms may be used. In yet another embodiment, the integrated cartons and containers may be placed directly onto the case assembly apparatus.
Integrated cartons and containers may be held in an open position on a case assembly conveyer by guide bars. Exterior guide bars may be placed so as to restrain container major flaps, carton exterior major flaps, or both carton and container major flaps. A single interior guide bar or a plurality of interior guide bars may be arranged and used to hold carton interior major flaps parallel to the integrated carton and container so that the carton interior major flaps remain in an open position without obstructing the case assembly apparatus or the filling process. The number and arrangement of the plurality of interior guide bars may be selected based upon the number of rows contained in the integrated carton and container. In this way, interior guide bars may correspond to a single row of cartons or may hold interior major flaps of cartons in two adjacent rows.
A filling apparatus may contain a multi-tiered packer which may fill the integrated cartons and containers with a product or products. A multi-tiered packer may be configured to fill a single product, a plurality of products such as a clip of products, or other arrangements of products. A multi-tiered packer may contain a number of filling elements that corresponds with the number of cartons contained in an integrated carton and container. A multi-tiered packer may be configured to fill every carton contained in an integrated carton and container simultaneously, or may fill individual rows or columns simultaneously. In yet another embodiment, a multi-tiered packer may fill from opposing sides of the integrated carton and container simultaneously or alternating one side and then the other. A multi-tiered packer may be configured to fill with a side-load mechanism or may be configured to fill from a top-load or vertical mechanism.
A filling apparatus may contain a plurality of different closing mechanisms for closing carton and container flaps, or alternatively may only use a single closing mechanism or two different closing mechanisms. Mechanisms used in closing carton and container flaps include fold bars, pin wheel kickers, and guide rail transitions, and the like. Guide rails transitions may be used in one embodiment to close carton and container major flaps where fold bars or pin wheel kickers are used to close carton and container minor flaps. Other closing or folding mechanisms or different combinations of closing to mechanisms may be used.
Various embodiments of the present disclosure will now be described in more detail.
A punch tab such as tab 28 which is not shown may also be separated from the box such that it can be grasped without pressing in or may alternatively only a portion of the tab may need to be pressed in such as a finger punch so that the rest of the tab may be pulled in direction away from a container 22. A strip which is not shown may be releasably attached to the interior of a container 22 by an adhesive or other attachment composition instead of being perforated. A strip, which is releasably attached to the interior of a container 22, may be separated from the cartons 24 and/or container 22 so as to remove any releasable adhesive and release the cartons 24 from the container 22. Alternatively, the strip may separate the cartons 24 from the container 22 without removing any of the releasable adhesive.
An alternative embodiment of the integrated carton and container 20 of the present disclosure may be shown in
The present disclosure may also be generally directed to a method for filling and closing an integrated container and carton.
As shown in
These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/022155 | 3/13/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62478999 | Mar 2017 | US |