Integrated central vacuum cleaner suction device and control

Information

  • Patent Grant
  • 7900315
  • Patent Number
    7,900,315
  • Date Filed
    Friday, October 7, 2005
    19 years ago
  • Date Issued
    Tuesday, March 8, 2011
    13 years ago
Abstract
An integrated apparatus has a cooling section, a motor section, a suction section and control module. The motor section drives the suction section to draw vacuum air through inlet and exhaust vacuum air through outlet. The motor section also drives the cooling section to draw cooling air through cooling air inlet, and push it through the motor section to cool the motor section. The control module controls the operation of the motor section. The control module is located in the cooling air path after the motor section. The cooling air for the motor section also cools the control module. The cooling section, motor section, suction section and control module are integrally mounted to form a single unit.
Description
FIELD OF THE INVENTION

The invention relates to suction devices for central vacuum cleaning systems.


BACKGROUND OF THE INVENTION

Central vacuum cleaning systems were originally quite simple. One placed a powerful central vacuum source external to the main living space. The source was connected through interior walls to a long flexible hose that terminated in a handle and nozzle. When an operator desired to use the system, the operator went to the source and turned it on. The operator then went inside, picked up the handle and directed the nozzle to an area to be cleaned.


Although many elements of the basic system remain, many improvements have been made. Rigid pipes typically run inside interior walls to numerous wall valves spaced throughout a building. This allows an operator to utilize a smaller hose while covering an equivalent space. This is an advantage as the hose can be quite bulky and heavy.


Various communication systems have been developed. Some systems sense sound or pressure in the pipes to turn the vacuum source on or off, see for example U.S. Pat. No. 5,924,164 issued 20 Jul. 1999 to Edward W. Lindsay under title ACOUSTIC COMMUNICATOR FOR CENTRAL VACUUM CLEANERS. Other systems run low voltage wires between the source and the wall valve. The source can be turned on and off at a wall valve by a switch that may be activated by insertion or removal of the hose. The hose may also contain low voltage wires to allow the source to be controlled from a switch in the handle, see for example U.S. Pat. No. 5,343,590 issued 6 Sep. 1994 to Kurtis R. Radabaugh under title LOW VOLTAGE CENTRAL VACUUM CONTROL HANDLE WITH AN AIR FLOW SENSOR. The switch can be a simple toggle switch, or a more sophisticated capacitive switch.


The low voltage wires running along the pipes can be replaced by conductive tape or the like on the pipes, see for example U.S. Pat. No. 4,854,887 issued 8 Aug. 1989 to Jean-Claude Blandin under title PIPE SYSTEM FOR CENTRAL SUCTION CLEANING INSTALLATION. Separate low voltage conductors in the walls can be avoided altogether by home using mains power wires to transmit communication signals between the wall valve and the source, see for example U.S. Pat. No. 5,274,878 issued 4 Jan. 1994 to Kurtis R. Radabaugh et al under title REMOTE CONTROL SYSTEM FOR CENTRAL VACUUM SYSTEMS. A handheld radio frequency wireless transmitter can be used by an operator to turn the source on or off, see for example U.S. Pat. No. 3,626,545 issued 14 Dec. 1971 to Perry W. Sparrow under title CENTRAL VACUUM CLEANER WITH REMOTE CONTROL.


Line voltage can be brought adjacent the vacuum wall valves and connected to the handle through separate conductors, or integrated spiral wound conductors on the hose. Line voltage can then be brought from the handle to powered accessories, such as an electrically-powered beater bar, connected to the nozzle. Line voltage can be switched on and off to the powered accessory using the same switch in the handle that controls the source. Alternatively, the powered accessory may have its own power switch.


A control module mounted to the central vacuum unit is typically used to control the vacuum source. As central vacuum cleaning systems have become more and more sophisticated, so has the control module.


Improvements to, or additional or alternative features for, central vacuum cleaning systems are desirable.


SUMMARY OF THE INVENTION

In a first aspect the invention provides an apparatus for use in a central vacuum cleaner unit. The device includes a high speed suction device having a cooling section, a motor section, and a suction section, and includes a control module. The motor section drives the suction section to draw vacuum air. The motor section drives the cooling section to provide cooling air for cooling the motor section. The control module controls power to the motor section. The control module and suction device are integrally mounted as a single unit.


The control module may be mounted in a path of the cooling air after the motor section. The control module may be affixed to the suction device. The control module may include a vibration sensor for sensing vibrations from the suction device. The control module may include a temperature sensor for sensing temperature of the suction device. The control module may include at least one environmental condition sensor for sensing at least one environmental condition of the suction device.


In a second aspect the invention provides a central vacuum unit for use in a central vacuum cleaning system. The unit includes the apparatus of the first aspect, a motor chamber, and a suction chamber. The apparatus is mounted such that vacuum air is drawn through the suction chamber by the suction section and cooling air is drawn through the motor chamber by the cooling section.


In a third aspect the invention provides a central vacuum cleaning system including the central vacuum unit of the second aspect, a handle, at least one wall valve, vacuum hose for connection between the handle and the wall valve, and piping for connection between the at least one wall valve and the central vacuum unit.


Other aspects of the invention will be evident from the principles contained in the description and drawings herein.





BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and to show more were clearly how it may be carried into effect, reference will now be made, by way of example, to the accompanying drawings which show the preferred embodiment of the present invention and in which:



FIG. 1 is a top of view of an apparatus in accordance with a preferred embodiment of the present invention.



FIG. 2 is a perspective view of the apparatus of FIG. 1.



FIG. 3 is a side view of the apparatus of FIG. 1 cut-away along the line A-A′ of FIG. 1.



FIG. 4 is a perspective view of a control module used in the apparatus of FIG. 1.



FIG. 5 is a side cross-section view of a preferred embodiment of a central vacuum unit containing the apparatus as shown in FIG. 4.



FIG. 6 is a block diagram of a preferred embodiment of a control circuit for a central vacuum unit containing the apparatus of FIG. 1.



FIG. 7 is a side cross-section of a dwelling with a preferred embodiment of a central vacuum system incorporating the unit of FIG. 5.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the FIGS., an integrated apparatus 1 has a suction device with a cooling section 3, a motor section 5, a suction section 7. The apparatus 1 also has a control module 8. The motor section 5 drives the suction section 7 to draw vacuum air, as shown by arrows 9, through inlet 11 and exhaust vacuum air through outlet 13. The motor section 5 also drives the cooling section 3 to draw cooling air, as shown by arrows 15, through cooling air inlet 17 and push it through the motor section 5, as shown by arrows 19, to cool the motor section 5.


The control module 8 controls the operation of the motor section 5. The control module 8 is located in the cooling air path after the motor section 5, as indicated by arrows 21. The cooling air for the motor section 5 also cools the control module 8.


The cooling section 3, motor section 5, suction section 7 and control module 8 are integrally mounted to form a single unit. This allows a designer of the apparatus 1 to ensure that components of the apparatus 1 are properly matched. It also allows the apparatus 1 to be certified as a whole. A central vacuum manufacturer will not need to obtain its own certification for a central vacuum unit in addition to a certification obtained for the apparatus 1 and the control module 8. Typically, a central vacuum manufacturer must obtain its own certification for the central vacuum unit as the separate mounting of a control and a motor in a central vacuum unit creates a device separate from the control and the motor for regulatory purposes.


Referring to FIG. 3, the motor section 5 in central vacuum applications is typically a universal motor having a commutator 31, rotor 33 and stator 35. The rotor 33 has rotor laminations 37 and rotor windings 39. The stator 35 has stator laminations 41 and stator windings 43. The rotor windings 39 and the stator windings, not shown, are powered through the commutator 31.


The rotor 33 is mounted on a shaft 51 such that rotation of the rotor 33 causes the shaft 51 to rotate.


A universal motor is typically used in central vacuum applications to obtain the high speeds necessary for adequate suction. The principles described herein can be applied to other motors for central vacuum applications to the extent that such motors require a separate control module or that such motors require an air driven cooling section.


The cooling section 3 utilizes the shaft 51 and a set of rotary fan blades 53 to drive the cooling air. The fan blades 53 rotate with the shaft 51.


The suction section 7 will typically use a multi-stage impeller 55 mounted on the shaft 51. As the shaft 51 rotates the impeller 55 rotates and draws vacuum air 9 through the apparatus 1. As is known in the art, other suction sections 7 could be used.


Referring to FIG. 4 the control module 8 has a printed circuit board 70 and a heat sink 71. Components, indicated generally by 73, used in the control module 8 are mounted on the printed circuit board 70. Some components, for example power integrated circuits 75, are also mounted to the heat sink 71. These components 75, particularly when placed in a partially enclosed environment with other heat producing sources, require the additional cooling heat sink 71 can provide. As the control module 8 is in the cooling air path, the heat sink 71 can typically be smaller than a heat sink that is used for a control module mounted to the central vacuum unit housing as is known in the art.


Access through the printed circuit board 70 for mounting the components 75 to the heat sink 71 is provided by cutout 76. The components 75 must be held in thermal contact with the heat sink 71 for operation. The components 75 may be bolted to the heat sink 71; however, this may not be necessary as the components 75 will be held in place by solder at the printed circuit board 70. A thermally conductive paste may be used between the components 75 and the heat sink 71.


The heat sink 71 and printed circuit board 70 are mounted to one another using bolts or other securing members 77. A standoff 79 may be provided between the heat sink 71 and the printed circuit board 70 to allow for air flow between the heat sink 71 and the printed circuit board 70. The standoff 79 may be in the form of a sleeve about the securing member 77.


The control module 8 may be mounted in a variety of ways. For example, the control module 8 may be affixed to mounting plate 81 that forms an upper portion of the suction section 7 and a lower portion of the motor section 5. A mounting flange 83 may be provided on the heat sink 71 for this purpose. Bolts or other securing members 85 may be used to secure the flange 83 to the mounting plate 81.


The control module 8 may also be mounted by a strap 87 about the motor section 5. One or more standoffs, not shown, may be required in order to provide proper spacing to allow cooling air to flow from the motor section 5 across the heat sink 71. The strap 87 may be a continuous piece of material that extends around the motor section 5 and the heat sink 71. The strap 87 may be a continuous piece of material that is attached to the heat sink 71 on opposite sides of the motor section 5 and extends about the motor section 5. The strap 87 may also be made up of a series of straight pieces of material that are attached to one another to extend around the motor section 5.


Other possible ways of mounting the control module 8 will be evident to those skilled in the art based on the principles described herein.


The control module 8 may be shaped to fit around protrusions from the motor section 5.


Referring to FIG. 5, in a central vacuum unit 91 the apparatus 1 may be secured at the mounting plate 81 to a mounting bracket 92 that divides a motor chamber 93 from a suction chamber 94. The motor section 5, cooling section 3 and control module 8 are in the motor chamber 93, while the suction section 7 is in the suction chamber 94. An aperture 95 is provided in the motor chamber 93 to allow ambient air to be drawn into the cooling section from outside the central vacuum unit 91 a portion of the apparatus 1 may protrude through the aperture 95. A shield 97 is usually mounted to the central vacuum unit 91 a distance above the apparatus 1 to ensure that cooling air is not inadvertently blocked by placing an object on the top of the central vacuum unit. Vents 98 are provided in the side of the motor chamber to allow cooling air to be exhausted from the unit. Vacuum air is exhausted from the unit 91 through piping 98A. The control module 8 fits between the mounting plate and the top of the motor chamber 93. Cooling air flows over and around the control module 8.


As will be evident to those skilled in the art, apparatus 1 may be mounted within the unit 91 in many alternative ways. For example, a portion of the apparatus 1 may protrude through the aperture 95. Also, the entire apparatus 1 may be within the motor chamber 93 with only an aperture, not shown, connecting the apparatus 1 to the suction chamber 94.


The control module 8 is placed in the cooling air path after the motor section 5 and does not adversely affect the cooling of the motor section 5.


Referring again to FIGS. 1 and 2, as shown, an optional filter module 99 may be mounted to the apparatus 1 in a manner similar to the control module 8. For example, as shown in the FIGS., the filter module 99 may be mounted on an opposing side of the motor section 5 from the control module 8. The strap 87 may be in two pieces joining the filter module 99 and the control module 8. This is most easily done by bolting the straps 87 into heat sink 71 and a heat sink 100 of the filter module 99. The straps 87 can be set such that they provide a press fit on the stator laminations. Many stator laminations used in vacuum cleaner motors have four opposing external sides. Other mounting methods will be evident to those skilled in the art based on the principles described herein.


The filter module 99 filters out electromagnetic interference (EMI) that may otherwise enter power lines 101 (FIG. 6) connected to the apparatus 1. As the filter module 99 and control module 8 are mounted to the apparatus 1, all related connecting wire may be minimized. This reduces the radiating antenna effect of the wires. This in turn reduces secondary induced EMI between the wires and the power lines 101.


Referring to FIG. 7, the central vacuum unit 91 is used to form part of a central vacuum system 102 utilizing piping 103, wall valves 104, hose 105, handle 106, wand 107, and attachments 108 in a similar manner to existing central vacuum cleaning systems uses existing suction devices.


Referring to FIG. 6, an example block diagram of a control circuit 110 for a central vacuum cleaning system 102 is shown. The control circuit 110 has a controller 112 and switch 114 for controlling line power 116 to motor section 5. The controller 112 and switch 114 form the control module 8 and are usually provided on a single printed circuit board 70. The switch 114 may, for example, be a relay or a triac, not shown.


The control module 8 typically includes an AC-DC power supply 118 for powering the controller 112 and other components. Optional environmental conditions sensors 120 may be included in the control module 8 or as inputs to the control module 8. The control module 8 may include indicators 122 for communication with a user. The indicators 122 may be remote from the control module 8.


The environmental condition sensors 120 sense information about the environment in which the control module 8 is located. Such sensors 120 may include, for example, a temperature sensor 120a or a vibration sensor 120b. Increased temperatures in the central vacuum unit 91 may indicate a problem with the apparatus 1, such as worn brushes in the motor. Similarly, vibrations may indicate a problem with the apparatus 1, such as worn bearings.


The physical location of the control module 8 in the cooling air path after the motor section 5 can provide an accurate measure of the temperature in the motor section 5. Mounting the control module 8 to the apparatus 1 can provide an accurate indication of vibration at the apparatus 1. The control module 8 can utilize inputs from a sensor 120 in any way desirable, for example, an alarm could be provided or power to the motor section 5 could be shut down.


The alarm or other communication may be transmitted from the control module 8 through wires or wirelessly for display through incorporating a display device, such as LCD display 122a or an LED array 122b or audible sounding through a sounder 122c, for example a speaker or a piezoelectric buzzer. Example communication configurations are described in the inventor's U.S. patent application Ser. No. 10/936,699 filed 9 Sep. 2004 and International Patent Application number PCT/CA2005/000715 filed 11 May 2005 under title Central Vacuum Cleaning System Control Subsystems the content of which are hereby incorporated by reference into this description.


It will be understood by those skilled in the art that this description is made with reference to the preferred embodiment and that it is possible to make other embodiments employing the principles of the invention which fall within its spirit and scope as defined by the following claims.

Claims
  • 1. An apparatus for use in a central vacuum unit for a central vacuum cleaning system, the apparatus comprising: a) a high speed suction device consisting of a cooling fan, a motor unit, and a suction unit, and b) a control module, wherein the motor unit drives the suction unit to draw vacuum air through the suction device, and the motor unit drives the cooling fan to provide cooling air for cooling the motor unit, and wherein the control module controls power to the motor unit, and wherein the control module is mounted directly to the suction device as a single unit, wherein the control module is mounted in a path of the cooling air external to the cooling fan, motor unit, and suction unit, and the apparatus further comprising a strap, and wherein the control module is directly mounted to the suction device by the strap.
  • 2. The apparatus of claim 1, wherein the control module is mounted in a path of the cooling air after the motor unit.
  • 3. The apparatus of claim 1, wherein the control module comprises a vibration sensor for sensing vibrations, and wherein the control module, motor unit, suction unit, and cooling fan are directly mounted such that vibrations from the motor unit are transmitted to the vibration sensor.
  • 4. The apparatus of claim 1, wherein the control module comprises a temperature sensor for sensing temperature of the suction device.
  • 5. The apparatus of claim 1, wherein the control module comprises at least one environmental condition sensor for sensing at least one environmental condition of the suction device.
  • 6. The apparatus of claim 1 wherein the control module is directly mounted to the motor unit.
  • 7. A central vacuum unit for use in a central vacuum cleaning system, the unit comprising: a) an apparatus comprising: i) a high speed suction device consisting of a cooling fan, a motor unit, and a suction unit, and ii) a control module, wherein the motor unit drives the suction unit to draw vacuum air through the suction device, and the motor unit drives the cooling fan to provide cooling air for cooling the motor unit, and wherein the control module controls power to the motor unit, and wherein the control module is mounted directly to the suction device as a single unit, and wherein the control module is mounted in a path of the cooling air external to the cooling fan, motor unit, and suction unit, and the apparatus further comprising a strap, and wherein the control module is directly mounted to the suction device by the strap,b) a motor chamber, andc) a suction chamber,wherein the apparatus is mounted such that vacuum air is drawn through the suction chamber by the suction unit and cooling air is drawn through the motor chamber by the cooling fan, and wherein the control module is within, and open to, the motor chamber.
  • 8. The unit of claim 7, wherein the control module is mounted in a path of the cooling air after the motor unit.
  • 9. The unit of claim 7, wherein the control module comprises a vibration sensor for sensing vibrations, and wherein the control module, motor unit, suction unit, and cooling fan are directly mounted such that vibrations from the motor unit are transmitted to the vibration sensor.
  • 10. The unit of claim 7, wherein the control module comprises a temperature sensor for sensing temperature of the suction device.
  • 11. The unit of claim 7, wherein the control module comprises at least one environmental condition sensor for sensing at least one environmental condition of the suction device.
  • 12. The unit of claim 7 wherein the control module is directly mounted to the motor unit.
  • 13. A central vacuum cleaning system comprising: a) a central vacuum unit comprising: A) an apparatus comprising: i) a high speed suction device consisting of a cooling fan, a motor unit, and a suction unit, and ii) a control module, wherein the motor unit drives the suction unit to draw vacuum air through the suction device, and the motor unit drives the cooling fan to provide cooling air for cooling the motor unit, and wherein the control module controls power to the motor unit, and wherein the control module is mounted directly to the suction device as a single unit, and wherein the control module is mounted in a path of the cooling air external to the cooling fan, motor unit, and suction unit, and the apparatus further comprising a strap, and wherein the control module is directly mounted to the suction device by the strap,B) a motor chamber, andC) a suction chamber, wherein the apparatus is mounted such that vacuum air is drawn through the suction chamber by the suction unit and cooling air is drawn through the motor chamber by the cooling fan, and wherein the control module is within, and open to, the motor chamber,b) a handle,c) at least one wall valve,d) vacuum hose for connection between the handle and the wall valve, ande) piping for connection between the at least one wall valve and the central vacuum unit.
  • 14. The system of claim 13, wherein the control module is mounted in a path of the cooling air after the motor unit.
  • 15. The system of claim 13, wherein the control module comprises a vibration sensor for sensing vibrations, and wherein the control module, motor unit, suction unit, and cooling fan are directly mounted such that vibrations from the motor unit are transmitted to the vibration sensor.
  • 16. The apparatus of claim 13, wherein the control module comprises a temperature sensor for sensing temperature of the suction device.
  • 17. The apparatus of claim 13, wherein the control module comprises at least one environmental condition sensor for sensing at least one environmental condition of the suction device.
  • 18. The system of claim 13 wherein the control module is directly mounted to the motor unit.
US Referenced Citations (206)
Number Name Date Kind
1601531 Jeannin Sep 1926 A
1883288 Zubaty Oct 1932 A
3088484 Marsh May 1963 A
3382524 Sandstrom May 1968 A
3477689 Berghoefer Nov 1969 A
3483503 Pardiso Dec 1969 A
3565103 Maselek Feb 1971 A
3570809 Stuy Mar 1971 A
3626545 Sparrow Dec 1971 A
3628769 Lee Dec 1971 A
3661356 Tucker May 1972 A
3663845 Apstein May 1972 A
3676986 Reiling Jul 1972 A
3826464 Berghoefer Jul 1974 A
3855665 Schwartz Dec 1974 A
3965526 Doubleday Jun 1976 A
3989311 Debrey Nov 1976 A
4056334 Fortune Nov 1977 A
4070586 Breslin Jan 1978 A
4111615 Watanabe Sep 1978 A
4114557 De Brey Sep 1978 A
4175892 De Brey Nov 1979 A
4225272 Palmovist Sep 1980 A
4227258 Root et al. Oct 1980 A
4246675 Costanzo Jan 1981 A
4300262 Rodowsky, Jr. et al. Nov 1981 A
4336427 Lindsay Jun 1982 A
4368348 Eichelberger et al. Jan 1983 A
4369543 Chen et al. Jan 1983 A
4370776 Kullik Feb 1983 A
4443906 Tucker et al. Apr 1984 A
4473923 Neroni et al. Oct 1984 A
4490575 Kutnyak Dec 1984 A
4494270 Ritzau et al. Jan 1985 A
4513469 Godfrey et al. Apr 1985 A
4531796 Gansert et al. Jul 1985 A
4536674 Schmidt Aug 1985 A
4591368 MacDuff May 1986 A
4611365 Komatsu et al. Sep 1986 A
4654924 Getz et al. Apr 1987 A
4664457 Suchy May 1987 A
4680827 Hummel Jul 1987 A
4683515 Beihoff et al. Jul 1987 A
4688596 Liebmann Aug 1987 A
4693324 Choiniere et al. Sep 1987 A
4731545 Lerner et al. Mar 1988 A
4757574 Sumerau Jul 1988 A
4766628 Walker Aug 1988 A
4791700 Bigley et al. Dec 1988 A
4829625 Wang May 1989 A
4829626 Harkonen et al. May 1989 A
4854887 Blandin Aug 1989 A
4881909 Blackman Nov 1989 A
4883982 Forbes et al. Nov 1989 A
D315043 Hayden Feb 1991 S
4991253 Rechsteiner Feb 1991 A
5033151 Kraft et al. Jul 1991 A
5067394 Cavallero Nov 1991 A
5068555 Oberdorfer-Bogel Nov 1991 A
5107565 Chun Apr 1992 A
5109568 Rohn et al. May 1992 A
5111841 Houston May 1992 A
5120983 Samaan Jun 1992 A
5125125 Barsacq Jun 1992 A
D333023 Herron, Jr. Feb 1993 S
5185705 Farrington Feb 1993 A
D334447 Rohn Mar 1993 S
5191673 Damizet Mar 1993 A
5207498 Lawrence et al. May 1993 A
5244409 Guss et al. Sep 1993 A
5255409 Fujiwara et al. Oct 1993 A
5263502 Dick Nov 1993 A
5265305 Kraft et al. Nov 1993 A
5274578 Noeth Dec 1993 A
5274878 Radabaugh et al. Jan 1994 A
5276434 Brooks et al. Jan 1994 A
5276939 Uenishi Jan 1994 A
5277468 Blatt et al. Jan 1994 A
5298821 Michel Mar 1994 A
5301385 Abe et al. Apr 1994 A
5311639 Boshler May 1994 A
5343590 Radabaugh Sep 1994 A
5347186 Konotchick Sep 1994 A
5349146 Radabaugh Sep 1994 A
5353468 Yap et al. Oct 1994 A
5363534 Dekker et al. Nov 1994 A
5379796 Wang Jan 1995 A
5391064 Lopez Feb 1995 A
5404612 Ishikawa Apr 1995 A
5409398 Chadbourne et al. Apr 1995 A
5448827 Ward Sep 1995 A
D364014 Langeland et al. Nov 1995 S
5479676 Martin et al. Jan 1996 A
5504971 McCormick Apr 1996 A
5512883 Lane, Jr. Apr 1996 A
5515572 Hoekstra et al. May 1996 A
5525842 Leininger Jun 1996 A
5542146 Hoekstra et al. Aug 1996 A
5554049 Reynolds Sep 1996 A
5560076 Leung Oct 1996 A
5568374 Lindeboom et al. Oct 1996 A
5572767 Ishikawa Nov 1996 A
5578795 Ward Nov 1996 A
5606767 Crienjak Mar 1997 A
5655884 Rose Aug 1997 A
5698957 Sowada Dec 1997 A
5713656 Lin Feb 1998 A
5722110 McIntyre et al. Mar 1998 A
5737797 Rittmueller et al. Apr 1998 A
5737798 Moren et al. Apr 1998 A
5740581 Harrelson, II Apr 1998 A
5740582 Harrelson, II Apr 1998 A
5747973 Robitaille et al. May 1998 A
5753989 Syverson et al. May 1998 A
5813085 Fritz et al. Sep 1998 A
5815883 Stein et al. Oct 1998 A
5815884 Imamura Oct 1998 A
5816685 Hou Oct 1998 A
5850665 Bousset Dec 1998 A
5871152 Saney Feb 1999 A
D406422 Burchard et al. Mar 1999 S
5893194 Karmel Apr 1999 A
5896618 Woo et al. Apr 1999 A
5917428 Discenzo et al. Jun 1999 A
5918728 Syverson Jul 1999 A
5924163 Burns, Jr. Jul 1999 A
5924164 Lindsay, Jr. Jul 1999 A
5926908 Lindsay, Jr. Jul 1999 A
5926909 McGee Jul 1999 A
5938061 Ward et al. Aug 1999 A
5945749 Li Aug 1999 A
5983443 Redding Nov 1999 A
5987697 Song et al. Nov 1999 A
6011334 Roland Jan 2000 A
6029309 Imamura Feb 2000 A
6033082 Lin Mar 2000 A
6049143 Simpson et al. Apr 2000 A
6101667 Ishikawa Aug 2000 A
D431335 Mehaffey et al. Sep 2000 S
6143996 Skanda Nov 2000 A
6169258 Roney et al. Jan 2001 B1
6206181 Syverson Mar 2001 B1
6218798 Price et al. Apr 2001 B1
6232696 Kim et al. May 2001 B1
6239576 Breslin et al. May 2001 B1
6244427 Syerson Jun 2001 B1
6253414 Bradd et al. Jul 2001 B1
6256833 Steinberg Jul 2001 B1
6323570 Nishimura et al. Nov 2001 B1
6336825 Seefried Jan 2002 B1
6425293 Woodroffe et al. Jul 2002 B1
6459056 Graham Oct 2002 B1
6463368 Feiten et al. Oct 2002 B1
6488475 Murata et al. Dec 2002 B2
6546814 Choe et al. Apr 2003 B1
6628019 Carroll Sep 2003 B2
6658325 Zweig Dec 2003 B2
6685491 Gergek Feb 2004 B2
6690804 Everett Feb 2004 B2
D494332 Schroeter Aug 2004 S
D494333 Schroeter Aug 2004 S
6779228 Plomteux et al. Aug 2004 B2
6791205 Woodbridge Sep 2004 B2
6817058 Harrelson, II Nov 2004 B1
6822353 Koga et al. Nov 2004 B2
6864594 Seki Mar 2005 B2
6900565 Preston May 2005 B2
6975043 Schumacher et al. Dec 2005 B2
6975993 Lin Dec 2005 B1
7051398 Smith et al. May 2006 B2
7080425 Smith et al. Jul 2006 B2
7114216 Stephens et al. Oct 2006 B2
7122921 Hall et al. Oct 2006 B2
7237298 Reindle et al. Jul 2007 B2
7269877 Tondra et al. Sep 2007 B2
7328479 Willenbring Feb 2008 B2
7331083 Overvaag et al. Feb 2008 B2
7342372 Jonsson et al. Mar 2008 B2
7363679 Zimmerle et al. Apr 2008 B2
7403360 Cunningham et al. Jul 2008 B2
7406744 Bruneau Aug 2008 B2
20020001190 Everett Jan 2002 A1
20020042965 Salem et al. Apr 2002 A1
20020127916 Zhang Sep 2002 A1
20020152576 Murray et al. Oct 2002 A1
20030044243 Tisdale Mar 2003 A1
20030140443 Najm Jul 2003 A1
20030196293 Ruff Oct 2003 A1
20040031506 Tsai Feb 2004 A1
20040049868 Ng Mar 2004 A1
20040144633 Gordon et al. Jul 2004 A1
20040150271 Koga et al. Aug 2004 A1
20040172782 Smith et al. Sep 2004 A1
20040177468 Smith et al. Sep 2004 A1
20040231090 Kushida et al. Nov 2004 A1
20040261211 Overvaag et al. Dec 2004 A1
20050022329 Harman et al. Feb 2005 A1
20050022337 Roney et al. Feb 2005 A1
20050166351 Cunningham et al. Aug 2005 A1
20050236012 Josefsson et al. Oct 2005 A1
20050245194 Hayes et al. Nov 2005 A1
20050254185 Cunningham Nov 2005 A1
20070283521 Foster et al. Dec 2007 A1
20080066252 Herron, Jr. Mar 2008 A1
20080222836 Cunningham Sep 2008 A1
20080301903 Cunningham et al. Dec 2008 A1
Foreign Referenced Citations (40)
Number Date Country
0 192 469 Aug 1986 EP
0347223 Dec 1989 EP
0552978 Jul 1993 EP
0499235 Sep 1995 EP
0711023 May 1996 EP
0773619 May 1997 EP
2281507 Mar 1995 GB
2288115 Oct 1995 GB
5-3058160 May 1978 JP
5-3128158 Nov 1978 JP
60-026494 Feb 1985 JP
64-049526 Feb 1989 JP
2-152419 Jun 1990 JP
2-152420 Jun 1990 JP
4-017830 Jan 1992 JP
5-003839 Jan 1993 JP
5-317213 Dec 1993 JP
6-277167 Oct 1994 JP
7-095944 Apr 1995 JP
7322980 Dec 1995 JP
8-033596 Feb 1996 JP
8-065876 Mar 1996 JP
8-117165 May 1996 JP
8-240329 Sep 1996 JP
9-149871 Jun 1997 JP
10-094504 Apr 1998 JP
2000-116577 Apr 2000 JP
2001-137158 May 2001 JP
2002-078656 Mar 2002 JP
2002-320577 Nov 2002 JP
2003-235767 Aug 2003 JP
2009-058919 Mar 2009 JP
9737423 Oct 1997 WO
9741631 Nov 1997 WO
9835160 Aug 1998 WO
9909875 Mar 1999 WO
9956606 Nov 1999 WO
0064323 Nov 2000 WO
2005031169 Apr 2005 WO
2007017057 Feb 2007 WO
Related Publications (1)
Number Date Country
20070079469 A1 Apr 2007 US