Korean Patent Application No. 10-2019-0068801, filed on Jun. 11, 2019, in the Korean Intellectual Property Office, and entitled: “Integrated Circuit Device and Method of Manufacturing the Same,” is incorporated by reference herein in its entirety.
Embodiments relate to an integrated circuit device and a method of manufacturing the same.
As an integrated circuit device is down-scaled, a space occupied by a capacitor may be reduced.
Embodiments are directed to an integrated circuit device, including a lower electrode including a niobium (Nb)-containing layer doped with titanium (Ti), a dielectric layer on the lower electrode, and an upper electrode that covers the dielectric layer.
Embodiments are also directed to an integrated circuit device, including a substrate including an active region, a conductive region on the active region, and a capacitor on the conductive region, the capacitor including a lower electrode including a Nb containing layer doped with Ti, a dielectric layer formed on the lower electrode, and an upper electrode that covers the dielectric layer.
Embodiments are also directed to an integrated circuit device, including a substrate including an active region, a conductive formed on the active region, and a capacitor on the conductive region, the capacitor including a lower electrode including at least one selected from a Nb nitride layer doped with Ti, a Nb oxide layer doped with Ti, and a Nb oxynitride layer doped with Ti, a dielectric layer on the lower electrode and including a metal oxide layer, and an upper electrode that covers the dielectric layer.
Embodiments are also directed to a method of manufacturing an integrated circuit device, the method including forming a lower electrode including a Nb containing layer doped with Ti on a substrate, forming a dielectric layer on the lower electrode, and forming an upper electrode on the dielectric layer.
Features will become apparent to those of skill in the art by describing in detail example embodiments with reference to the attached drawings in which:
Referring to
The substrate 102 may include a semiconductor element such as silicon (Si) or germanium (Ge) or a compound semiconductor such as SiC, GaAs, InAs, or InP. The substrate 102 may include structures including a semiconductor substrate, at least one insulating layer formed on the semiconductor substrate, or at least one conductive region. The conductive region may be formed of, for example, a well that is doped with impurities or a structure doped with impurities. In example embodiments, the substrate 102 may have various device isolation structures such as a shallow trench isolation (STI) structure.
In an example embodiment, the lower structure 120 may include an insulating layer. In other example embodiments, the lower structure 120 may include various conductive regions, for example, a wiring line layer, a contact plug, and a transistor and an insulating layer for insulating the conductive regions from each other.
The capacitor C11 may include a lower electrode LE11 and an upper electrode UE11 that face each other, and a dielectric layer 140 between the lower electrode LE11 and the upper electrode UE11. The lower electrode LE11 may include a main lower electrode layer 130. A top surface of the main lower electrode layer 130 may contact a bottom surface of the dielectric layer 140.
In an example embodiment, the main lower electrode layer 130 may be formed of a niobium (Nb)-containing layer doped with titanium (Ti). In an example embodiment, the main lower electrode layer 130 may include a Nb nitride layer doped with Ti (hereinafter, referred to as “a NbN layer doped with Ti”). A content ratio of to a Ti atom to a Nb atom in the NbN layer doped with Ti may be 9:1 to 1:99. If the content ratio of the Nb atom is too small in the main lower electrode layer 130, it may be difficult to secure conductivity required by the lower electrode LE11. If the content ratio of the Nb atom is too large in the main lower electrode layer 130, it may have a negative effect on the electrical characteristics required by the capacitor C11.
In other example embodiments, the main lower electrode layer 130 may include the NbN layer including a plurality of kinds of dopants. The plurality of kinds of dopants may include a first dopant formed of Ti and a second dopant formed of at least one of cobalt (Co), tin (Sn), vanadium (V), tantalum (Ta), dubnium (Db), phosphor (P), arsenic (As), antimony (Sb), and bismuth (Bi). In the main lower electrode layer 130, a content ratio of the first dopant to the Nb atom may be in a range of 9:1 to 1:99. In the main lower electrode layer 130, an atomic ratio of the second dopant to the Nb atom may be about 0.01 to about 0.15.
The main lower electrode layer 130 may have a thickness TH1 of about 5 nm to about 30 nm.
The dielectric layer 140 may include a high dielectric layer. The term “high dielectric layer” in the current specification means a dielectric layer having a dielectric constant greater than that of a silicon oxide layer. In an example embodiment, the dielectric layer 140 may be formed of a metal oxide including at least one metal of hafnium (Hf), zirconium (Zr), aluminum (Al), Nb, cerium (Ce), lanthanum (La), Ta, and Ti. In an example embodiment, the dielectric layer 140 may have a single layer structure including one high dielectric layer. In other example embodiments, the dielectric layer 140 may have a multilayer structure including a plurality of high dielectric layers. The high dielectric layer may be one of an HfO2 layer, a ZrO2 layer, an Al2O3 layer, a CeO2 layer, a La2O3 layer, a Ta2O3 layer, and a TiO2 layer. In an example embodiment, the dielectric layer 140 may have a thickness of about 20 Å to about 50 Å.
The upper electrode UE11 may face the lower electrode LE11 with the dielectric layer 140 therebetween. The upper electrode UE11 may include an upper electrode layer 150. The upper electrode layer 150 may be formed of a metal, a metal nitride, a metal oxide, or a combination of the above metals. For example, the upper electrode UE11 may be formed of TiN, MoN, CoN, TaN, TiAlN, TaAlN, W, Ru, RuO2, SrRuO3, Ir, IrO2, Pt, PtO, SRO (SrRuO3), BSRO ((Ba,Sr)RuO3), CRO (CaRuO3), LSCO ((La,Sr)CoO3), or a combination of the above metals.
Referring to
In an example embodiment, the main lower electrode layer 132 may be formed of a metal, a metal nitride, a metal oxide, or a combination of the above metals. For example, the main lower electrode layer 132 may be formed of TiN, MoN, CoN, TaN, TiAlN, TaAlN, W, Ru, RuO2, SrRuO3, Ir, IrO2, Pt, PtO, SRO (SrRuO3), BSRO ((Ba,Sr)RuO3), CRO (CaRuO3), LSCO ((La,Sr)CoO3), or a combination of the above metals. In an example embodiment, the main lower electrode layer 132 may not include Nb, or, in other example embodiments, the main lower electrode layer 132 may include a NbN layer doped with Ti (in which case the main lower electrode layer 132 may have the same configuration as that of the main lower electrode layer 132 described with reference to
In the present example embodiment, the lower interface electrode layer 134 is between the main lower electrode layer 132 and the dielectric layer 140. The bottom surface of the lower interface electrode layer 134 may contact the top surface of the main lower electrode layer 132, and the top surface of the main lower electrode layer 132 may contact the bottom surface of the dielectric layer 140.
The lower interface electrode layer 134 may include a Nb oxide layer doped with Ti (hereinafter, referred to as “a NbO layer doped with Ti”) or a Nb oxynitride layer doped with Ti (hereinafter, referred to as “a NbON layer doped with Ti”). In an example embodiment, in each of the NbO layer doped with Ti and the NbON layer doped with Ti, the content ratio of the Ti atom to the Nb atom may be 9:1 to 1:99.
A thickness TH21 of the main lower electrode layer 132 may be different from a thickness TH22 of the lower interface electrode layer 134. In an example embodiment, the thickness TH22 of the lower interface electrode layer 134 may be less than the thickness TH21 of the main lower electrode layer 132. For example, the thickness TH21 of the main lower electrode layer 132 may be about 5 nm to about 30 nm and the thickness TH22 of the lower interface electrode layer 134 may be about 3 Å to about 20 Å. If the thickness TH22 of the lower interface electrode layer 134 is too great, the conductivity of the lower interface electrode layer 134 may deteriorate and the lower interface electrode layer 134 may operate as a dielectric having a relatively low dielectric constant and accordingly, the capacitance of the capacitor C12 may deteriorate.
Referring to
A bottom surface of the lower interface electrode layer 136 may contact the top surface of the main lower electrode layer 130, and a top surface of the lower interface electrode layer 136 may contact the bottom surface of the dielectric layer 140. A bottom surface of the upper interface electrode layer 138 may contact a top surface of the dielectric layer 140, and a top surface of the upper interface electrode layer 138 may contact a bottom surface of the upper electrode layer 150. In an example embodiment, in the capacitor C13, the upper interface electrode layer 138 may be omitted. In this case, the top surface of the dielectric layer 140 may contact the bottom surface of the upper electrode layer 150.
The lower interface electrode layer 136 and the upper interface electrode layer 138 may respectively include the NbO layer doped with Ti and the NbON layer doped with Ti. Detailed configurations of the lower interface electrode layer 136 and the upper interface electrode layer 138 are the same as that of the lower interface electrode layer 134 described with reference to
Referring to
Referring to
The lower electrode LE15 may include a first lower electrode layer L1, a second lower electrode layer L2, and a third lower electrode layer L3 that are sequentially stacked on the substrate 102. At least one of the first to third lower electrode layers L1, L2, and L3 may include a Nb containing layer doped with Ti. When each of the first to third lower electrode layers L1, L2, and L3 includes a Nb containing layer doped with Ti, in each of the first to third lower electrode layers L1, L2, and L3, the content ratio of the Nb atom to the Ti atom may vary. In the lower electrode LE15, the content ratio of the Nb atom to the Ti atom may gradually increase toward the dielectric layer 140. For example, the content ratio of the Nb atom to the Ti atom may be greatest in the third lower electrode layer L3 closest to the dielectric layer 140 among the first lower electrode layer L1, the second lower electrode layer L2, and the third lower electrode layer L3.
In an example embodiment, each of the first to third lower electrode layers L1, L2, and L3 includes a NbN layer doped with Ti and, in each of the first to third lower electrode layers L1, L2, and L3, the content ratio of the Ti atom to the Nb atom may be in the range of about 9:1 to about 1:99. In the first to third lower electrode layers L1, L2, and L3, the content ratio of the Nb atom gradually increases toward the dielectric layer 140 and may be greatest in the third lower electrode layer L3 closest to the dielectric layer 140.
In other example embodiments, in the first to third lower electrode layers L1, L2, and L3, the first lower electrode layer L1 farthest from the dielectric layer 140 does not include Nb and each of the second and third lower electrode layers L2 and L3 may include a NbN layer doped with Ti. In this case, the content ratio of the Ti atom to the Nb atom in the second and third lower electrode layers L2 and L3 may be in the range of about 9:1 to about 1:99. In each of the second and third lower electrode layers L2 and L3, the content ratio of the Nb atom to the Ti atom may vary. For example, the first lower electrode layer L1 includes a TiN layer, each of the second and third lower electrode layers L2 and L3 includes the NbN layer doped with Ti, and the content ratio of the Nb atom to the Ti atom in the third lower electrode layer L3 may be greater than the content ratio of the Nb atom to the Ti atom in the second lower electrode layer L2.
At least one of the first to third lower electrode layers L1, L2, and L3 may include an additional dopant formed of at least one of Co, Sn, V, Ta, Db, P, As, Sb, and Bi. In the first to third lower electrode layers L1, L2, and L3, an atomic ratio of the additional dopant to the Nb atom may be about 0.01 to about 0.15.
The lower electrode LE15 may have a thickness TH5 of about 5 nm to about 30 nm. A thickness of each of the first to third lower electrode layers L1, L2, and L3 may be varied. The thickness of each of the first to third lower electrode layers L1, L2, and L3 may be varied and at least parts of the first to third lower electrode layers L1, L2, and L3 may have the same thickness.
In
In an example embodiment, the lower electrode LE15 may further include a lower interface electrode layer between the third lower electrode layer L3 and the dielectric layer 140. For example, the lower interface electrode layer may have the same configuration as that of the lower interface electrode layer 136 described with reference to
Referring to
The multiple interface electrode layer MIL may include a first lower interface electrode layer 134A and a second lower interface electrode layer 134B that are sequentially stacked on the main lower electrode layer 132. A bottom surface of the first lower interface electrode layer 134A may contact the top surface of the main lower electrode layer 132, and a top surface of the second lower interface electrode layer 134B may contact the bottom surface of the dielectric layer 140.
Each of the first and second lower interface electrode layers 134A and 134B may include a NbO layer doped with Ti or a NbON layer doped with Ti. In each of the first and second lower interface electrode layers 134A and 134B, the content ratio of the Nb atom to the Ti atom may vary. In each of the first and second lower interface electrode layers 134A and 134B, the content ratio of the Ti atom to the Nb atom may be in the range of about 9:1 to about 1:99. For example, the content ratio of the Nb atom to the Ti atom in the second lower interface electrode layer 134B may be greater than the content ratio of the Nb atom to the Ti atom in the first lower interface electrode layer 134A.
At least one of the first and second lower interface electrode layers 134A and 134B may include an additional dopant formed of at least one of Co, Sn, V, Ta, Db, P, As, Sb, and Bi. In each of the first and second lower interface electrode layers 134A and 134B, an atomic ratio of the additional dopant to the Nb atom may be about 0.01 to about 0.15.
A total thickness TH6 of the first and second lower interface electrode layers 134A and 134B may be about 3 Å to about 20 Å. Each of the first and second lower interface electrode layers 134A and 134B may have the same configuration as that of the lower interface electrode layer 134 described with reference to
In
Referring to
A plurality of buried contacts BC may be formed between two adjacent bit lines BL in the plurality of bit lines BL. On the plurality of buried contacts BC, a plurality of conductive landing pads LP may be formed. The plurality of conductive landing pads LP may be arranged so that at least parts thereof overlap the plurality of buried contacts BC. On the plurality of conductive landing pads LP, lower electrodes LE may be formed. The lower electrodes LE may be connected to the plurality of active regions ACT through the plurality of buried contacts BC and the plurality of conductive landing pads LP.
Referring to
The integrated circuit device 200A includes the substrate 102 including the plurality of active regions ACT and a lower structure 220 formed on the substrate 102. In the substrate 102, the plurality of active regions ACT may be defined by a plurality of isolation layers 112. A conductive region 224 may be connected to the plurality of active regions ACT through the lower structure 220.
Each of the plurality of isolation layers 112 may include an oxide layer, a nitride layer, or a combination of the above layers. The lower structure 220 may include an insulating layer including a silicon oxide layer, a silicon nitride layer, or a combination of the above layers. In other example embodiments, the lower structure 220 may include various conductive regions, for example, a wiring line layer, a contact plug, a transistor, and an insulating layer for insulating the wiring line layer, the contact plug, and the transistor from each other. The conductive region 224 may be formed of polysilicon, metal, conductive metal nitride, metal silicide, or a combination of polysilicon, metal, conductive metal nitride, and metal silicide. The lower structure 220 may include the plurality of bit lines BL described with reference to
On the lower structure 220 and the conductive region 224, an insulating pattern 226P having a plurality of openings 226H may be arranged. The insulating pattern 226P may be formed of silicon nitride, silicon oxynitride, or a combination of silicon nitride and silicon oxynitride.
On the conductive region 224, a capacitor C21 may be arranged. The capacitor C21 includes a lower electrode LE21, an upper electrode UE21, and a dielectric layer 240 between the lower electrode LE21 and the upper electrode UE21. The lower electrode LE21 may include a main lower electrode layer 230. The main lower electrode layer 230 may extend longitudinally in a vertical direction (a Z direction) away from the substrate 102 from a top surface of the conductive region 224 through an opening 226H of the insulating pattern 226P and may be cylindrical or cup-shaped to limit an internal space in which a bottom that faces the substrate 102 is blocked. The dielectric layer 240 may conformally cover an external surface of the main lower electrode layer 230 and an internal surface in an internal space of the main lower electrode layer 230. The upper electrode UE21 may include an upper electrode layer 250. The upper electrode layer 250 may include a portion that fills the internal space of the main lower electrode layer 230 on the dielectric layer 240 and a portion that faces an external surface of the lower electrode LE21 with the dielectric layer 240 therebetween.
Detailed configurations of the main lower electrode layer 230, the dielectric layer 240, and the upper electrode layer 250 are the same as those of the main lower electrode layer 130, the dielectric layer 140, and the upper electrode layer 150 that are described with reference to
Referring to
The integrated circuit device 200B has a similar configuration to that of the integrated circuit device 200A described with reference to
The lower electrode LE22 includes a main lower electrode layer 232 and a lower interface electrode layer 234. The main lower electrode layer 232 may be cylinder or cup-shaped like the main lower electrode layer 230 illustrated in
Detailed configurations of the main lower electrode layer 232 and the lower interface electrode layer 234 are the same as those of the main lower electrode layer 132 and the lower interface electrode layer 134 that are described with reference to
Referring to
The lower electrode LE23 includes the main lower electrode layer 230 and a lower interface electrode layer 236. The upper electrode UE23 includes the upper electrode layer 250 and an upper interface electrode layer 238. The lower interface electrode layer 236 is between the main lower electrode layer 230 and the dielectric layer 240. The upper interface electrode layer 238 is between the dielectric layer 240 and the upper electrode layer 250.
The lower interface electrode layer 236 may conformally cover the external surface of the main lower electrode layer 230 and the internal surface in the internal space of the main lower electrode layer 230. The dielectric layer 240 may conformally cover an external surface of the lower electrode LE23 and an internal surface in an internal space of the lower electrode LE23. The dielectric layer 240 may be spaced apart from the main lower electrode layer 230 with the lower interface electrode layer 236 therebetween. The upper interface electrode layer 238 may conformally cover the external surface of the lower electrode LE23 and the internal surface in the internal space of the lower electrode LE23 on the dielectric layer 240. In an example embodiment, in the capacitor C23, the upper interface electrode layer 238 may be omitted. In this case, the dielectric layer 240 may contact the upper electrode layer 250.
Detailed configurations of the lower interface electrode layer 236 and the upper interface electrode layer 238 are the same as those of the lower interface electrode layer 136 and the upper interface electrode layer 138 that are described with reference to
Referring to
The lower electrode LE24 may have the same configuration as that of the lower electrode LE22 illustrated in
Referring to
The lower electrode LE3 includes a main lower electrode layer 330 and a lower interface electrode layer 334. The upper electrode UE3 includes the upper electrode layer 250. The main lower electrode layer 330 may have the same configuration as that of the main lower electrode layer 230 described with reference to
The lower interface electrode layer 334 may be between the main lower electrode layer 330 and a dielectric layer 240. A lowermost surface level of the lower interface electrode layer 334 may be higher than that of the main lower electrode layer 330. The term “level” in the current specification means a distance from the substrate 102 in a vertical direction (a Z direction or a −Z direction). An external lowermost portion 334T of the lower interface electrode layer 334 may contact the step difference ST of the main lower electrode layer 330. The external lowermost portion 334T of the lower interface electrode layer 334 may be closer to the horizontal direction center of the main lower electrode layer 330 than an internal wall of the opening 226H of the insulating pattern 226P. The lower interface electrode layer 334 may include the NbO layer doped with Ti or the NbON layer doped with Ti. A detailed configuration of the lower interface electrode layer 334 is the same as that of the lower interface electrode layer 134 described with reference to
The dielectric layer 240 may conformally cover an external surface of the lower electrode LE3 and an internal surface in an internal space of the lower electrode LE3 on the lower interface electrode layer 334. The upper electrode UE3 may include the upper electrode layer 250.
Referring to
The lower electrode LE41 may include a main lower electrode layer 430. The main lower electrode layer 430 may be pillar-shaped to longitudinally extend in the vertical direction (the Z direction) away from the substrate 102 from the top surface of the conductive region 224 through the opening 226H of the insulating pattern 226P. The dielectric layer 240 may conformally cover an external surface of the main lower electrode layer 430. The upper electrode UE41 may include the upper electrode layer 250. A detailed configuration of the main lower electrode layer 430 is the same as that of the main lower electrode layer 130 described with reference to
Referring to
The lower electrode LE42 includes a main lower electrode layer 432 and a lower interface electrode layer 434. The main lower electrode layer 432 may be pillar-shaped to longitudinally extend in the vertical direction (the Z direction) away from the substrate 102 from the top surface of the conductive region 224 through the opening 226H of the insulating pattern 226P. Detailed configurations of the main lower electrode layer 432 and the lower interface electrode layer 434 are the same as those of the main lower electrode layer 132 and the lower interface electrode layer 134 that are described with reference to
The dielectric layer 240 may conformally cover an external surface of the main lower electrode layer 432. The upper electrode UE42 may include the upper electrode layer 250.
Each of the integrated circuit devices described with reference to
For the evaluation of
In the evaluation result of
A method of manufacturing an integrated circuit device according to an example embodiment will now be described in detail.
Referring to
The insulating layer 226 may be formed of an insulating material having etching selectivity with respect to the lower structure 220. The insulating layer 226 may be formed of silicon nitride, silicon oxynitride, or a combination of silicon nitride and silicon oxynitride.
Referring to
The mold layer 228 may be formed of an insulating material having etching selectivity with respect to the insulating layer 226. In some embodiments, the mold layer 228 may include an oxide layer, for example, a boro phospho silicate glass (BPSG) layer.
Referring to
The sacrificial layer SL may include an oxide layer. The mask pattern MP may include a nitride layer, an oxide layer, a polysilicon layer, a photoresist layer, or a combination of the above layers.
Referring to
Referring to
A material of the preliminary lower electrode layer 230L is the same as a material of the main lower electrode layer 130 described with reference to
When the preliminary lower electrode layer 230L includes the NbN layer doped with Ti, in an example ALD process of forming the preliminary lower electrode layer 230L, after loading the substrate 102 in a reaction chamber, until the preliminary lower electrode layer 230L is obtained, an ALD unit cycle including processes of supplying reaction materials to the surfaces of the conductive region 224, the mold pattern 228P, and the sacrificial pattern SLP, which are exposed through the hole BH on the substrate 102, may be performed a plurality of times. The ALD unit cycle may include a first process of forming a Nb chemical absorbing layer by supplying a Nb precursor to the exposed surfaces, a second process of purging the unnecessary Nb precursor left on the substrate 102 and discharging the purged Nb precursor to the outside of the reaction chamber, a third process of forming a Ti dopant chemical absorbing layer on portions in which the Nb chemical absorbing layer is not formed among the exposed surfaces on the substrate 102 by supplying a Ti dopant precursor to the resultant structure in which the Nb chemical absorbing layer is formed, a fourth process of purging the unnecessary Ti dopant precursor and discharging the purged Ti dopant precursor to the outside of the reaction chamber, a fifth process of forming a NbN atomic layer doped with Ti by supplying a reaction gas including nitrogen atoms to the resultant structure in which the Nb chemical absorbing layer and the Ti dopant chemical absorbing layer are formed, and a sixth process of purging unnecessary portions in the reaction gas including the nitrogen atoms and discharging the purged portions to the outside of the reaction chamber.
In an example embodiment, the Nb precursor may be formed of a compound of a chemical formula Nb(NRR′)5, a compound of a chemical formula (NRR′)3Nb═NR″, or a combination of the above compounds. In the above chemical formulas, each of R, R′, and R″ is H, a C1 to C10 alkyl group, alkenyl group, cycloalkyl group, cycloalkenyl group, or aryl group. Other Nb precursors may also be used.
In an example embodiment, the Ti dopant precursor may be formed of titanium tetrakis-isopropoxide: Ti(O-iProp)4, titanium halide, cyclopentadienyl titanium, titanium bis(isopropoxide)bis(2,2,6,6-tetramethyl-3,5-heptanedionate) (Ti(O-iProp)2(thd)2), titanium bis(4-(2-methylethoxy)imino-2-pentanoate) (Ti(2meip)2), titanium bis[4-(ethoxy)imino-2-pentanoate] (Ti(eip)2), titanium bis[2,2-dimethyl-5-(2-methylethoxy)imino-3-heptanoate](Ti(22dm2meih)2), or a combination of the above compounds.
For performing the purge, an inactive gas such as Ar, He, or Ne or a N2 gas may be used. The reaction gas including the nitrogen atoms may be formed of NH3, N2H4, a hydrazine derivative, or a combination thereof. The hydrazine derivative may be C1 to C10 alkyl hydrazine, C1 to C10 dialkyl hydrazine, or a combination thereof.
When the preliminary lower electrode layer 230L includes the NbN layer including a plurality of kinds of dopants including Ti, in an example ALD process of forming the preliminary lower electrode layer 230L, the above-described ALD unit cycle may be performed a plurality of times. After the fourth process is performed in the above-described ALD unit cycle, before the fifth process is performed, a seventh process of supplying at least one of a Co precursor, an Sn precursor, a V precursor, a Ta precursor, a Db precursor, a P precursor, an As precursor, an Sb precursor, and a Bi precursor, and an eighth process of purging unnecessary portions in the precursor supplied in the seventh process and discharging the purged portions to the outside of the reaction chamber may be performed.
Referring to
In order to form the main lower electrode layer 230, until a top surface of the mold pattern 228P is exposed, a part of the preliminary lower electrode layer 230L and the sacrificial pattern SLP (refer to
Referring to
Referring to
The dielectric layer 240 may conformally cover the exposed surfaces of the lower electrode LE21. The dielectric layer 240 may be formed by an ALD process.
Referring to
Referring to
A material of the main lower electrode layer 232 is the same as described with reference to
Referring to
In an example embodiment, in order to form the lower interface electrode layer 234, first, a preliminary lower interface electrode layer that conformally covers exposed surfaces of the main lower electrode layer 232 and exposed surfaces of the insulating pattern 226P may be formed on the resultant structure of
In other example embodiments, in order to form the lower interface electrode layer 234, the Ti doped NbO layer or the Ti doped NbON layer may be formed by using the ALD process. In this case, in order to form the Ti doped NbO layer or the Ti doped NbON layer, the ALD unit cycle including processes of supplying reaction materials may be performed a plurality of times. The ALD unit cycle may be similar to the ALD unit cycle described with reference to
In
Referring to
Referring to
In order to manufacture the integrated circuit devices 200C and 200D illustrated in
In an example embodiment, in order to manufacture the integrated circuit device 200C illustrated in
In an example embodiment, in order to manufacture the integrated circuit device 200D illustrated in
Referring to
Referring to
Then, the upper electrode UE3 formed of the upper electrode layer 250 is formed on the dielectric layer 240 and accordingly, the integrated circuit device 300 illustrated in
In order to manufacture the integrated circuit device 400A illustrated in
In order to manufacture the integrated circuit device 400B illustrated in
The methods of manufacturing the integrated circuit devices 200A, 200B, 200C, 200D, 300, 400A, and 400B illustrated in
As described above, embodiments relate to an integrated circuit device including a capacitor and a method of manufacturing the same. Embodiments may provide an integrated circuit device having a structure in which desired electrical characteristics may be maintained by providing high capacitance. Embodiments may provide a method of manufacturing an integrated circuit device having a structure in which desired electrical characteristics may be maintained by providing high capacitance.
Example embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent to one of ordinary skill in the art as of the filing of the present application, features, characteristics, and/or elements described in connection with a particular embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0068801 | Jun 2019 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6980416 | Sakaguchi | Dec 2005 | B2 |
8581318 | Chen et al. | Nov 2013 | B1 |
8647943 | Chen | Feb 2014 | B2 |
8652927 | Malhotra et al. | Feb 2014 | B2 |
8835274 | Hu | Sep 2014 | B2 |
8896097 | Wamura et al. | Nov 2014 | B2 |
9105646 | Malhotra et al. | Aug 2015 | B2 |
9646820 | Pore et al. | May 2017 | B2 |
20080182427 | Oberbeck | Jul 2008 | A1 |
20160093625 | Rui | Mar 2016 | A1 |
20180094970 | Schneider et al. | Apr 2018 | A1 |
20180112262 | Thornton et al. | Apr 2018 | A1 |
20180158688 | Chen et al. | Jun 2018 | A1 |
20200058731 | Mun | Feb 2020 | A1 |
20200286985 | Lim | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
2012-134311 | Jul 2012 | JP |
10-2008-0098822 | Nov 2008 | KR |
Number | Date | Country | |
---|---|---|---|
20200395436 A1 | Dec 2020 | US |