The present patent application is related to integrated circuit (IC) light emission devices.
Solid-state light sources, such as light emitting diodes (LEDs) and laser diodes, can offer significant advantages over other forms of lighting, such as incandescent or fluorescent lighting. For example, when LEDs or laser diodes are placed in arrays of red, green and blue elements, they can act as a source for white light or as a multi-colored display. In such configurations, solid-state light sources are generally more efficient and produce less heat than traditional incandescent or fluorescent lights. Although solid-state lighting offers certain advantages, conventional semiconductor structures and devices used for solid-state lighting are relatively expensive. The high cost of conventional solid-state light emission devices is partially related to the fact that the manufacturing process for conventional solid-state light emission devices is complicated and time-consuming. The details of the manufacturing process are dictated by the structure of the conventional solid-state light emission devices.
Referring to
A p-doped Group III-V compound layer 120 is formed on the buffer layer 110. The p-doped Group III-V compound layer 120 is typically made of GaN. An InGaN quantum-well layer 130 is formed on the p-doped Group III-V compound layer 120. An active Group III-V compound layer 140 is then formed on the InGaN quantum-well layer 130. An n-doped Group III-V compound layer 150 is formed on the layer 140. The p-doped Group III-V compound layer 120 is n-type doped. A p-electrode 160 (anode) is formed on the n-doped Group III-V compound layer 150. An n-electrode 170 (cathode) is formed on the first Group III-V compound layer 120.
A problem with the conventional manufacturing process, associated with devices such as shown in
Another problem with the conventional process is that testing of the devices to detect manufacturing defects and to determine device characteristics is done only after dicing a wafer into chips (dice) and packaging (e.g., wire bonding) the chips. In other words, testing is done individually on each chip. As a result, even defective chips are packaged (since they have not yet been identified at the packaging stage), which results in time, effort and material being wasted on packaging defective chips. Furthermore, the need to test all of the chips individually makes the overall manufacturing process more time-consuming and complicated.
In addition, a problem associated with the device in
Introduced here is an integrated circuit device, which can be a light emission device such as an LED, in which the electrodes are formed on opposite sides of the substrate, and opposite sides of the active (light emission) layers of the device. For example, a first electrode (e.g., the anode) can be formed over the active layers that have been grown on a top surface of the substrate and a second electrode (e.g., the cathode) is formed on a bottom surface of the substrate. This approach eliminates the need for a complicated, time-consuming and expensive multistage selective etch process, such as employed in a conventional LED manufacturing process for purposes of forming the cathode. Furthermore, this approach reduces waste of material (e.g., semiconductor substrate), since no substrate grinding is needed. In addition, because one of the electrodes is formed on the bottom surface of the substrate, that electrode does not block light generated by the active layers of the device.
Formation of the electrodes on opposite sides of the substrate as described herein also allows a plurality of these devices to be formed on a semiconductor wafer, where all such devices on the wafer can share their first and second electrodes on the wafer. This approach allows all of the devices to be tested for manufacturing defects simultaneously on the wafer, which simplifies and shortens testing. Furthermore, no time and effort is wasted in packaging (e.g., wire bonding) defective devices. Moreover, this technique allows such a device to be packaged into an operable module by directly connecting it to a mounting substrate, without the use of any wire bonding, which further shortens and simplifies the manufacturing process.
One or more embodiments of the present invention are illustrated by way of example and not limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Referring to
The light emission device 200 includes: a reflective buffer layer 215 on the upper surface 207 and the trench surfaces 213; a lower Group III-V compound layer 220 on the reflective buffer layer 215; one or more quantum-well layers 230 on the lower Group III-V compound layer 220, where the quantum-well layers 230 collectively are a light emission layer; and an upper Group III-V compound layer 240. The lower Group III-V compound layer 220 and the upper Group III-V compound layer 240 each include a group III element and a group V element. The group III element is typically gallium. The group V element is typically nitride. Group III-V compounds suitable for the lower Group III-V compound layer 220 and the upper Group III-V compound layer 240 can include GaN or InGaAlN. The lower Group III-V compound layer 220 and the upper Group III-V compound layer 240 can be respectively n-type and p-type doped. The portion of the upper Group III-V compound layer 240 over the trench surface 213 is referred to as a sloped upper Group III-V compound layer 240A and is oriented at an angle relative to the upper surface 207 of the substrate 205. The light emission device 200 also includes a lower electrode 270 on the bottom surface of the substrate 205, and an upper electrode 260 on the upper Group III-V compound layer 240.
In some embodiments, as shown in
Referring to
A reflective buffer layer 215 is formed on the surface 205A of the substrate 205 and the sloped surfaces 210A, 210B in the trenches 210. A function of the reflective buffer layer 215 is to reflect light emitted by the light emission quantum well layer 230 to the light emitting device surfaces and away from the substrate 205 to prevent the emitted light from being absorbed by the substrate 205. For example, the substrate 205 can be a doped silicon based conductive substrate, which absorbs light in the visible light range. The reflective buffer layer 215 can have a reflectance coefficient higher than 30%, 50%, or 70% in the spectral range for the emitted light from the light emission quantum well 230.
The reflective buffer layer 215 can be deposited on the substrate 205 using Metal-Organic Chemical Vapour Deposition (MOCVD), atomic layer deposition (ALD), physical vapor deposition (PVD), or Chemical Vapor Deposition (CVD) in a vacuum chamber maintained at a temperature in the range of 550° C. to 850° C., such as about 700° C. The reflective buffer layer 215 is electrically conductive. Most common reflective buffer layers are composed of multilayer of reflective metals and their nitrides in order to be electrically conductive. The thickness of each layer is calculated from reflective index of the materials for a specific wavelength of the light to be reflected. The reflective buffer layer 215 can have a thickness of about 200 to 200,000 Angstroms such as 1000 to 10,000 Angstroms. The reflective buffer layer 215 can wet and form a uniform layer on the substrate 205. The reflective buffer layer 215 can also have crystal structures with lattices expitaxially matched to the substrate 205 and the lower Group III-V compound layer 220 (described below).
The PVD, CVD, MOCVD, or ALD formation of the reflective buffer layer 215 can involve the use of TaN or TiN and a layer thickness of 10 to 100 angstromes. Atomic layer deposition (ALD) is a “nano” technology, allowing ultra-thin films of a few nanometers to be deposited in a precisely controlled way. ALD has the beneficial characteristics of self-limiting atomic layer-by-layer growth and is highly conformal to the substrate. For the formation of buffer layer in the light emission devices, ALD can use two or more precursors such as liquid halide or organometallic in vapor form. The ALD can involve heat to dissociate the precursors into the reaction species. One of the precursors can also be a plasma gas. By depositing one layer per cycle, ALD offers extreme precision in ultra-thin film growth since the number of cycles determines the number of atomic layers and therefore the precise thickness of deposited film. Because the ALD process deposits precisely one atomic layer in each cycle, complete control over the deposition process is obtained at the nanometer scale. Moreover, ALD has the advantage of being capable of substantially isotropic depositions. ALD is therefore beneficial for depositing buffer layers on the sloped surfaces 210A and 210B in the V-shape trenches, and the vertical surfaces in a U-shape trench.
A lower Group III-V compound layer 220 is formed on the reflective buffer layer 215. The lower Group III-V compound layer 220 can be formed by silicon doped n-GaN. The lower Group III-V compound layer 220 can have a thickness in the range of 1 to 50 microns, such as 10 microns.
The material for the reflective buffer layer 215 is selected to satisfy the requirements of high reflectivity, electrically conductive, and lattice matching with the substrate 205 and a lower Group III-V compound layer 220. For example, the reflective buffer layer 215 can be formed by Al, aluminum nitride, Al silicide, Ag, Ag oxide, Au, Au nitride, and their alloys of Al, Au and Ag. The reflective buffer layer 215 can be also formed by one or more materials such as TaN, TiN, GaN, ZnO, AlN, HfN, AlAs, or SiC. The reflective buffer layer 215 can have a thickness in the range of 200 to 200,000 Angstroms, such as 1,000 to 10,000 Angstroms. Each reflective layer 215 includes multiple layers of metal and its nitride thin-films to have a total reflection of a specific wavelength of the emitted light. The thickness of each metal layer or its nitride layer is in the order of monolayer of materials calculated from the optical property of the thin-film materials.
A quantum-well layer 230 is formed on the lower Group III-V compound layer 220. The quantum-well layer 230 can be made of InN or InGaN with a thickness in the range of 5 to 200 Angstroms, such as 50 Angstroms. An upper Group III-V compound layer 240 is formed on the quantum-well layer 230. The upper Group III-V compound layer 240 can be formed by p-type doped GaN such as Al0.1Ga0.9N. The upper Group III-V compound layer can be an aluminum doped p-GaN layer 240 having a thickness in the range of 0.1 to 10 microns, such as 1 micron. The quantum-well layer 230 forms a quantum well between the lower Group III-V compound layer 220 and the upper Group III-V compound layer 240. A conductive layer 250 is optionally formed on the upper Group III-V compound layer 240. The conductive layer 250 is at least partially transparent. Materials suitable for the conductive layer 250 can include ITO or a thin layer p-type ohmic metal such as Ni/Au.
An upper electrode 260 can be formed on the conductive layer 250 (or the upper Group III-V compound layer 240 in absence of the conductive layer 250). A lower electrode 270 is formed on the bottom surface of the substrate 205. The upper electrode 260 and lower electrode 270 can be referred to as the p-electrode and n-electrode, or anode and cathode, respectively, as henceforth assumed in this description to facilitate explanation. Note, however, that in other embodiments the upper electrode 260 can be n-type (i.e., the cathode) while the lower electrode 270 is p-type (i.e., the anode). The use of transparent ITO material in the conductive layer 250 can significantly increase the conductivity between the electrode 260 and the upper Group III-V compound layer 240 while maximizing the transmission light out of the upper surface of the conductive layer 250 emitted from the quantum-well layer 230.
The quantum-well layer 230 can form a quantum well for electric carriers in between the lower Group III-V compound layer 220 and the upper Group III-V compound layer 240. An electric voltage can be applied across the lower electrode 270 and the upper electrode 260 to produce an electric field in the quantum-well layer 230 to excite carriers in the quantum well formed by the quantum-well layer 230, forming a quantum well for electric carriers in between the lower Group III-V compound layer 220 and the upper Group III-V compound layer 240. The recombinations of the excited carriers can produce light emission. The emission wavelengths are determined mostly by the bandgap of the material in the quantum-well layer 230.
In the present specification, the term “quantum well” refers to a potential well that confines charge carriers or charged particles such as electrons and holes to a substantially two-dimensional planar region. In a semiconductor light emission device, the quantum well can trap excited electrons and holes and define the wavelength of light emission when the electrons and the holes recombine in the quantum well and produce photons.
In the present specification, a quantum-well layer can include a uniform layer or a plurality of quantum wells. For example, a quantum-well layer (e.g., layer 230) can include a substantially uniform layer made of InN, GaN, InGaN, AlGaN, InAlN, or AlInGaN. A quantum-well layer can also include a multi-layer structure defining one or more quantum wells. A quantum well can for example be formed by an InGaN, an AlGaN, an InAlN, or an InGaAlN layer sandwiched in between two GaN layers. A quantum well can also be formed by an InGaN layer sandwiched in between GaN or AlGaN layers. The quantum-well layer can include one or a stack of such layered structure each defining a quantum well as described above.
The bandgap for InN is about 1.9 eV, lower than the bandgap for GaN that is at about 3.4 eV. The lower bandgap of the InN or the InGaN layer can define a potential well for trapping charge carriers such as electrons and holes. The trapped electrons and holes can recombine to produce photons (light emission). The bandgap in the InN or the InGaN layer can therefore determine the colors of the light emissions. In other words, the colors of light emissions can be tuned by adjusting the compositions of In and Ga in InGaN. For example, a quantum well can produce red light emission from an InN layer, green light emission from an In(0.5)Ga(0.5)N layer, and blue light emission from an In(0.3)Ga(0.7)N in the quantum-well.
In one aspect, the disclosed light emission device can include a semiconductor substrate having at least two top surfaces that are not parallel to each other; and a light emission layer disposed over one of those top surfaces to emit light, the light emission layer having a light emission surface which is not parallel to one of the above-mentioned top surfaces of the substrate. By stating that one layer is disposed “over” or “above” another layer, this does not necessarily mean that the two layers must be in direct contact with each other; indeed, there may be one or more additional layers in between, as will be further apparent from other portions of this description. In another aspect, the disclosed light emission device can include a substrate; and a light emission layer disposed over the substrate to emit light, the light emission layer having a footprint area and having a light emission surface area which is greater than the footprint area. In another aspect, the disclosed light emission device can include a substrate having a top surface and a protrusion formed on the top surface; and a light emission layer disposed on the protrusion to emit light, the light emission layer having a light emission surface which is not parallel to the above-mentioned top surface of the substrate.
The light emission devices 200 on the wafer 700 can be used collectively as an integrated light emission device. Alternatively, light emission devices 200 on the wafer 700 can be separated by dicing and cutting (e.g., along dicing line 285 in
Referring to
Referring to
Next, at step 1002 the wafer substrate is cleaned by any known or convenient method. At 1003, multiple reflective buffer layers 215 are grown epitaxially on the top surface 205A (111 surface) of the Si substrate (and in the trenches 210) to form the conductive reflection layers for the specific wavelength of light emitted devices (
At 1004 an n-type GaNx layer 220 is then grown on the top buffer layer 215. At 1005 multiple quantum well layers 230 are epitaxially grown on the n-type GaNx layer 220. Next, at 1006 a p-type GaNx layer 240 is epitaxially grown on the top quantum well layer 230. A thin ohm-contact conductive layer 250, such as ITO, is then deposited on top of the p-type GaNx layer at 1007, as shown in
Next, at 1009 a full layer of metal is deposited on the (etched) bottom surface of a silicon substrate to form the interconnect electrode 270 to the cathode, as shown in
Next, the testing phase begins. In one embodiment, at 1010 all of the light emission devices constructed on the wafer are tested simultaneously on the wafer to detect manufacturing defects and to determine their device characteristics. Aside from the fact that all devices are tested simultaneously, any known or convenient testing techniques can be used. Next, at 1011 the wafer is diced to form multiple physically separate light emission devices. Each resulting die is immediately ready for module packaging at this point. Therefore, in the packaging stage at 1012, those devices (dice) which successfully passed the testing phase are packaged into light emission device modules. An example of such a module is illustrated in
Referring to
Although the present invention has been described with reference to specific exemplary embodiments, it will be recognized that the invention is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative sense rather than a restrictive sense.