The present invention generally related to improved medical devices, systems, and methods. In many embodiments, devices, systems, and methods for locating and treating a nerve with integrated cold therapy and electrical stimulation systems are provided.
Cryoneurolysis or cryoneuroablation may be used to treat nerves to temporarily stop nerve signaling, typically for a set period of time, and may be followed by a restoration of nerve function. Cryoneurolysis can be used on motor nerves for various cosmetic applications and/or medical conditions, including but not limited to: movement disorders, muscle spasms, muscle hyperactivity and/or any condition where reduction in muscle movement is desired. Additionally, Cryoneurolysis may be used on sensory nerves to provide temporary or permanent pain relief by degenerating the nerve and providing a peripheral nerve block. While Cryoneurolysis has many beneficial applications, further improvements in the methods, devices, and systems may be had.
The present invention generally relates to improved medical devices, systems, and methods. In many embodiments, devices, systems, and methods for locating and treating a target nerve with integrated cold therapy and electrical stimulation systems are provided. For example, nerve stimulation and cryoneurolysis may be delivered concurrently or alternately with the cryo-stimulation device. Further, in some embodiments, the device may be operated by a single operator or clinician. In yet other embodiments, manufacturability may be improved or costs decreased. In other embodiments, ease of assembly may also be improved. Accordingly, such embodiments of the present disclosure may improve nerve targeting during cryoneurolysis procedures. Improvements in nerve localization and targeting may increase treatment accuracy and physician confidence in needle placement during treatment. In turn, such improvements may decrease overall treatment times, the number of repeat treatments, and the re-treatment rate. Further, additional improvements in nerve localization and targeting may reduce the number of needle insertions, applied treatment cycles, and may also reduce the number of cartridge changes (when replaceable refrigerant cartridges are used). Thus, embodiments of the present disclosure may provide one or more advantages for cryoneurolysis by improving localization and treatment of target nerves. Hence, some aspects of the present disclosure provide methods, devices, and systems for localizing, targeting, and treating a nerve with integrated cold therapy and electrical stimulation systems.
In some embodiments, a cryo-stimulation treatment device may be provided that includes a needle assembly having a proximal portion and a distal portion. The needle assembly may be configured to produce a cold zone for cryoneurolysis of a target nerve. The device includes first and second electrical contacts coupled to the distal portion of the needle assembly and configured to be electrically coupled to an electrical nerve stimulation generator to provide bipolar stimulation, using either biphasic or monophasic stimulation signals. The electrical nerve stimulation generator is configured to generate a first electric field about the first and second electrical contacts for electrically stimulating and locating the target nerve.
In some embodiments, a treatment device includes a handle defined by a housing coupled to the proximal portion of the needle assembly. The electrical nerve stimulation generator may be disposed within the handle housing. In other embodiments, an external electrical nerve stimulation generator is coupled to an electrical port on the handle housing or the needle assembly. In some aspects, the second electrical contact (e.g., return electrode) is an anode and the first electrical contact (e.g., active or stimulating electrode closest to nerve being stimulated) is a cathode.
In certain embodiments, the treatment device further includes a third electrical contact spaced apart from the needle assembly and configured to be electrically coupled to the electrical nerve stimulation generator and at least one of the first or second electrical contacts to provide monopolar stimulation. The electrical nerve stimulation generator is configured to generate a second electric field about the third electrical contact and the at least one of the first or second electrical contacts for electrically stimulating and locating the target nerve. In some embodiments, the third electrical contact serves as a return electrode and the at least one of the first or second electrical contacts serves as an active electrode. In some aspects, third electrical contact is configured to be positioned on skin of a patient (e.g., patient's leg or back), a housing of the treatment device, or a heater block of the treatment device.
In some embodiments, the second electric field is generated prior to the first electric field. It may be advantageous generate the second monopolar electric field initially for gross positioning and then switch to the first bipolar stimulation to fine-tune the positioning of the needle. In some aspects, the first and second electrical contacts are located asymmetrically on the needle assembly. In some embodiments, a distal end of the needle assembly comprises a beveled edge. In some aspects, the first electrical contact extends along the beveled edge. In some aspects, only a distal tip of the beveled edge is electrically conductive.
In certain embodiments, a contact surface area of the second electrical contact is greater than a contact surface area of the first electrical contact. In some aspects, the first and second electrical contacts face opposing directions. In some aspects, the first and second electrical contacts comprise concave-shaped, convex-shaped, or round-shaped electrodes. In some embodiments, the needle assembly comprises at least one or more needles and the two or more electrical contracts may reside on or within the same or separate needles. Still further, the electrical contacts may reside on or within the needle, heater assembly, and/or housing of the needle assembly and function as either an active or return electrode.
In certain embodiments, a cryo-stimulation treatment device is provided that includes a needle assembly configured to produce a cold zone for cryoneurolysis of a target nerve. The needle assembly includes a first shaft constructed of electrically conductive material and including an electrically insulating coating. The first shaft includes a proximal end, a distal end, and length therebetween. The proximal end of the first shaft is couplable with an electrical nerve stimulation generator that generates an electric field for electrically stimulating and locating the target nerve. The device further includes a second shaft comprising a proximal end, a distal end, and a shaft lumen extending therebetween. The second shaft further includes a cooling fluid supply lumen extending distally within the shaft lumen to a distal portion of the shaft lumen of the second shaft.
In some aspects, the first shaft is retractable relative to the second shaft. In certain aspects, the distal ends of the first shaft and the second shaft form a beveled distal end of the needle.
In further embodiments, the device further includes a third shaft. The third shaft includes a proximal end, a distal end, and a shaft lumen extending therebetween. The second shaft and third shaft extend axially along opposing sides of the first shaft. According to certain aspects, the first shaft is retractable relative to the second shaft and the third shaft.
In yet further embodiments, the device includes a heating element and a sensor or heater block may be coupled to the heating element that acts as electrical return during electrical nerve stimulation of the target nerve. In some embodiments, the device further includes a housing and the housing acts as electrical return during electrical nerve stimulation of the target nerve. In some aspects as discussed herein, the sensor, heater block, or housing may function as either the return or active electrode.
In some embodiments, a distal end portion of the first shaft is uninsulated by the electrically insulating coating such that the electric field is generated only about the distal end portion of the first shaft to stimulate the target nerve. In certain aspects, only a tip of the distal end portion is uninsulated by the electrically insulating coating.
In certain embodiments, the device further includes a cooling fluid source couplable to the cooling fluid supply lumen to direct cooling fluid flow into the second shaft lumen so that liquid from the cooling fluid flow vaporizes within the second shaft lumen to produce the cold zone. In further aspects, the first and second shafts extend contiguously.
In further embodiments, a cryo-stimulation treatment device is provided that includes a needle assembly having a proximal portion and a distal portion, the needle assembly configured to produce a cold zone for cryoneurolysis of a target nerve. The device includes a first electrical contact coupled to the distal portion of the needle assembly and a second electrical contact positioned on a heater assembly of the needle assembly configured to serve as a return electrode. The first and second electrical contacts are configured to be electrically coupled to an electrical nerve stimulation generator to provide electrical stimulation for electrically stimulating and locating the target nerve. In some aspects, the heater assembly includes a heater block. In some aspects, the heater electrode may advantageously provide a confirmation signal that the heater is in contact with the skin surface for patient safety purposes. For example, the confirmation may comprise an impedance measurement that is below 10 K ohms.
In yet other embodiments, a method of treating a nerve is provided that includes the steps of: inserting one or more needles of a needle assembly into a tissue of a patient, electrically stimulating the nerve with the needle assembly via bipolar electrical stimulation to localize the nerve within the tissue, and after localizing of the nerve via bipolar electrical stimulation, delivering cryoneurolysis to the nerve with the needle assembly.
In certain aspects, the method further includes electrically stimulating the nerve with the needle assembly via monopolar electrical stimulation prior to electrically stimulating the nerve with the needle assembly via bipolar electrical stimulation to initially localize the nerve within the tissue. For example, the method could employ a third electrical contact acting as a return (or anode) connection located on the skin surface of the skin. The device would then provide a stimulation signal between its active (or cathode) electrode in the needle assembly and the skin electrode to provide monopolar stimulation to allow the user to initially locate the target nerve for gross positioning. Following this, the user could then switch to a bipolar stimulation mode that would break the return connection with the skin electrode and provide a stimulation signal path between the active electrode and a second return electrode located on the same or adjacent needle. This bipolar stimulation would then be used to precisely locate and fine tune needle placement on the target nerve.
According to other aspects, the method further includes electrically stimulating the nerve with the needle assembly via bipolar electrical stimulation to localize the nerve within the tissue includes generating a first electric field about asymmetrically located first and second electrical contacts coupled to the needle assembly.
Further details, aspects and embodiments of the invention will be described by way of example only and with reference to the drawings. In the drawings, like reference numbers are used to identify like or functionally similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.
The present invention provides improved medical devices, systems, and methods. Embodiments of the invention may treat target tissues disposed at and below the skin, optionally to treat pain associated with a sensory nerve. In some embodiments, systems, devices, and methods of the present disclosure may utilize an integrated cold therapy and nerve stimulation device for localization and treatment of a target nerve.
Embodiments of the invention may utilize a handheld refrigeration system that can use a commercially available cartridge of fluid refrigerant. Refrigerants well-suited for use in handheld refrigeration systems may include nitrous oxide and carbon dioxide. These can achieve temperatures approaching −90° C.
Sensory nerves and associated tissues may be temporarily impaired using moderately cold temperatures of 10° C. to −5° C. without permanently disabling the tissue structures. Using an approach similar to that employed for identifying structures associated with atrial fibrillation or for peripheral nerve blocks, a needle probe or other treatment device can be used to identify a target tissue structure in a diagnostic mode with these moderate temperatures, and the same probe (or a different probe) can also be used to provide a longer term or permanent treatment, optionally by treating the target tissue zone and/or inducing apoptosis at temperatures from about −5° C. to about −50° C. In some embodiments, apoptosis may be induced using treatment temperatures from about −1° C. to about −15° C., or from about −1° C. to about −19° C., optionally so as to provide a longer lasting treatment that limits or avoids inflammation and mobilization of skeletal muscle satellite repair cells. In some embodiments, axonotmesis with Wallerian degeneration of a sensory nerve is desired, which may be induced using treatment temperatures from about −20° C. to about −100° C. Hence, the duration of the treatment efficacy of such subdermal cryogenic treatments may be selected and controlled, with colder temperatures, longer treatment times, and/or larger volumes or selected patterns of target tissue determining the longevity of the treatment. Additional description of cryogenic cooling methods and devices may be found in commonly assigned U.S. Pat. No. 7,713,266 entitled “Subdermal Cryogenic Remodeling of Muscle, Nerves, Connective Tissue, and/or Adipose Tissue (Fat)”, U.S. Pat. No. 7,850,683 entitled “Subdermal Cryogenic Remodeling of Muscles, Nerves, Connective Tissue, and/or Adipose Tissue (Fat)”, U.S. Pat. No. 9,039,688 entitled “Method for Reducing Hyperdynamic Facial Wrinkles”, and U.S. Pat. No. 8,298,216 entitled “Pain Management Using Cryogenic Remodeling,” the full disclosures of which are each incorporated by reference herein.
Referring now to
Extending distally from distal end 14 of housing 16 may be a tissue-penetrating cryogenic cooling probe 26. Probe 26 is thermally coupled to a cooling fluid path extending from cooling fluid source 18, with the exemplary probe comprising a tubular body receiving at least a portion of the cooling fluid from the cooling fluid source therein. The probe 26 may comprise a 30 G needle or smaller gauge (e.g., 27 G) having a sharpened distal end that is axially sealed. Probe 26 may have an axial length between distal end 14 of housing 16 and the distal end of the needle of between about 0.5 mm and 15 cm. Such needles may comprise a stainless steel tube with an inner diameter of about 0.006 inches and an outer diameter of about 0.012 inches, while alternative probes may comprise structures having outer diameters (or other lateral cross-sectional dimensions) from about 0.006 inches to about 0.100 inches. Generally, needle probe 26 may comprise a 16 G or smaller diameter needle, often comprising a 20 G needle or smaller, typically comprising a 22, 25, 26, 27, 28, 29, or 30 G or smaller diameter needle.
In some embodiments, probe 26 may comprise two or more needles arranged in a linear array, such as those disclosed in previously incorporated U.S. Pat. No. 7,850,683. Another exemplary embodiment of a probe having multiple needle probe configurations allow the cryogenic treatment to be applied to a larger or more specific treatment area. Other needle configurations that facilitate controlling the depth of needle penetration and insulated needle embodiments are disclosed in commonly assigned U.S. Pat. No. 8,409,185 entitled “Replaceable and/or Easily Removable Needle Systems for Dermal and Transdermal Cryogenic Remodeling,” the entire content of which is incorporated herein by reference. Multiple needle arrays may also be arrayed in alternative configurations such as a triangular or square array.
Arrays may be designed to treat a particular region of tissue, or to provide a uniform treatment within a particular region, or both. In some embodiments needle 26 may be releasably coupled with body 16 so that it may be replaced after use with a sharper needle (as indicated by the dotted line) or with a needle having a different configuration. In exemplary embodiments, the needle may be threaded into the body, press fit into an aperture in the body or have a quick disconnect such as a detent mechanism for engaging the needle with the body. A quick disconnect with a check valve may be advantageous since it may permit decoupling of the needle from the body at any time without excessive coolant discharge. This can be a useful safety feature in the event that the device fails in operation (e.g. valve failure), allowing an operator to disengage the needle and device from a patient's tissue without exposing the patient to coolant as the system depressurizes. This feature may also be advantageous because it allows an operator to easily exchange a dull needle with a sharp needle in the middle of a treatment. One of skill in the art will appreciate that other coupling mechanisms may be used.
Addressing some of the components within housing 16, the exemplary cooling fluid supply 18 may comprise a canister, sometimes referred to herein as a cartridge, containing a liquid under pressure, with the liquid preferably having a boiling temperature of less than 37° C. at one atmosphere of pressure. When the fluid is thermally coupled to the tissue-penetrating probe 26, and the probe is positioned within the patient so that an outer surface of the probe is adjacent to a target tissue, the heat from the target tissue evaporates at least a portion of the liquid and the enthalpy of vaporization cools the target tissue. A supply valve 32 may be disposed along the cooling fluid flow path between canister 18 and probe 26, or along the cooling fluid path after the probe so as to limit coolant flow thereby regulating the temperature, treatment time, rate of temperature change, or other cooling characteristics. The valve will often be powered electrically via power source 20, per the direction of processor 22, but may at least in part be manually powered. The exemplary power source 20 comprises a rechargeable or single-use battery. Additional details about valve 32 are disclosed below and further disclosure on the power source 20 may be found in commonly assigned Int'l Pub. No. WO 2010/075438 entitled “Integrated Cryosurgical Probe Package with Fluid Reservoir and Limited Electrical Power Source,” the entire contents of which are incorporated herein by reference.
The exemplary cooling fluid supply 18 may comprise a single-use canister. Advantageously, the canister and cooling fluid therein may be stored and/or used at (or even above) room temperature. The canister may have a frangible seal or may be refillable, with the exemplary canister containing liquid nitrous oxide, N2O. A variety of alternative cooling fluids might also be used, with exemplary cooling fluids including fluorocarbon refrigerants and/or carbon dioxide. The quantity of cooling fluid contained by canister 18 will typically be sufficient to treat at least a significant region of a patient, but will often be less than sufficient to treat two or more patients. An exemplary liquid N2O canister might contain, for example, a quantity in a range from about 1 gram to about 40 grams of liquid, more preferably from about 1 gram to about 35 grams of liquid, and even more preferably from about 7 grams to about 30 grams of liquid.
Processor or controller 22 will typically comprise a programmable electronic microprocessor embodying machine readable computer code or programming instructions for implementing one or more of the treatment methods described herein. The microprocessor will typically include or be coupled to a memory (such as a non-volatile memory, a flash memory, a read-only memory (“ROM”), a random access memory (“RAM”), or the like) storing the computer code and data to be used thereby, and/or a recording media (including a solid state recording media such as a flash memory drive; a magnetic recording media such as a hard disk, a floppy disk, or the like; or an optical recording media such as a CD or DVD) may be provided. Suitable interface devices (such as digital-to-analog or analog-to-digital converters, or the like) and input/output devices (such as USB or serial I/O ports, wireless communication cards, graphical display cards, and the like) may also be provided. A wide variety of commercially available or specialized processor structures may be used in different embodiments, and suitable processors may make use of a wide variety of combinations of hardware and/or hardware/software combinations. For example, processor 22 may be integrated on a single processor board and may run a single program or may make use of a plurality of boards running a number of different program modules in a wide variety of alternative distributed data processing or code architectures.
Referring now to
Still referring to
Supply tube 36 is, at least in part, disposed within a lumen 38 of needle 26, with the supply tube extending distally from a proximal end 40 of the needle toward a distal end 42. The exemplary supply tube 36 comprises a fused silica tubular structure (not illustrated) having a polymer coating and extending in cantilever into the needle lumen 38. Supply tube 36 may have an inner lumen with an effective inner diameter of less than about 200 μm, the inner diameter often being less than about 100 μm, and typically being less than about 70 μm. Exemplary embodiments of supply tube 36 have inner lumens of between about 15 and 70 μm, such as about 30 μm or 65 μm. An outer diameter or size of supply tube 36 will typically be less than about 1000 μm, often being less than about 800 μm, with exemplary embodiments being between about 60 and 150 μm, such as about 90 μm or 105 μm. The tolerance of the inner lumen diameter of supply tubing 36 will preferably be relatively tight, typically being about +/−10 μm or tighter, often being +/−5 μm or tighter, and ideally being +/−3 μm or tighter (e.g., +/−1 μm), as the small diameter supply tube may provide the majority of (or even substantially all of) the metering of the cooling fluid flow into needle 26. Additional details on various aspects of needle 26 along with alternative embodiments and principles of operation are disclosed in greater detail in U.S. Pat. No. 9,254,162 entitled “Dermal and Transdermal Cryogenic Microprobe Systems and Methods,” the entire contents of which are incorporated herein by reference. Previously incorporated U.S. Pat. No. 8,409,185 also discloses additional details on the needle 26 along with various alternative embodiments and principles of operation.
The cooling fluid injected into lumen 38 of needle 26 will typically comprise liquid, though some gas may also be injected. At least some of the liquid vaporizes within needle 26, and the enthalpy of vaporization cools the needle and also the surrounding tissue engaged by the needle. An optional heater 44 (illustrated in
The heater 44 may be thermally coupled to a thermally responsive element 50, which is supplied with power by the controller 22 and thermally coupled to a proximal portion of the needle 26. The thermally responsive element 50 can be a block constructed from a material of high thermal conductivity and low heat capacity, such as aluminum. A first temperature sensor 52 (e.g., thermistor, resistance temperature detectors, or thermocouple) can also be thermally coupled the thermally responsive element 50 and communicatively coupled to the controller 22. A second temperature sensor 53 can also be positioned near the heater 44, for example, such that the first temperature sensor 52 and second temperature sensor 53 are placed in different positions within the thermally responsive element 50. In some embodiments, the second temperature sensor 53 is placed closer to a tissue contacting surface than the first temperature sensor 52 is placed in order to provide comparative data (e.g., temperature differential) between the sensors 52, 53. The controller 22 can be configured to receive temperature information of the thermally responsive element 50 via the temperature sensor 52 in order to provide the heater 44 with enough power to maintain the thermally responsive element 50 at a particular temperature.
The controller 22 can be further configured to monitor power draw from the heater 44 in order to characterize tissue type, perform device diagnostics, and/or provide feedback for a tissue treatment algorithm. This can be advantageous over monitoring temperature alone, since power draw from the heater 44 can vary greatly while temperature of the thermally responsive element 50 remains relatively stable. For example, during treatment of target tissue, maintaining the thermally responsive element 50 at 40° C. during a cooling cycle may take 1.0 W initially (for a needle <10 mm in length) and is normally expected to climb to 1.5 W after 20 seconds, due to the needle 26 drawing in surrounding heat. An indication that the heater is drawing 2.0 W after 20 seconds to maintain 40° C. can indicate that an aspect of the system 10 is malfunctioning and/or that the needle 26 is incorrectly positioned. Correlations with power draw and correlated device and/or tissue conditions can be determined experimentally to determine acceptable treatment power ranges.
In some embodiments, it may be preferable to limit frozen tissue that is not at the treatment temperature, i.e., to limit the size of a formed cooling zone within tissue. Such cooling zones may be associated with a particular physical reaction, such as the formation of an ice-ball, or with a particular temperature profile or temperature volume gradient required to therapeutically affect the tissue therein. To achieve this, metering coolant flow could maintain a large thermal gradient at its outside edges. This may be particularly advantageous in applications for creating an array of connected cooling zones (i.e., fence) in a treatment zone, as time would be provided for the treatment zone to fully develop within the fenced in portion of the tissue, while the outer boundaries maintained a relatively large thermal gradient due to the repeated application and removal of refrigeration power. This could provide a mechanism within the body of tissue to thermally regulate the treatment zone and could provide increased ability to modulate the treatment zone at a prescribed distance from the surface of the skin. A related treatment algorithm could be predefined, or it could be in response to feedback from the tissue.
Such feedback could be temperature measurements from the needle 26, or the temperature of the surface of the skin could be measured. However, in many cases monitoring temperature at the needle 26 is impractical due to size constraints. To overcome this, operating performance of the sensorless needle 26 can be interpolated by measuring characteristics of thermally-coupled elements, such as the thermally responsive element 50.
Additional methods of monitoring cooling and maintaining an unfrozen portion of the needle include the addition of a heating element and/or monitoring element into the needle itself. This could consist of a small thermistor or thermocouple, and a wire that could provide resistive heat. Other power sources could also be applied such as infrared light, radiofrequency heat, and ultrasound. These systems could also be applied together dependent upon the control of the treatment zone desired.
Alternative methods to inhibit excessively low transient temperatures at the beginning of a refrigeration cycle might be employed instead of or together with the limiting of the exhaust volume. For example, the supply valve 32 might be cycled on and off, typically by controller 22, with a timing sequence that would limit the cooling fluid flowing so that only vaporized gas reached the needle lumen 38 (or a sufficiently limited amount of liquid to avoid excessive dropping of the needle lumen temperature). This cycling might be ended once the exhaust volume pressure was sufficient so that the refrigeration temperature would be within desired limits during steady state flow. Analytical models that may be used to estimate cooling flows are described in greater detail in previously incorporated U.S. Pat. No. 9,254,162.
The filter device 56 may fluidly couple the coolant fluid source (cartridge) 18 at a proximal end to the valve 32 at a distal end. The filter device 56 may include at least one particulate filter 58. In the shown embodiment, a particulate filter 58 at each proximal and distal end of the filter device 56 may be included. The particulate filter 58 can be configured to prevent particles of a certain size from passing through. For example, the particulate filter 58 can be constructed as a microscreen having a plurality of passages less than 2 microns in width, and thus particles greater than 2 microns would not be able to pass.
The filter device 56 also includes a molecular filter 60 that is configured to capture fluid impurities. In some embodiments, the molecular filter 60 is a plurality of filter media (e.g., pellets, powder, particles) configured to trap molecules of a certain size. For example, the filter media can comprise molecular sieves having pores ranging from 1-20 Å. In another example, the pores have an average size of 5 Å. The molecular filter 60 can have two modalities. In a first mode, the molecular filter 60 will filter fluid impurities received from the cartridge 18. However, in another mode, the molecular filter 60 can capture impurities within the valve 32 and fluid supply tube 36 when the system 10 is not in use, i.e., when the cartridge 18 is not fluidly connected to the valve 32.
Alternatively, the filter device 56 can be constructed primarily from ePTFE (such as a Gore-Tex® material), sintered polyethylene (such as made by POREX), or metal mesh. The pore size and filter thickness can be optimized to minimize pressure drop while capturing the majority of contaminants. These various materials can be treated to make it hydrophobic (e.g., by a plasma treatment) and/or oleophobic so as to repel water or hydrocarbon contaminants.
It has been found that in some instances fluid impurities may leach out from various aspects of the system 10. These impurities can include trapped moisture in the form of water molecules and chemical gasses. The presence of these impurities is believed to hamper cooling performance of the system 10. The filter device 56 can act as a desiccant that attracts and traps moisture within the system 10, as well as chemicals out gassed from various aspects of the system 10. Alternately the various aspects of the system 10 can be coated or plated with impermeable materials such as a metal.
As shown in
In use, the cartridge cover 62 can be removed and supplied with a cartridge containing a cooling fluid. The cartridge cover 62 can then be reattached to the cartridge receiver 52 by turning the cartridge cover 62 until female threads 64 of the cartridge cover 62 engage with male threads of the cartridge receiver 52. The cartridge cover 62 can be turned until resilient force is felt from an elastic seal 66, as shown in
In some embodiments, the puncture pin connector 68 can have a two-way valve (e.g., ball/seat and spring) that is closed unless connected to the cartridge. Alternately, pressure can be used to open the valve. The valve closes when the cartridge is removed. In some embodiments, there may be a relief valve piloted by a spring which is balanced by high-pressure nitrous when the cartridge is installed and the system is pressurized, but allows the high-pressure cryogen to vent when the cryogen is removed. In addition, the design can include a vent port that vents cold cryogen away from the cartridge port. Cold venting cryogen locally can cause condensation in the form of liquid water to form from the surrounding environment. Liquid water or water vapor entering the system can hamper the cryogenic performance. Further, fluid carrying portions of the cartridge receiver 52 can be treated (e.g., plasma treatment) to become hydrophobic and/or oleophobic so as to repel water or hydrocarbon contaminants.
Turning now to
In the exemplary embodiment of
The embodiment of
In this exemplary embodiment, three needles are illustrated. One of skill in the art will appreciate that a single needle may be used, as well as two, four, five, six, or more needles may be used. When a plurality of needles are used, they may be arranged in any number of patterns. For example, a single linear array may be used, or a two dimensional or three dimensional array may be used. Examples of two dimensional arrays include any number of rows and columns of needles (e.g. a rectangular array, a square array, elliptical, circular, triangular, etc.), and examples of three dimensional arrays include those where the needle tips are at different distances from the probe hub, such as in an inverted pyramid shape.
An optional cladding 320 of conductive material may be conductively coupled to the proximal portion of the shaft of the needle 302, which can be stainless steel. In some embodiments, the cladding 320 is a layer of gold, or alloys thereof, coated on the exterior of the proximal portion of the needle shaft 302. In some embodiments, the exposed length of cladding 320 on the proximal portion of the needle is 2-100 mm. In some embodiments, the cladding 320 can be of a thickness such that the clad portion has a diameter ranging from 0.017-0.020 in., and in some embodiments 0.0182 in. Accordingly, the cladding 320 can be conductively coupled to the material of the needle 302, which can be less conductive, than the cladding 320. The cladding 320 may modify the lateral force required to deflect or bend the needle 26. Cladding 320 may be used to provide a stiffer needle shaft along the proximal end in order to more easily transfer force to the leading tip during placement and allow the distal portion of the needle to deflect more easily when it is dissecting a tissue interface within the body. The stiffness of needle 26 can vary from one end to the other end by other means such as material selection, metal tempering, variation of the inner diameter of the needle 26, or segments of needle shaft joined together end-to-end to form one contiguous needle 26. In some embodiments, increasing the stiffness of the distal portion of the needle 26 can be used to flex the proximal portion of the needle to access difficult treatment sites as in the case of upper limb spasticity where bending of the needle outside the body may be used to access a target peripheral nerve along the desired tissue plane.
In some embodiments, the cladding 320 can include sub-coatings (e.g., nickel) that promote adhesion of an outer coating that would otherwise not bond well to the needle shaft 302. Other highly conductive materials can be used as well, such as copper, silver, aluminum, and alloys thereof. In some embodiments, a protective polymer or metal coating can cover the cladding to promote biocompatibility of an otherwise non-biocompatible but highly conductive cladding material. Such a biocompatible coating however, would be applied to not disrupt conductivity between the conductive block 315. In some embodiments, an insulating layer, such as a ceramic material, is coated over the cladding 320, which remains conductively coupled to the needle shaft 302.
In use, the cladding 320 can transfer heat to the proximal portion of the needle 302 to prevent directly surrounding tissue from dropping to cryogenic temperatures. Protection can be derived from heating the non-targeting tissue during a cooling procedure, and in some embodiments before the procedure as well. The mechanism of protection may be providing heat to pressurized cryogenic cooling fluid passing within the proximal portion of the needle to affect complete vaporization of the fluid. Thus, the non-target tissue in contact with the proximal portion of the needle shaft 302 does not need to supply heat, as opposed to target tissue in contact with the distal region of the needle shaft 302. To help further this effect, in some embodiments the cladding 320 is coating within the interior of the distal portion of the needle, with or without an exterior cladding. To additionally help further this effect, in some embodiments, the distal portion of the needle can be thermally isolated from the proximal portion by a junction, such as a ceramic junction. While in some further embodiments, the entirety of the proximal portion is constructed from a more conductive material than the distal portion.
In use, it has been determined experimentally that the cladding 320 can help limit formation of a cooling zone to the distal portion of the needle shaft 302, which tends to demarcate at a distal end of the cladding 320. Accordingly, cooling zones are formed only about the distal portions of the needles. Thus, non-target tissue in direct contact with proximal needle shafts remain protected from effects of cryogenic temperatures. Such effects can include discoloration and blistering of the skin. Such cooling zones may be associated with a particular physical reaction, such as the formation of an ice-ball, or with a particular temperature required to therapeutically affect the tissue therein.
Standard stainless steel needles and gold clad steel needles were tested in porcine muscle and fat. Temperatures were recorded measured 2 mm from the proximal end of the needle shafts, about where the cladding distally terminates, and at the distal tip of the needles. Temperatures for clad needles were dramatically warmer at the 2 mm point versus the unclad needles, and did not drop below 4° C. The 2 mm points of the standard stainless steel needles almost equalize in temperature with the distal tip at temperatures below 0° C.
The elongated probe 326 and supply tube 330 may be configured to resiliently bend in use, throughout their length at angles approaching 120°, with a 5-10 mm bend radius. This may be very challenging considering the small sizes of the elongated probe 326 and supply tube 330, and also considering that the supply tube 330 is often constructed from fused silica. Accordingly, the elongated probe 326 can be constructed from a resilient material, such as stainless steel, and of a particular diameter and wall thickness [0.004 to 1.0 mm], such that the elongated probe in combination with the supply tube 330 is not overly resilient so as to overtly resist manipulation, but sufficiently strong so as to prevent kinking that can result in coolant escaping. For example, the elongated probe can be 15 gauge or smaller in diameter, even ranging from 20-30 gauge in diameter. The elongated probe can have a very disparate length to diameter ratio, for example, the elongated probe can be greater than 30 mm in length, and in some cases range from 30-150 mm in length (e.g., 90 mm length). To further the aforementioned goals, the supply tube 330 can include a polymer coating 332, such as a polyimide coating that terminates approximately halfway down its length, to resist kinking and aid in resiliency. The polymer coating 332 can be a secondary coating over a primary polyimide coating that extends fully along the supply tube. However, it should be understood that the coating is not limited to polyimide, and other suitable materials can be used. In some embodiments, the flexibility of the elongated probe 326 will vary from the proximal end to the distal end. For example, by creating certain portions that have more or less flexibility than others. This may be done, for example, by modifying wall thickness, adding material (such as the cladding discussed above), and/or heat treating certain portions of the elongated probe 326 and/or supply tube 330. For example, decreasing the flexibility of elongated probe 326 along the proximal end can improve the transfer of force from the hand piece to the elongated probe end for better feel and easier tip placement for treatment. The elongated probe and supply line 330 are may be configured to resiliently bend in use to different degrees along the length at angles approaching 120°, with a varying bend radius as small as 5 mm. In some embodiments, the elongated probe 326 will have external markings along the needle shaft indicating the length of needle inserted into the tissue.
In some embodiments, the probe tip 322 does not include a heating element, such as the heater described with reference to probe 300, since the effective treating portion of the elongated probe 326 (i.e., the area of the elongated probe where a cooling zone emanates from) is well laterally displaced from the hub connector 324 and elongated probe proximal junction. Embodiments of the supply tube are further described below and within commonly assigned U.S. Pub. No. 2012/0089211, which is incorporated by reference.
The marks 815, 820, 825 may be utilized for visually aligning the needle 805 of a probe 800 with a target nerve. For example,
In some embodiments, the needle may be provided with an echogenic coating that makes the needle more visible under ultrasound imaging. For example, in some embodiments, the entire length of the needle may be provided with an echogenic coating. Alternatively, the one or more of the marks 815, 820, 825, may be provided with an echogenic coating such that the distal end, proximal end, or center of the cryozone associated with the needle is visible under ultrasound imaging. In other embodiments, the one or more marks may be provided by a lack of echogenic coating. For example, in some embodiments, the length of the needle may be provided with an echogenic coating except for at the one or more marks 815, 820, 825, such that when viewed under ultrasound guidance, the distal, proximal, or center of the cryozone would be associated with the portion of the needle without the echogenic coating. Alternatively, the length of the needle may be provided with the echogenic coating that ceases at the center of the associated cryozone, such that when viewed under ultrasound guidance, the distal end of the echogenic coating would be associated with a center of a cryozone of the needle.
Long needles may be used in some embodiments (e.g., 8-15 mm, 20 mm, 90 mm etc.). Longer needles may require a smaller gauge (larger diameter) needle so they have sufficient rigidity for improved control while positioning of the distal end deep in the tissue, but not so large as to create significant mechanical injury to the skin and tissue when inserted (e.g., greater diameter than 20 G). Alternate configurations of the device may have two or more needles spaced generally 2-5 mm apart of lengths ranging from up to 20 mm or greater, typically of 27 gauge, 25 gauge or 23 gauge. Single needle configurations may be even longer (e.g., 90 mm) for reaching target tissues that are even deeper (e.g., >15 mm or so below the dermis). Longer needle devices (e.g., >10 mm) may not need active heating of the skin warmer and/or cladding found in designs using shorter needle(s), as the cooling zone may be placed sufficiently deep below the dermis to prevent injury. In some embodiments, devices with single long needle configurations may benefit from active nerve location such as ultrasound or electrical nerve stimulation to guide placement of the needle. Further, larger targets may require treatment from both sides to make sure that the cold zone created by the needle fully covers the target. Adjacent treatments placing the needle to either side of a nerve during two successive treatment cycles may still provide an effective treatment of the entire nerve cross-section.
In some situations, a probe with multiple spaced apart needles may be preferable (e.g., 2, 3, 4 or more). A device employing multiple needles may decrease the total treatment duration by creating larger cooling zones. Further, a multi-needle device may be configured to provide continuous cooling zones between the spaced apart needles. In some embodiments, the needles may be spaced apart by 1-5 mm. The spacing may be dependent on the type of tissue being targeted. For example, when targeting a nerve, it may be preferable to position the nerve between the two or more needles so that cooling zones are generated on both sides of the nerve. Treating the nerve from both sides may increase the probability that the entire cross-section of the nerve will be treated. For superficial peripheral nerves, the nerves may be at depths ranging from 2-6 mm and may be smaller in diameter, typically <2 mm. Accordingly, devices for treating superficial peripheral nerves may comprise two or more 27 gauge needles spaced ≤2 mm apart and having typical lengths less than 7 mm (e.g., 6.9 mm); however longer needles may be required to treat the full patient population in order to access patients with altered nerve anatomy or patients with higher amounts of subcutaneous tissue such as those with high BMIs.
A treatment cycle may comprise a 10 second pre-warm phase, followed by a 60 second cooling phase, followed thereafter by a 15 second post-warm phase with 40° C. skin warmer throughout. It should be understood that other treatment cycles may be implemented. In some embodiments, a pre-warming cycle can range from 0 to up to 30 seconds, preferably 5-15 seconds sufficient to pre-warm the cryoprobe and opposing skin. Treatment cooling may range from 5-120 seconds, preferably 15-60 seconds based on the flow rate, geometry of the cryoprobe, size of the therapy zone, size of the target nerve or tissue and the mechanism of action desired. Post-warming can range from 0-120 seconds, preferably less than 60 seconds, more preferably 10-15 seconds sufficient to return the cryoprobe to a steady state thermal condition and possibly to free the cryoprobe needle(s) from the frozen therapy zone (e.g., at least 0° C.) prior to removing the cryoprobe needles. For example, in some embodiments, devices with 6.9 mm long cladded needles may be warmed with a 30° C. heater. The treatment cycle may comprise a 10 second pre-warm phase, a 35 second cooling phase, and a 15 second post-warm phase. Advantageously, such a treatment cycle may make an equivalent cryozone as the treatment cycle used in the study in a shorter amount of time (e.g., a 35 second cooling phase compared to a 60 second cooling phase).
In some embodiments, treatment devices and treatment cycles may be configured to deliver a preferred cryozone volume. For example, in some embodiments, devices and treatment cycles may be configured to generate cryozones having a cross-sectional area of approximately 14-55 mm2 (e.g., 27 mm2). Optionally, the devices and treatment cycles may be configured to generate cryozones having a volume of approximately 65-125 mm3 (e.g., 85 mm3).
Accordingly, in some embodiments, treatment cycles may be configured with cooling phases ranging between 15-75 seconds (e.g., 30 seconds, 35 seconds, 40 seconds, 45 seconds, etc.) depending on cooling fluid flow rates, warming phase durations, warming phase temperature, number of cooling needles, needle spacing, or the like in order to generate a desired cryozone. Similarly, treatment cycles may be configured with warming phases operating a temperatures ranging between 10-45° C. depending on the length of cooling phases, number of needles, needle spacing, etc., in order to generate a desired cryozone. In some embodiments the temperature can be set to one temperature during the pre-warm phase, another temperature during the cooling phase, and a third temperature during the post-warm phase.
In some embodiments, devices may be configured to limit flow rate of a cooling fluid to approximately 0.25-2.0 SLPM, preferably 0.34-1.0 SLPM (gas phase). Optionally, in some embodiments, it may be preferable to configure the device and the treatment cycle to maintain the tip at less than −55° C. during cooling phases. In some embodiments, it may be preferable to configure the device and the treatment cycle to have the tip return to at least 0° C. at the end of the post-warm phase so as to ensure the device may be safely removed from the tissue after the treatment cycle.
While generally describing treatment cycles as including pre-heating/warming phases, it should be understood that other treatment cycles may not require a pre-heating/warming phase. For example, larger needle devices (e.g., 30-90 mm) may not require a pre-heat/warm phase. Larger needles may rely on the body's natural heat to bring the needle to a desired temperature prior to a cooling phase.
In some embodiments of the present invention, treatment guidance can rely on rigid or boney landmarks because they are less dependent upon natural variations in body size or type, e.g. BMI. Soft tissues, vasculature and peripheral nerves pass adjacent to the rigid landmarks because they require protection and support. The target nerve to relieve pain can be identified based on the diagnosis along with patients identifying the area of pain, biomechanical movements that evoke pain from specific areas, palpation, and diagnostic nerve blocks using a temporary analgesic (e.g. 1-2% Lidocaine). Target nerve (tissue) can be located by relying on anatomical landmarks to indicate the anatomical area through which the target nerve (tissue) reside. Alternatively, nerve or tissue locating technologies can be used. In the case of peripheral nerves, electrical stimulation or ultrasound can be used to locate target nerves for treatment. Electrical nerve stimulation can identify the nerve upon stimulation and either innervated muscle twitch in the case of a motor nerve or altered sensation in a specific area in the case of a sensory nerve. Ultrasound is used to visualize the nerve and structures closely associated with the nerve (e.g. vessels) to assist in placing the cryoprobe in close proximity to the target nerve. By positioning the patient's skeletal structure in a predetermined position (e.g. knee bent 30 degrees or fully extended), one can reliably position the bones, ligaments, cartilage, muscle, soft tissues (including fascia), vasculature, and peripheral nerves. External palpation can then be used to locate the skeletal structure and thereby locate the pathway and relative depth of a peripheral nerve targeted for treatment.
A treatment of peripheral nerve tissue to at least −20° C. for greater than 10 seconds (e.g., at least 20 seconds preferably) may be sufficient to trigger 2nd degree Wallerian degeneration of the axon and myelinated sheath. Conduction along the nerve fibers is stopped immediately following treatment. This provides immediate feedback as to the location of the target peripheral nerve or associated branches when the associated motion or sensation is modified. This can be used to refine rigid landmark guidance of future treatments or to determine whether addition treatment is warranted.
By using rigid landmarks, one may be able to direct the treatment pattern to specific anatomical sites where the peripheral nerve is located with the highest likelihood. Feedback from the patient immediately after each treatment may verify the location of the target peripheral nerve and its associated branches. Thus, it should be understood that in some embodiments, the use of an electrical nerve stimulation device to discover nerve location is not needed or used, since well-developed treatment zones can locate target nerves. This may be advantageous, due the cost and complexity of electrical nerve stimulation devices, which are also not always readily available.
In alternative embodiments of the invention, one could use an electrical nerve stimulation device (either transcutaneous or percutaneous) to stimulate the target peripheral nerve and its branches. With transcutaneous electrical nerve stimulation (TENS), the pathway of the nerve branch can be mapped in XY-coordinates coincident with the skin surface. The Z-coordinate corresponding to depth normal to the skin surface can be inferred by the sensitivity setting of the electrical stimulation unit. For example, a setting of 3.25 mA and pulse duration of 0.1 ms may reliably stimulate the frontal branch of the temporal nerve when it is within 7 mm of the skin surface. If a higher current setting or longer pulse duration is required to stimulate the nerve, then the depth may be >7 mm. A percutaneous electrical nerve stimulator (PENS) can also be used to locate a target peripheral nerve. Based on rigid anatomical landmarks, a PENS needle can be introduced through the dermis and advanced into the soft tissues. Periodic stimulating pulses at a rate of 1-3 Hz may be used to stimulate nerves within a known distance from the PENS needle. When the target nerve is stimulated, the sensitivity of the PENS can be reduced (e.g., lowering the current setting or pulse duration), narrowing the range of stimulation. When the nerve is stimulated again, now within a smaller distance, the PENS sensitivity can be reduced further until the nerve stimulation distance is within the therapy zone dimensions. At this point, the PENS needle can be replaced with the cryoneurolysis needle(s) and a treatment can be delivered. The PENS and cryoneurolysis needles can be introduced by themselves or through a second larger gage needle or cannula. This may provide a rigid and reproducible path when introducing a needle and when replacing one needle instrument with another. A rigid pathway may guide the needle to the same location by preventing needle tip deflection, which could lead to a misplaced therapy and lack of efficacy.
While many of the examples disclosed herein relate to puncturing the skin in a transverse manner to arrive at a target nerve, other techniques can be used to guide a device to a target nerve. For example, insertion of devices can be made parallel to the surface of the skin, such that the (blunted) tip of the device glides along a particular fascia to arrive at a target sensory nerve. Such techniques and devices are disclosed in U.S. Pub. No. 2012/0089211, the entirety of which is incorporated by reference. Possible advantages may include a single insertion site and guidance of a blunt tip along a layer common with the path or depth of the target nerve. This technique may be a position-treatment-thaw, reposition-treatment-thaw, etc.
In further aspects of the present invention, a cryoneurolysis treatment device may be provided that is adapted to couple with or be fully integrated with a nerve stimulation device such that nerve stimulation and cryoneurolysis may be performed concurrently with the cryo-stimulation device. Accordingly, embodiments of the present disclosure may improve nerve targeting during cryoneurolysis procedures. Improvements in nerve localization and targeting may increase treatment accuracy and physician confidence in needle placement during treatment. In turn, such improvements may decrease overall treatment times, the number of repeat treatments, and the re-treatment rate. Further, additional improvements in nerve localization and targeting may reduce the number of applied treatment cycles and may also reduce the number of cartridge changes (when replaceable refrigerant cartridges are used). Thus, embodiments of the present disclosure may provide one or more advantages for cryoneurolysis by improving localization and treatment of target nerves. Hence, some aspects of the present disclosure provide methods, devices, and systems for localizing and targeting a nerve during cryoneurolysis procedures.
The method 500 may be used for cosmetic and/or other medical treatments (e.g., pain alleviation or the like). In some cosmetic applications, a target nerve may be between 3-7 mm in depth, for example. In other medical applications, a target nerve may be upwards of 50 mm in depth or deeper. It may be beneficial to locate the target nerve to within 2 mm for at least some of treatments. Additionally, in some applications, it may be beneficial to be able to locate and differentiate motor nerves from sensory nerves. For example, in some cosmetic applications that target motor nerves for wrinkle alleviation, it may be advantageous to locate and avoid treating sensory nerves to limit side effects due to the cosmetic procedure. For example, method 500 may be used to target the temporal branch of the facial nerve (TBFN). Additional nerves treated with method 500 in and around the face may include the auriculotemporal nerve. The nerves may run above the SDTF layer. The depth of the SDTF layer varies along treatment lines and among individuals and as such the target nerve depth may also vary from patient to patient. Accordingly, an integrated stimulation and cooling treatment device may be beneficial in such a procedure. In an additional non-limiting example, method 500 may be used to target the infrapatellar branch of the saphenous nerve (ISN). The ISN is a sensory nerve that innervates the anterior aspect of the knee. Cryoneurolysis of the ISN may alleviate pain experienced in the knee of a patient (e.g., due to osteoarthritis or the like). While anatomical features may be used to generally localize a treatment box for the target nerve, a plurality of treatments may be needed before the target nerve is treated within the box. Accordingly, an integrated nerve stimulation and cooling treatment device may provide more accurate treatments and may thereby limit the number of treatments required for treatment and reduce a treatment time. Additional treatments that may benefit from such a device include, but are not limited to: head pain, knee pain, plantar fasciitis, back pain, tendonitis, shoulder pain, movement disorders, intercostal pain, pre-surgical pain, post-herpetic neuralgia, post-surgical pain, phantom limb pain, etc. Associated nerves include: greater occipital nerve, lesser occipital nerve, trigeminal nerves, suprascapular nerve, intercostal nerves, brachialis nerve, superficial radial nerve, ilioinguinal nerve, iliohypogastric nerve, anterior femoral cutaneous nerve, lateral femoral cutaneous nerve, infrapatellar branch of the saphenous nerve, common peroneal nerve branches, tibial nerve branches, superficial peroneal nerve, sural nerve.
Electrical nerve stimulation localizes nerves by transmission of electrical pulses. The electrical impulses in turn excite nerves by inducing a flow of ions through the neuronal cell membrane (depolarization), which results in an action potential that may propagate bi-directionally. The nerve membrane depolarization may result in either muscle contraction or paresthesia, depending on the type of nerve fiber (motor vs. sensory). The current density a nerve reacts to or “sees” decreases with distance from the nerve:
where k is a constant that depends on electrode size, pulse width, tissue impedance, nerve fiber size, etc.; i is the current delivered; and r is the distance from the nerve. This corresponds to higher threshold currents at a distance from the nerve.
In some embodiments, an insulated needle having a small conducting or uninsulated portion may have minimal current threshold when the needle is on the nerve. Non-insulated needles in contrast may transmit current through the entire length and may have a lower current density along the treatment portion of the needle. As such, non-insulated needles may require more current than insulated needles at the same distance from the nerve and may have less discrimination of distances as the needle approaches the nerve. Accordingly, while not essential, in some embodiments, cryo-stimulation devices may be provided that include an insulated nerve stimulation needle.
In some embodiments, the integrated cooling and stimulation needle probe may have a single needle for both cooling and nerve stimulation. For example,
In some embodiments the coating 523 may be 0.001 inches thick. Optionally, coating 523 may be applied by masking off the cooling center 522 of needle 512 and then coating the needle 512 with the electrically insulating material 523. Additionally, while needle assembly 510 is illustrated with a needle 512 without insulation at the distal end of the needle 512, it should be understood that this is exemplary. In some embodiments of the present disclosure, the distal end of needle 512 may have a coating of the electrically insulating material 523, as illustrated in
As mentioned above, a proximal end of needle 512 may be uninsulated and may be configured to couple with an electrical nerve stimulation generator 524. In some embodiments, the electrical nerve stimulation generator 524 may have an input that is configured to couple with a corresponding electrical port of the treatment device. For example,
In some embodiments, the input electrical port configured to receive an input from the electrical nerve stimulation generator 524 may be provided on the replaceable needle assembly 612. For example, as illustrated in
Additionally, in some embodiments, the input electrical port configured to receive an input from the electrical nerve stimulation generator 524 may be provided on the handle 610 in addition to or in the alternative to the electrical port 622 on needle assembly 612. For example, as illustrated in
Optionally, in some embodiments, the electrical nerve stimulation generator 524 may be fully integrated with the treatment device. For example,
While the exemplary needle assembly 510 of
While illustrated as including three needles 712, it should be understood that this is exemplary and non-limiting. Two, four, five or more needles may be provided in other embodiments. Further, while illustrated with each of the needles 712 being supplied by a cooling fluid supply tube and thus each of the needles 712 being configured to cool to produce cold zone 721, in other embodiments, only some of the plurality of needles may be configured to provide the cooling treatment. Other needles 712 may be provided separately for electrical stimulation. Accordingly, in some embodiments, center needle 712 may be provided for electrical stimulation only, while the adjacent needles 712 may be provided to produce cold zone 721. Put in another way, in some embodiments, stimulation needle (e.g., needle 712c) may not include a cold center along the length of the needle, but nevertheless, the cooling center 722 of the cold zone 721 associated with the needle assembly 710 may be disposed along the length of the stimulation needle. Thus, the stimulation needle may provide more accurate targeting of a target nerve with the cold zone 721 whether or not it provides cooling itself.
Additionally, it should be understood that while assembly 710 is illustrated with a single stimulating needle 712c, additional needles 712 of assembly 710 may be configured to separately stimulate as desired. Accordingly, some or all of the plurality of needles 712 may be configured to provide nerve stimulation. Thus, nerve stimulation generator 524 may be electrically coupled with each stimulating needle.
Further, in some embodiments, an adjacent needle (e.g., needles 712 adjacent to 712c) may provide an electrical return during nerve stimulation. Accordingly, one or more of the adjacent needles may be constructed from a conductive material and may be uninsulated at a location proximate to an uninsulated portion of an adjacent nerve stimulation needle. Optionally, adjacent needles may also include an electrically insulated coating that extends from a proximal portion of the needle adjacent to the housing toward a distal portion of the needle.
In still further embodiments, during cryoneurolysis delivery 509, nerve stimulation may be conducted to provide feedback to the treatment. For example, in some embodiments, nerve stimulation may be performed continuously and/or concurrently with cryoneurolysis delivery 509 to determine the efficacy of the treatment in real time. Optionally, the nerve stimulation may be repeated in a discrete intervals during cryoneurolysis delivery 509. In such embodiments, cryoneurolysis delivery 509 may continue until there is a cessation of motor function or paresthesia. In some embodiments, cryoneurolysis delivery 509 may be shorter in duration when the nerve stimulation feedback is associated with a successful treatment. In other embodiments, cryoneurolysis delivery 509 may be longer in duration when the nerve stimulation feedback indicates that the nerve has not been successfully treated. Further, initial tests surprisingly suggest that ice ball formation by the treatment needles of the assembly may be produced at a quicker rate when the electrical stimulation is concurrently delivered.
In still further embodiments of the present disclosure, a cryoneurolysis treatment device may be provided with an integrated transcutaneous electrical stimulation device. For example,
An integrated cooling and stimulation needle probe may have a single needle for both cooling and nerve stimulation. For example,
The needle 912 may be constructed from an electrically conductive material and may also have an electrically insulated coating 923 disposed about a length of the needle 912. The electrically insulated coating 923 may electrically insulate selected or desired portions of the needle 912. For example, coating 923 may insulate a proximal portion of a length of the needle 912 that is adjacent the distal end of the probe or needle assembly housing 914 and may extend toward a distal portion of the length of the needle 912. The electrically insulated coating 923 may be made from a dielectric or other suitable type of insulating material. For example, the coating 923 may be a fluoropolymer coating, a silicone rubber coating, a parylene coating, a ceramic coating, an epoxy coating, a polyimide coating or the like.
One or more regions or portions of the needle 912 may be uninsulated by the coating 923 (e.g., exposed or conductive). For example, a proximal end of needle 512 may be uninsulated and may be configured to couple with an electrical nerve stimulation generator 924 of a percutaneous or transcutaneous electrical stimulation device. The electrical nerve stimulation generator 924 may be integrated with (e.g., positioned on or within) housing 914. In other embodiments, the electrical nerve stimulation generator 924 may be positioned away from housing 914. For example, housing 914 or needle assembly 910 may have a port configured to be coupled to an electrical nerve stimulation generator (e.g., an off the shelf generator). In certain embodiments, a first portion at a distal end of needle 912 and a second portion proximate the first portion may be uninsulated with a third insulated portion extending therebetween (
The pair of electrodes 946 and 944 may be a cathode and anode, respectively. In other embodiments, electrode 946 is an anode and electrode 944 is a cathode. An electric field 940 is generated by electrical nerve stimulation generator 924 about the pair of electrodes 946, 944. As illustrated in
While the exemplary needle assembly 910 of
In some embodiments, while bipolar electrical stimulation may facilitate improved precision for localizing a nerve, it may be beneficial to switch or alternate between bipolar and monopolar modes of electrical stimulation as illustrated in
As illustrated in
As further illustrated in
Needle 912 may include any suitable tip configuration. For example, needle 912 may include a substantially symmetrical pyramid or wedge-shaped tip configuration as illustrated in
Electric field 940 is generated with a stimulating region oriented on one side of the needle 912 (e.g., where electric field strength is highest) as depicted by the concentration of electric field lines 941 only one a left side of the needle 912 in
For example, electrode 944 may have a substantially larger surface area relative to electrode 946 located along a beveled distal edge of needle 912. Concentrated electric field lines 941 and hence current density are highest near the electrode 946 with substantially smaller surface area relative to electrode 944. This may provide one stimulating region configured to achieve a distinguished minimum current threshold to localize the target nerve (e.g., proximate electrode 946 on a left side of needle 912). As described above with respect to
Any of the asymmetrical electrode configurations of
As described above in more detail with respect to certain embodiments, integrated cold therapy and electrical stimulation systems may provided herein. Such cryo-stimulation devices may include a housing (e.g., housing 914) that defines a handle of the device. Housing 914 may house an electrical nerve stimulation generator 924. Electrical nerve stimulation generator 924 may electrically coupled with a needle assembly (e.g., needle assembly 910) to generate a stimulation signal (e.g., stimulation region, electric field). The stimulation signal may be generated within the cryo-stimulation device. Alternatively, in order to maintain the stimulator generator 924 as a device separate from the cryo-stimulation housing, a stimulation signal may be received from an off-the-shelf generator (e.g., PENS (input)) connected to the cryo-stimulation device via, for example, a port as described in more detail above.
The first shaft 1872 may be a conductive shaft configured to deliver electrical stimulation (e.g., from a tip portion) from electrical stimulation generator 1824 to localize a target nerve. In some embodiments, the first shaft 1872 is constructed from an electrically conductive material. The first shaft 1872 may include an insulative coating 1823 as described above with respect to other embodiments. In certain embodiments, the first shaft 1872 is insulated along its length (e.g., length of needle 1812 inserted into a patient). A small portion or area 1874 (e.g., region, tip, edge) at a distal end portion may be conductive (e.g., exposed or uninsulated) and configured to contact a target nerve or be positioned proximate to the target nerve for localizing the target nerve. In the illustrated embodiment, conductive portion 1874a (e.g., surrounding in broken lines) is a portion of the tip of the beveled edge of the needle 1812a. In other embodiments, conductive portion 1874 may include a region or area at the end of a tip of the needle (e.g., conductive portion 1874b as illustrated in
Distal ends of the first and second shafts may be aligned to form a substantially continuous distal tip of needle 1812 (e.g., an asymmetric beveled edge (
An electrical signal may be generated by the stimulation generator 1924 and travel in a loop as illustrated by the arrows. The signal may travel through the skin (e.g., skin and adipose tissue) of a patient to stimulate and localize the target nerve 1984. In some embodiments, the electrical signal may return through in the heater assembly or components 1944 attached to the heater. The heater components (e.g., heater block) 1944 may be kept in contact with skin of the patient during electrical stimulation. In alternative embodiments, the electrical circuit or signal ground may be integrated or positioned on or within a portion of the housing 1914 or generator 1924. As discussed above, the needle 1912 may include an insulative coating only exposed at a tip of the needle where the electrical signal is desired (e.g., at or near the target nerve). For example, a first electrical contact or electrode may be positioned at the exposed tip of the needle. A second electrical contact or electrode (e.g., return electrode) may be positioned on or within the heater assembly or components 1944 (e.g., heater block, sensor, housing, generator), or on or within the same or different needle if one or more needles. In other embodiments, other electrode or conductor configurations may be provided as discussed in more detail above. For example, the needle 1912 may include bipolar and/or monopolar electrode configurations. Integrated grounding as described above within the stimulation device may provide improved nerve localization because electric field strength is increased due to a shorter return distance to ground (e.g., on or within the cryo-stimulation device itself rather than on skin of a patient). Further, integrating the return electrode may also eliminate a need for an additional electrode or contact on the skin of a patient. A further benefit of utilizing the skin-contacting surface of the heater assembly as the return electrode is that the impedance of this contact as measured by the PENS generator can be used to provide feedback to the user that the skin heater is not in contact with the patient. That is, if the skin warmer is in intimate contact with the patient's skin, then the PENS generator will measure a relatively low impedance (e.g., less than 10 K ohm, less than 5 K ohm, or less than 1 K ohm), but if the skin heater is not in contact with the patient, then the PENS generator will report a high-impedance condition. This impedance indication provides an additional safety benefit for the cryoneurolysis treatment, as it indicates when the heater is not in a position to adequately protect the skin.
One or more computing devices may be adapted to provide desired functionality by accessing software instructions rendered in a computer-readable form. When software is used, any suitable programming, scripting, or other type of language or combinations of languages may be used to implement the teachings contained herein. However, software need not be used exclusively, or at all. For example, some embodiments of the methods and systems set forth herein may also be implemented by hard-wired logic or other circuitry, including but not limited to application-specific circuits, field programmable gate arrays, or the like. Combinations of computer-executed software and hard-wired logic or other circuitry may be suitable as well.
Embodiments of the methods disclosed herein may be executed by one or more suitable computing devices. Such system(s) may comprise one or more computing devices adapted to perform one or more embodiments of the methods disclosed herein. As noted above, such devices may access one or more computer-readable media that embody computer-readable instructions which, when executed by at least one computer, cause the at least one computer to implement one or more embodiments of the methods of the present subject matter. Additionally or alternatively, the computing device(s) may comprise circuitry that renders the device(s) operative to implement one or more of the methods of the present subject matter.
Any suitable computer-readable medium or media may be used to implement or practice the presently-disclosed subject matter, including but not limited to, diskettes, drives, and other magnetic-based storage media, optical storage media, including disks (e.g., CD-ROMs, DVD-ROMs, variants thereof, etc.), flash memory, RAM, ROM, and other memory devices, and the like.
The terms “invention,” “the invention,” “this invention” and “the present invention” used in this patent are intended to refer broadly to all of the subject matter of this patent and the patent claims below. Statements containing these terms should be understood not to limit the subject matter described herein or to limit the meaning or scope of the patent claims below.
The subject matter of embodiments of the present invention is described here with specificity, but this description is not necessarily intended to limit the scope of the claims. The claimed subject matter may be embodied in other ways, may include different elements or steps, and may be used in conjunction with other existing or future technologies. This description should not be interpreted as implying any particular order or arrangement among or between various steps or elements except when the order of individual steps or arrangement of elements is explicitly described.
Different arrangements of the components depicted in the drawings or described above, as well as components and steps not shown or described are possible. Similarly, some features and sub-combinations are useful and may be employed without reference to other features and sub-combinations. Embodiments of the invention have been described for illustrative and not restrictive purposes, and alternative embodiments will become apparent to readers of this patent. Accordingly, the present invention is not limited to the embodiments described above or depicted in the drawings, and various embodiments and modifications may be made without departing from the scope of the claims below.
The present application claims the benefit of U.S. Provisional Application Ser. No. 62/586,625, filed Nov. 15, 2017, which is incorporated by reference herein in its entirety for all purposes. The present application is related to U.S. Publn No. 2018-0116705 filed May 12, 2017, entitled “Methods and Systems for Locating and Treating Nerves With Cold Therapy”, which is presently pending and assigned to the same assignee as the present application, and the full disclosure of which is incorporated herein by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2319542 | Hall | May 1943 | A |
2672032 | Towse | Mar 1964 | A |
3226492 | Schuetze | Dec 1965 | A |
3266492 | Steinberg | Aug 1966 | A |
3289424 | Shepherd | Dec 1966 | A |
3343544 | Dunn et al. | Sep 1967 | A |
3351063 | Malaker et al. | Nov 1967 | A |
3439680 | Thomas, Jr. | Apr 1969 | A |
3483869 | Hayhurst | Dec 1969 | A |
3502081 | Amoils | Mar 1970 | A |
3507283 | Thomas, Jr. | Apr 1970 | A |
3532094 | Stahl | Oct 1970 | A |
3664344 | Bryne | May 1972 | A |
3702114 | Zacarian | Nov 1972 | A |
3795245 | Allen, Jr. et al. | Mar 1974 | A |
3814095 | Lubens | Jun 1974 | A |
3830239 | Stumpf et al. | Aug 1974 | A |
3886945 | Stumpf et al. | Jun 1975 | A |
3889681 | Waller et al. | Jun 1975 | A |
3951152 | Crandell et al. | Apr 1976 | A |
3993075 | Lisenbee et al. | Nov 1976 | A |
4140109 | Savic et al. | Feb 1979 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4236518 | Floyd | Dec 1980 | A |
4306568 | Torre | Dec 1981 | A |
4376376 | Gregory | Mar 1983 | A |
4404862 | Harris, Sr. | Sep 1983 | A |
4524771 | McGregor et al. | Jun 1985 | A |
4758217 | Gueret | Jul 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4946460 | Merry et al. | Aug 1990 | A |
5059197 | Urie et al. | Oct 1991 | A |
5200170 | McDow | Apr 1993 | A |
5294325 | Liu | Mar 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5520681 | Fuller et al. | May 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5647868 | Chinn | Jul 1997 | A |
5747777 | Matsuoka | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5814040 | Nelson et al. | Sep 1998 | A |
5860970 | Goddard et al. | Jan 1999 | A |
5879378 | Usui | Mar 1999 | A |
5899897 | Rabin et al. | May 1999 | A |
5916212 | Baust et al. | Jun 1999 | A |
5976505 | Henderson | Nov 1999 | A |
6003539 | Yoshihara | Dec 1999 | A |
6032675 | Rubinsky | Mar 2000 | A |
6039730 | Rabin et al. | Mar 2000 | A |
6041787 | Rubinsky | Mar 2000 | A |
6139545 | Utley et al. | Oct 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6142991 | Schatzberger | Nov 2000 | A |
6182666 | Dobak, III | Feb 2001 | B1 |
6196839 | Ross | Mar 2001 | B1 |
6238386 | Mueller et al. | May 2001 | B1 |
6277099 | Strowe et al. | Aug 2001 | B1 |
6277116 | Utely et al. | Aug 2001 | B1 |
6312392 | Herzon | Nov 2001 | B1 |
6363730 | Thomas et al. | Apr 2002 | B1 |
6364899 | Dobak, III | Apr 2002 | B1 |
6371943 | Racz et al. | Apr 2002 | B1 |
6432102 | Joye et al. | Aug 2002 | B2 |
6494844 | Van Bladel et al. | Dec 2002 | B1 |
6503246 | Har-Shai et al. | Jan 2003 | B1 |
6506796 | Fesus et al. | Jan 2003 | B1 |
6546935 | Hooven | Apr 2003 | B2 |
6551309 | Lepivert | Apr 2003 | B1 |
6562030 | Abboud et al. | May 2003 | B1 |
6629951 | Laufer et al. | Oct 2003 | B2 |
6648880 | Chauvet et al. | Nov 2003 | B2 |
6669688 | Svaasand et al. | Dec 2003 | B2 |
6672095 | Luo | Jan 2004 | B1 |
6682501 | Nelson et al. | Jan 2004 | B1 |
6706037 | Zvuloni et al. | Mar 2004 | B2 |
6723092 | Brown et al. | Apr 2004 | B2 |
6749624 | Knowlton | Jun 2004 | B2 |
6761715 | Carroll | Jul 2004 | B2 |
6764493 | Weber et al. | Jul 2004 | B1 |
6786901 | Joye et al. | Sep 2004 | B2 |
6786902 | Rabin et al. | Sep 2004 | B1 |
6789545 | Littrup et al. | Sep 2004 | B2 |
6840935 | Lee | Jan 2005 | B2 |
6858025 | Maurice | Feb 2005 | B2 |
6896666 | Kochamba | May 2005 | B2 |
6902554 | Huttner | Jun 2005 | B2 |
6905492 | Zvuloni et al. | Jun 2005 | B2 |
6905494 | Yon et al. | Jun 2005 | B2 |
6936048 | Hurst | Aug 2005 | B2 |
6960208 | Bourne et al. | Nov 2005 | B2 |
7001400 | Modesitt et al. | Feb 2006 | B1 |
7081111 | Svaasand et al. | Jul 2006 | B2 |
7081112 | Joye et al. | Jul 2006 | B2 |
7083612 | Littrup et al. | Aug 2006 | B2 |
7189230 | Knowlton | Mar 2007 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7207985 | Duong et al. | Apr 2007 | B2 |
7217939 | Johansson et al. | May 2007 | B2 |
7250046 | Fallat | Jul 2007 | B1 |
7278991 | Morris et al. | Oct 2007 | B2 |
7311672 | Van Bladel et al. | Dec 2007 | B2 |
7322973 | Nahon | Jan 2008 | B2 |
7338504 | Gibbens, III et al. | Mar 2008 | B2 |
7347840 | Findlay et al. | Mar 2008 | B2 |
7367341 | Anderson et al. | May 2008 | B2 |
7402140 | Spero et al. | Jul 2008 | B2 |
7422586 | Morris et al. | Sep 2008 | B2 |
7479139 | Cytron et al. | Jan 2009 | B2 |
7549424 | Desai | Jun 2009 | B2 |
7578819 | Bleich et al. | Aug 2009 | B2 |
7620290 | Rizoiu et al. | Nov 2009 | B2 |
7641679 | Joye et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7713266 | Elkins et al. | May 2010 | B2 |
7842047 | Modesitt et al. | Nov 2010 | B2 |
7846170 | Modesitt et al. | Dec 2010 | B2 |
7850683 | Elkins et al. | Dec 2010 | B2 |
7862558 | Elkins et al. | Jan 2011 | B2 |
7998137 | Elkins et al. | Aug 2011 | B2 |
8027718 | Spinner et al. | Sep 2011 | B2 |
8038688 | Modesitt et al. | Oct 2011 | B2 |
8298216 | Burger et al. | Oct 2012 | B2 |
8409185 | Burger et al. | Apr 2013 | B2 |
8617228 | Wittenberger et al. | Dec 2013 | B2 |
8715275 | Burger et al. | May 2014 | B2 |
8722065 | Ishibashi et al. | May 2014 | B2 |
9039688 | Palmer, III et al. | May 2015 | B2 |
9101346 | Burger et al. | Aug 2015 | B2 |
9113912 | Mehta et al. | Aug 2015 | B1 |
9254162 | Burger et al. | Feb 2016 | B2 |
9295512 | Allison et al. | Mar 2016 | B2 |
9345531 | Furnish et al. | May 2016 | B2 |
9585618 | Leschinsky et al. | Mar 2017 | B2 |
20020010460 | Joye et al. | Jan 2002 | A1 |
20020013602 | Huttner | Jan 2002 | A1 |
20020045434 | Masoian et al. | Apr 2002 | A1 |
20020049436 | Zvuloni et al. | Apr 2002 | A1 |
20020068929 | Zvuloni | Jun 2002 | A1 |
20020120260 | Morris et al. | Aug 2002 | A1 |
20020120261 | Morris et al. | Aug 2002 | A1 |
20020120263 | Brown et al. | Aug 2002 | A1 |
20020128638 | Chauvet et al. | Sep 2002 | A1 |
20020156469 | Yon et al. | Oct 2002 | A1 |
20020183731 | Holland et al. | Dec 2002 | A1 |
20020193778 | Alchas et al. | Dec 2002 | A1 |
20030036752 | Joye et al. | Feb 2003 | A1 |
20030109912 | Joye et al. | Jun 2003 | A1 |
20030130575 | Desai | Jul 2003 | A1 |
20030144709 | Zabara et al. | Jul 2003 | A1 |
20030181896 | Zvuloni et al. | Sep 2003 | A1 |
20030195436 | Van Bladel et al. | Oct 2003 | A1 |
20030220635 | Knowlton et al. | Nov 2003 | A1 |
20030220674 | Anderson et al. | Nov 2003 | A1 |
20040024391 | Cytron et al. | Feb 2004 | A1 |
20040082943 | Littrup et al. | Apr 2004 | A1 |
20040092875 | Kochamba | May 2004 | A1 |
20040122482 | Tung et al. | Jun 2004 | A1 |
20040143252 | Hurst | Jul 2004 | A1 |
20040162551 | Brown et al. | Aug 2004 | A1 |
20040167505 | Joye et al. | Aug 2004 | A1 |
20040191229 | Link et al. | Sep 2004 | A1 |
20040204705 | Lafontaine | Oct 2004 | A1 |
20040210212 | Maurice | Oct 2004 | A1 |
20040215178 | Maurice | Oct 2004 | A1 |
20040215294 | Littrup et al. | Oct 2004 | A1 |
20040215295 | Littrup et al. | Oct 2004 | A1 |
20040220497 | Findlay et al. | Nov 2004 | A1 |
20040220648 | Carroll | Nov 2004 | A1 |
20040225276 | Burgess | Nov 2004 | A1 |
20040243116 | Joye et al. | Dec 2004 | A1 |
20040267248 | Duong et al. | Dec 2004 | A1 |
20040267257 | Bourne et al. | Dec 2004 | A1 |
20050004563 | Racz et al. | Jan 2005 | A1 |
20050177147 | Vancelette et al. | Aug 2005 | A1 |
20050177148 | van der Walt et al. | Aug 2005 | A1 |
20050182394 | Spero et al. | Aug 2005 | A1 |
20050203505 | Megerman et al. | Sep 2005 | A1 |
20050203593 | Shanks et al. | Sep 2005 | A1 |
20050209565 | Yuzhakov et al. | Sep 2005 | A1 |
20050209587 | Joye et al. | Sep 2005 | A1 |
20050224086 | Nahon | Oct 2005 | A1 |
20050228288 | Hurst | Oct 2005 | A1 |
20050251103 | Steffen et al. | Nov 2005 | A1 |
20050261753 | Littrup et al. | Nov 2005 | A1 |
20050276759 | Roser et al. | Dec 2005 | A1 |
20050281530 | Rizoiu et al. | Dec 2005 | A1 |
20050283148 | Janssen et al. | Dec 2005 | A1 |
20060009712 | Van Bladel et al. | Jan 2006 | A1 |
20060015092 | Joye et al. | Jan 2006 | A1 |
20060069385 | Lafontaine et al. | Mar 2006 | A1 |
20060079914 | Modesitt et al. | Apr 2006 | A1 |
20060084962 | Joye et al. | Apr 2006 | A1 |
20060089688 | Panescu | Apr 2006 | A1 |
20060111732 | Gibbens et al. | May 2006 | A1 |
20060129142 | Reynolds | Jun 2006 | A1 |
20060142785 | Modesitt et al. | Jun 2006 | A1 |
20060173469 | Klein et al. | Aug 2006 | A1 |
20060189968 | Howlett et al. | Aug 2006 | A1 |
20060190035 | Hushka et al. | Aug 2006 | A1 |
20060200117 | Hermans | Sep 2006 | A1 |
20060212028 | Joye et al. | Sep 2006 | A1 |
20060212048 | Crainich | Sep 2006 | A1 |
20060223052 | MacDonald et al. | Oct 2006 | A1 |
20060224149 | Hillely | Oct 2006 | A1 |
20060241648 | Bleich et al. | Oct 2006 | A1 |
20060258951 | Bleich et al. | Nov 2006 | A1 |
20070060921 | Janssen et al. | Mar 2007 | A1 |
20070088217 | Babaev | Apr 2007 | A1 |
20070129714 | Elkins et al. | Jun 2007 | A1 |
20070156125 | DeLonzor | Jul 2007 | A1 |
20070161975 | Goulko | Jul 2007 | A1 |
20070167943 | Janssen et al. | Jul 2007 | A1 |
20070167959 | Modesitt et al. | Jul 2007 | A1 |
20070179509 | Nagata et al. | Aug 2007 | A1 |
20070198071 | Ting et al. | Aug 2007 | A1 |
20070225781 | Saadat et al. | Sep 2007 | A1 |
20070255362 | Levinson et al. | Nov 2007 | A1 |
20070270925 | Levinson | Nov 2007 | A1 |
20080051775 | Evans | Feb 2008 | A1 |
20080051776 | Bliweis et al. | Feb 2008 | A1 |
20080077201 | Levinson et al. | Mar 2008 | A1 |
20080077202 | Levinson | Mar 2008 | A1 |
20080077211 | Levinson et al. | Mar 2008 | A1 |
20080154254 | Burger et al. | Jun 2008 | A1 |
20080183164 | Elkins et al. | Jul 2008 | A1 |
20080200910 | Burger et al. | Aug 2008 | A1 |
20080228250 | Mironer | Sep 2008 | A1 |
20080287839 | Rosen et al. | Nov 2008 | A1 |
20090018623 | Levinson et al. | Jan 2009 | A1 |
20090018624 | Levinson et al. | Jan 2009 | A1 |
20090018625 | Levinson et al. | Jan 2009 | A1 |
20090018626 | Levinson et al. | Jan 2009 | A1 |
20090018627 | Levinson et al. | Jan 2009 | A1 |
20090118722 | Ebbers et al. | May 2009 | A1 |
20090171334 | Elkins et al. | Jul 2009 | A1 |
20090248001 | Burger et al. | Oct 2009 | A1 |
20090264876 | Roy et al. | Oct 2009 | A1 |
20090299357 | Zhou | Dec 2009 | A1 |
20100114191 | Newman | May 2010 | A1 |
20100168725 | Babkin et al. | Jul 2010 | A1 |
20100274237 | Yamakawa et al. | Oct 2010 | A1 |
20100274327 | Carroll | Oct 2010 | A1 |
20100305439 | Shai et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110144631 | Elkins et al. | Jun 2011 | A1 |
20110178514 | Levin et al. | Jul 2011 | A1 |
20110196267 | Mishelevich | Aug 2011 | A1 |
20120065629 | Elkins et al. | Mar 2012 | A1 |
20120089211 | Curtis et al. | Apr 2012 | A1 |
20120259322 | Fourkas et al. | Oct 2012 | A1 |
20120265187 | Palmer, III et al. | Oct 2012 | A1 |
20130218148 | Burger et al. | Aug 2013 | A1 |
20130253605 | Bennett et al. | Sep 2013 | A1 |
20130324990 | Burger et al. | Dec 2013 | A1 |
20140249519 | Burger et al. | Sep 2014 | A1 |
20140276539 | Allison et al. | Sep 2014 | A1 |
20140276708 | Karnik et al. | Sep 2014 | A1 |
20140296935 | Ferree et al. | Oct 2014 | A1 |
20140343542 | Karnik et al. | Nov 2014 | A1 |
20140343543 | Karnik | Nov 2014 | A1 |
20140343544 | Carnell et al. | Nov 2014 | A1 |
20150112405 | Brown et al. | Apr 2015 | A1 |
20160000601 | Burger et al. | Jan 2016 | A1 |
20160166429 | Allison et al. | Jun 2016 | A1 |
20160338753 | Ryba et al. | Nov 2016 | A1 |
20170020451 | Wybo | Jan 2017 | A1 |
20170258514 | Mehta et al. | Sep 2017 | A1 |
20180116705 | Lee et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2643474 | Sep 2007 | CA |
43447 | Jan 1982 | EP |
955012 | Nov 1999 | EP |
1074273 | Feb 2001 | EP |
1377327 | Sep 2007 | EP |
1862125 | Dec 2007 | EP |
2499984 | Sep 2012 | EP |
1402632 | Aug 1975 | GB |
1014656 | Jan 1998 | JP |
2001178737 | Jul 2001 | JP |
2005080988 | Mar 2005 | JP |
2006130055 | May 2006 | JP |
2008515469 | May 2008 | JP |
2254060 | Jun 2005 | RU |
9749344 | Dec 1997 | WO |
0197702 | Dec 2001 | WO |
0202026 | Jan 2002 | WO |
02092153 | Nov 2002 | WO |
2004039440 | May 2004 | WO |
2004045434 | Jun 2004 | WO |
2004089460 | Oct 2004 | WO |
2005000106 | Jan 2005 | WO |
2005079321 | Sep 2005 | WO |
2005096979 | Oct 2005 | WO |
2006012128 | Feb 2006 | WO |
2006023348 | Mar 2006 | WO |
2006044727 | Apr 2006 | WO |
2006062788 | Jun 2006 | WO |
2006125835 | Nov 2006 | WO |
2006127467 | Nov 2006 | WO |
2007025106 | Mar 2007 | WO |
2007037326 | Apr 2007 | WO |
2007089603 | Aug 2007 | WO |
2007109656 | Sep 2007 | WO |
2007129121 | Nov 2007 | WO |
2007135629 | Nov 2007 | WO |
2008054487 | May 2008 | WO |
2009026471 | Feb 2009 | WO |
2010075438 | Jul 2010 | WO |
2010075448 | Jul 2010 | WO |
2014146105 | Sep 2014 | WO |
2014146106 | Sep 2014 | WO |
2014146122 | Sep 2014 | WO |
2014146127 | Sep 2014 | WO |
2017197323 | Nov 2017 | WO |
Entry |
---|
Cryoablation in Pain Management Brochure, Metrum CryoFlex, Medical Devices Manufacturer, 2012, 5 pages. |
Cryoprobe, One Med Group, LLC, Available online at: http://www.onemedgroup.com/, Feb. 4, 2008, 2 pages. |
Cryosurgery Probes and Accessories Catalogue, Metrum CryoFlex, Contact Probes Catalogue, 2009, 25 pages. |
“CyroPen, LLC Launches Revolutionary, State-of-the-Art Medical Device The Future of Cryosurgery in a Pen”, Press Release, Available online at: http://cryopen.com/press.htm, Apr. 27, 2006, pp. 1-3. |
“New Technology Targets Motor Nerves”, Advanced Cosmetic Intervention, Available online at:: http://www.acisurgery.com, 2007, 1 page. |
“The Future of Cryosurgery at your Fingertips”, CryoPen, LLC, Available online at: http://cryopen.com/, 2006-2008, 2 pages. |
Bohannon et al., “Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity”, Phys Ther., vol. 67, No. 2, Feb. 1987, pp. 206-207. |
Boyd et al., “Objective Measurement of Clinical Findings in the Use of Botulinum Toxin Type A for the Management of Children with Cerebral Palsy”, European Journal of Neurology, vol. 6, Supp. S4, 1999, pp. S23-S35. |
Cryosurgical Concepts, Inc. , “CryoProbe.TM.-Excellence in Cryosurgery”, Available online at: <<http://www.cryo-surgical.com//>>, Feb. 8, 2008, 2 pages. |
Dasiou-Plankida, “Fat Injections for Facial Rejuvenation: 17 Years Experience in 1720 Patients”, Journal of Cosmetic Dermatology, vol. 2, Issue No. 3-4, Oct. 22, 2004, pp. 119-125. |
Farrar et al., “Validity, Reliability, and Clinical Importance of Change in a 0-10 Numeric Rating Scale Measure of Spasticity: a Post HOC Analysis of a Randomized, Double-Blind, Placebo-Controlled Trial”, Clin Ther., vol. 30, No. 5, 2008, pp. 974-985. |
Foster et al., “Radiofrequency Ablation of Facial Nerve Branches Controlling Glabellar Frowning”, Dermatol Surg, vol. 35, Issue No. 12, Dec. 2009, pp. 1908-1917. |
Gallagher et al., “Prospective Validation of Clinically Important Changes in Pain Severity Measured on a Visual Analog Scale”, Annals of Emergency Medicine, vol. 38, No. 6, 2001, pp. 633-638. |
Har-Shai et al., “Effect of Skin Surface Temperature on Skin Pigmentation During Contact and Intralesional Cryosurgery of Hypertrophic Scars and Kleoids”, Journal of the European Academy of Dermatology and Venereology, vol. 21, Issue No. 2, Feb. 2007, 14 pages. |
Magalov et al., “Isothermal Volume Contours Generated in a Freezing Gel by Embedded Cryo-needles with Applications to Cryo-Surgery”, Cryobiology, vol. 55, Issue No. 2, Oct. 2007, pp. 127-137. |
Morris, “Ashworth and Tardieu Scales: Their Clinical Relevance for Measuring Spasticity in Adult and Paediatric Neurological Populations”, Physical Therapy Reviews, vol. 7, No. 1, 2002, pp. 53-62. |
Page et al., “Clinically Important Differences for the Upper-Extremity Fugl-Meyer Scale in People with Minimal to Moderate Impairment Due to Chronic Stroke”, Physical Therapy, vol. 92, No. 6, Jan. 26, 2012, pp. 791-798. |
Penn et al., “Intrathecal Baclofen for Severe Spinal Spasticity”, N Engl J Med., vol. 320, No. 23, Jun. 8, 1989, pp. 1517-1521. |
Rewcastle et al., “A Model for the Time Dependent Three-Dimensional Thermal Distribution within Iceballs Surrounding Multiple Cryoprobes”, Medical Physics, vol. 28, Issue No. 6, Jun. 2001, pp. 1125-1137. |
Rutkove, “Effects of Temperature on Neuromuscular Electrophysiology”, Muscles and Nerves, vol. 24, Issue No. 7, Jun. 12, 2001, pp. 867-882. |
Shaw et al., “BoTULS: A Multicentre Randomised Controlled Trial to Evaluate the Clinical Effectiveness and Cost-Effectiveness of Treating Upper Limb Spasticity Due to Stroke with Botulinum Toxin Type A”, Health Technol Assess., vol. 14, No. 26, May 2010, 158 pages. |
Sullivan et al., “Fugl-Meyer Assessment of Sensorimotor Function After Stroke: Standardized Training Procedure for Clinical Practice and Clinical Trials”, Stroke, vol. 42, No. 2, Feb. 2011, pp. 427-432. |
Utley et al., “Radiofrequency Ablation of the Nerve to the Corrugator Muscle for Elimination of Glabellar Furrowing”, Archives of Facial Plastic Surgery, vol. 1, Issue No. 1, Jan.-Mar. 1999, pp. 46-48. |
Yang et al., “Apoptosis Induced by Cryo-Injury in Human Colorectal Cancer Cells is Associated with Mitochondrial Dysfunction”, International Journal of Cancer, vol. 103, Issue No. 3, Jan. 2003, pp. 360-369. |
Number | Date | Country | |
---|---|---|---|
20190142494 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62586625 | Nov 2017 | US |